
1

Chapter One

Introduction

1.1 Background

 In recent days the web applications and web services are uses the data it become must

important and widely used, the web 3 and mobile applications are designed to support

huge number of concurrent users by using the distribute the load across multiple nodes[1].

The latest updates to databases and data storage have created a variety of challenges.

Specifically, classic relational databases (such as Postgres SQL, MySQL, and others) are

having a difficult time keeping up with current changes because of their reliance on set

schema and poor scalability [1].

Databases is the best tools appearance of computer innovation and are pivotal parts of

data frameworks. Utilizing the proper databases is fundamental for viably putting away

and recovering information. Structured Query Language, or SQL, is a term frequently

used to refer to relational database systems. When it comes to databases, relational

databases have long been the standard. They are well-liked because of their dependability

and usefulness. Yet, these databases have disadvantages when it comes to non-structured

and massive amounts of data in the current context of a data environment that is always

evolving. As an outcome, NoSQL databases are a new kind of database.

As a result of the new technology trends in a web, social-media network platforms,

mobiles, and the Internet of Things, that generate a new type of data managed by special

types of application, this huge data was named a massive data applications that are used

2

to manage many types of data like structured-data, semi-structured-data, and

unstructured-data that has arisen during in early 2000s[2]. Some applications have a

number of specifications for data storage, such as: scalability, which empowers direct

flexibility to the gigantic sums of information and the quickening inquiry handling speed,

Tall accessibility and blame resistance to fulfill client demands indeed within the occasion

of hardware/software disappointment or overhaul occasions, Corrosive qualities to allow

profoundly reliable database questions, and There are four Corrosive highlights that make

exceedingly reliable database inquiries simpler.

On the other hand, NoSQL databases were specifically created to meet this big scale

requirements and relational databases' store capacity limits. A non-relational, distributed,

and horizontally scalable database is known as NoSQL (Not Only SQL). Although data

consistency is an essential quality, most NoSQL databases do not guarantee it, unlike

relational databases. The data consistency attribute states that the same set of data values

are consistently supplied to all instances of an application. When competing copies of the

same data emerge in several locations, there is data inconsistency[3]. Information that

has a rating of inconsistency is unreliable since it will be challenging to verify which

version of the information is accurate or not.

1.2 Research Contributions

The main and principal contribution brought forth by this study is the provision of a tool,

specifically designed for system designers, that serves the purpose of assisting them in

the process of selecting the most optimal configuration settings. This selection process is

aimed at ensuring the achievement of strong data consistency within NoSQL databases.

Moreover, it is important to note that this selection is not made in isolation, but rather

3

takes into account the consideration of high performance metrics, such as a high level of

throughput and low latency. Furthermore, in addition to this primary and fundamental

contribution, this study encompasses a range of other significant and noteworthy efforts.

Firstly, a comprehensive and extensive survey has been conducted, which explores and

delves into the various types of NoSQL databases that exist. This survey also aims to

uncover and investigate the diverse consistency models that these databases employ.

Additionally, it also addresses and analyzes the challenges and limitations that are

associated with the task of ensuring transaction consistency across these databases.

Secondly, a model has been developed as a result of this study. This model proposes and

puts forth different levels of consistency that can be implemented and observed within

NoSQL databases. This model serves as a guide and provides a framework for system

designers to follow in order to achieve the desired level of consistency within their

databases. Lastly, this study has conducted a series of comprehensive tests and

evaluations of the proposed model. These tests and evaluations have been carried out

using multiple models of NoSQL databases. The purpose of these tests and evaluations is

to validate and verify the effectiveness and efficiency of the proposed model in achieving

the desired levels of consistency within NoSQL databases.

Overall, the contributions made by this study significantly add to and enhance the

understanding and advancement of transaction consistency within NoSQL databases.

These contributions serve to shed light on the various factors and considerations that need

to be taken into account when designing and implementing NoSQL databases, with the

goal of achieving strong data consistency. By considering and addressing the challenges

and limitations associated with transaction consistency, system designers can make

4

informed decisions and implement appropriate strategies to ensure the desired level of

consistency within their databases.

1.3 Research Objectives

The conduct and the enhancing performance of transaction consistency in NoSQL

databases is a crucial area of research, as it can significantly impact the scalability,

availability, and overall performance of NoSQL-based applications. Here are some of the

key objectives of this study:

1. To understand the challenges of achieving ACID compliance in NoSQL

databases.

2. To examine existing methods and tools used to improve NoSQL transaction

consistency

3. To understand the trade-offs between consistency and performance

4. To propose a novel model for optimizing consistency in NoSQL transaction

management.

5. To analyze the performance, scalability, and consistency guarantees of the model

compared to existing solutions.

By pursuing these objectives, the researchers can gain a deeper understanding of

consistency in NoSQL transactions, leading to improved data integrity, application

reliability, and overall system performance.

1.4 Research Motivation

The trend of migrating towards NoSQL solutions has gained traction among computer

companies and users. However, the successful implementation of transactional data

5

management systems in NoSQL databases faces a significant obstacle in achieving

consistency. In the realm of big data and real-time web applications, companies like

Google, Facebook, and Amazon highlight the need for strong consistency requirements

in web-scale systems. Modern NoSQL databases, such as Cassandra, MongoDB,

ScyllaDB, and DynamoDB, prioritize eventual consistency over immediate availability

for client applications. This approach places a burden on developers, as they must invest

considerable effort in creating distributed applications for NoSQL databases that adhere

to eventual consistency. Furthermore, this flaw in functionality forces developers to work

harder to mitigate the risk of data staleness and conflicts among multiple clients. While it

may not be feasible to maintain consistency for every type of data, such as Facebook and

search cache, the reliance on eventual consistency represents a significant departure from

the robust guarantees offered by traditional databases, thus burdening software

developers[4].

Developing advanced and scalable systems that meet the demands of poor consistency

guarantees is an exceedingly challenging task. Therefore, it is crucial for application

developers to reject subpar consistency and explore scalable NoSQL database designs that

provide more reliable data consistency. This requires a thorough investigation into the

causes of this contradiction. NoSQL databases are a relatively new venture, and their

popularity has grown in recent years. Consequently, many database designers are still in

the process of acquainting themselves with this technology.

Given these observations, it is clear that addressing performance optimization concerns

related to this emerging technology is a worthwhile endeavor. Thus, application

developers must prioritize tackling these concerns.

6

1.5 Research problems

NoSQL databases present several obstacles. One primary challenge lies in their absence

of transactional consistency, a characteristic commonly found in conventional relational

databases. Consequently, data may not exhibit uniformity across all nodes within the

cluster in certain scenarios. Furthermore, NoSQL databases may necessitate a higher

degree of expertise for setup and management compared to their relational counterparts.

Additionally, the absence of a predefined schema can complicate the preservation of data

quality and consistency. Nevertheless, despite these hurdles, NoSQL databases remain a

favored option for contemporary applications due to their advantageous qualities of

scalability, flexibility, and performance.

1.6 Research Questions

The questions of this study are:

Research question 1: What are the different consistency models

available for NoSQL databases?

Data inconsistency is a common drawback encountered in NoSQL databases, a

predicament regularly faced by both consumers and developers during the execution of

real-time transactions. In the realm of cloud applications, it is not uncommon for data to

be partitioned across various data centers situated in multiple physical regions, a

phenomenon necessitated by a multitude of reasons such as enhancing availability

through data replication and optimizing scalability by distributing the workload across

different nodes. Nevertheless, within this model, the preservation and monitoring of data

7

consistency have emerged as indispensable elements of the system's functionality and

performance.

Chapter two section six of this study will identify the conditions that lead to the states of

consistency models in NoSQL databases.

Research question 2: What are the trade-offs between different

consistency models?

There are a few technologies and approaches available to preserve the consistency of

NoSQL databases, such as Eventual, BASE, Quorum, and CAP [7] these consistency

techniques were developed in response to application requirements and/or capabilities.

The level of performance of the consistency performances of two types of consistency

will be proved in chapter four of the investigation.

Chapter four section 2 in this study will present the consistency model that offer the best

consistency in NoSQL databases.

Research question 3: How can improve the performance for getting

strong consistency guarantees in NoSQL transaction?

One of the biggest challenges with consistency in NoSQL databases is the trade-off

between consistency and performance. Strong consistency guarantees can lead to

performance bottlenecks, especially in highly concurrent environments. Weaker

consistency guarantees can improve performance, but they can also lead to

inconsistencies between nodes. Another challenge is that consistency approaches for

NoSQL databases are still evolving. There is no single consistency approach that is ideal

for all applications. Developers need to carefully consider the needs of their application

8

when choosing a consistency approach. Despite these challenges, optimistic about the

future of consistency in NoSQL databases. The researcher are actively developing a novel

consistency model that aim to improve the trade-off between consistency and

performance. I am also hopeful that NoSQL database vendors will continue to improve

their support for different consistency levels in chapter six present the proposed model of

NoSQL Transactions consistency (PMC) architecture and details.

Chapter four section 3 present the model design and how can implement in NoSQL

databases for improve the performance and getting strong consistency.

Research Question 4: Is the transaction's consistency configurations can

effect on the performance of the NoSQL database?

It is important to choose a consistency setting that meets the needs of the application. For

applications that require high consistency, it may be necessary to sacrifice some

performance. For applications that require high performance, it may be necessary to

accept some inconsistency. Strong consistency guarantees require that all nodes in the

database have the same data at all times. This can be achieved by using locks or other

synchronization mechanisms. However, these mechanisms can add overhead to reads and

writes, which can reduce performance. Weaker consistency policies, such as eventual

consistency, allow some nodes to have stale data for a period of time. This can improve

performance by reducing the need for synchronization. However, it can also lead to

inconsistencies between nodes, which can cause problems for applications that require

strong consistency.

9

This study was test some configuration models to conduct a hybrid consistency settings

can strike a balance between performance and consistency, a hybrid settings might require

that all nodes have the same data within a certain time frame.

Research Question 5: Is the proposed model should address the

limitations of existing approaches and offer scalability, and

performance optimization.

The Researcher in chapter five in this study was developed a novel transaction's

consistency model that aim to improve the trade-off between consistency and

performance.

1.6 Research outlines

This thesis contained a number of chapters that can be summarized as follows

The first chapter contained a group of paragraphs including the introduction, objectives,

presentation and description of the problem, etc.

The second chapter contained a set of concepts related to the problem and the theoretical

framework along with the literature of the study of NoSQL models and reviews relevant

literature in light of our research goals. Also the chapter contained a group of previous

studies related to consistency in transactions in NoSQL databases.

The third chapter of this study included the methodology and conceptual designing for

the model.

10

The forth chapter present the implementation of the study and its experiments, where

the researcher conducted a basic experiment and testing experiments for the proposed

model. And test a performance evaluation experiment setups and results was presented.

Chapter Five contained a set of results obtained by the researcher from experiments on

the proposed model to solve the problem of transaction consistency in NoSQL databases.

Chapter sex contained the discussion of the experiments result

Finally chapter seven presents a summary and conclusion of the study and a set of

recommendations for future studies on scientific topics related to the study.

11

Chapter Two

Literature Review

2.1 Background

To answer the given research question, it is necessary to concentrate on the areas listed

below in order to investigate the scope of a NoSQL databases. This chapter discusses the

characteristics of NoSQL models and presents the literature on transactional approaches

for such models. The discussion provided is helps us understand the cost implications of

implementing NoSQL consistency with existing approaches. They also pave the way for

recent research showing how they improve recommendation solutions to two closely

related problems of transactions and consistency in NoSQL database design. Although

the primary focus of this chapter is the study of alternative NoSQL transactional

approaches.

2.2 NoSQL Models

The best description of a data model is "a data model is a design model that describes just

data and its connections, it contains entities," although this only refers to the data they

carry, not how they own what it uses or what their job is. There are many more definitions

of data models as well [5, 6] A data model is described by others as an abstract model

that arranges and normalizes data items and describes how they relate to one another and

the characteristics of real-world entities[7]. A data model is an overview of the

representation and manipulation of real-world things and their interactions, according to

A. Silberschatz et al.[5]. Key-value stores, wide-column stores, document stores, and

object stores are the four basic forms of NoSQL storage. Each of the aforementioned

12

models has distinctive characteristics that make an associated store appropriate for a

particular use case.

2.2.1 Key-Value Data Model

The simplest and most constantly used in NoSQL data stores are key-value stores, which

handle and represent data as pairs of keys and values. The key element might be

straightforward (similar to a URI, hash, or filename) or structured using compound keys.

Also, it could be system or operation generated. The customer operation is in charge of

handling the serialization and deserialization of the value part's data, which can be of any

kind, structure, or size and is decoded as a byte array, for illustration, as a BLOB. The

client operation must apply its indexing and querying because to the stored values in a

schema-less form. Key-value models are thus only applicable for operations that only

need a single key to recover data, similar online shopping carts, profiles, configurations,

and web session information. This simple data structure enables quick data partitioning

and effective data querying, both of which contribute to the high scalability of key-value.

In reality, radical key-value stores include further features like indexing and querying the

content of values of certain data types since numerous operations demand a value-

grounded lookup of data. For case, the list data type is supported by Redis. They enable

carrying out insignificant operations on list values, similar to pushing into a list without

fully altering the item. Riak crucial- value3 also supports JSON and other document

formats [1]. The distinction between key-value stores and other types of NoSQL stores

has come blurred as a result of these added features. For illustration, a document

storehouse might be compared to Riaks' key-value .Simple key-grounded query

operations like GET (key), PUT (key, value), and cancel are offered by a standard key-

13

value database (key). The function GET (key) returns the value (or a collection of values

with colorful performances) connected to the key. Put adds the crucial and value.

The simplest and most popular NoSQL stores are key-value stores, which manage and

portray data as key-value pairs with the value component being particularly recognizable

by an indexed key part. The value part's contents, which can be of any sort, structure, or

size and is encoded as a byte array, must be serialized and deserialized by the client

program. This straightforward data format allows for efficient data searching and easy

data splitting. As many applications require a value-based search of data, modern key-

value stores now incorporate additional functionality like indexing and querying the

content of values of certain data types. In addition to JSON, Riak key-value3 supports

several document types. A provides straightforward key-based query operations including

GET (key), Put (key, value), and delete. If the key is not present, then only pair with the

store. A fresh iteration of the stored value is added if not. Remember that updating a

stored value in its whole follows modifying any individual components. Removes both

the key and the value it refers to with Delete (key) (s). The details of the aforementioned

operations depend on some factors, such as the consistency model, indexing, etc. These

single-key operations cannot modify several values at once. These tasks can be completed

quickly using the Lucene [8] or REST [9] interfaces. Figure 2.2(a) shows a

straightforward Key-value store that is used by a health information management system,

supposing that patients' medical records are often accessed using their SSNs and that

patient data is rarely updated.

14

2.2.2 Column-Family Data Model

This type of data stores were improved Key-value stores with a nested Key-value pair

table for the value component and a schema that is changeable. column data-store was

used a table as a collection of rows, each of which reflects a highly ordered construct and

is uniquely recognized by a row key and a certain number of column families. Any

number of logically linked columns or cells make up a column family, which is frequently

accessed as a whole for querying reasons. This explains why data is physically stored in

wide-column tables as column families rather than rows. The extensible schema of a

column family may be set aside updated by dynamically adding or removing columns.

Every column has a name, a simple (number or text) value, or a more complicated

structure like a group of columns. A value is retrieved using a triple in wide-column

stores, which usually offer the storing of an arbitrary number of copies of each cell value,

indexed by timestamps. The client application may assign a timestamp implicitly or the

store may explicitly assign one. Wide-column stores have more complete client interfaces

than Key-Value stores since their indexing and querying capabilities are based on a

number data structures, including rows, column families, and columns. Figure 2.2 shows

an example of how Facebook created a wide-column table for its Inbox Search feature

(b). This feature allows users to search their sent and received messages using either a

keyword (known as a term enquiry) or the sender or recipient's name (called interaction

query) More specifically, the row-key for both term and interaction queries is the user-

ID. Sender-recipient and Sent-received are two different column families that,

respectively, satisfy the requirements for interaction and keyword searches. In Sent-

received, the user's messages' keywords are transformed into nested column families,

sometimes referred to as column families. Each column family converts the unique

15

message-IDs (or links to messages) into columns to reduce recurrence. Similar to this,

column families are also established in Sender-Recipient using all of the user-IDs of the

users that send and receive messages.

Wide-column storage can effectively divide data into vertical and horizontal rows and

columns, making it suitable for storing large datasets. You should be aware that a number

of wide-column stores, like Google BigTable[10], Apache HBase[11],, and Apache

Cassandra[12], make use of LSM-trees to offer an extremely effective storage backbone

per column family. Wide-column stores' excellent scalability, extensibility, and support

for Map-Reduce tasks make them suitable for analytical applications[13]. (For the

concurrent processing of big datasets). Wide-column stores are difficult to employ for

applications with changing schemas due to the predefined set of column family stores [14,

15].

Figure 2.1 shows the NoSQL Data-Models

16

2.2.3 Document Data Model

They go beyond key-value storage, with the value component being nested documents.

Key-value pairs with a flexible syntax are encoded using common semi-structured

formats like XML or JSON. Each property in a document has a name and one or more

values. A document is a collection of properties. The value component might be

straightforward or complex, such a list of attributes or an embedded document. The

extensible schema of a document may be kept up to date by adding or removing properties

during runtime. As opposed to the opaque substance of values in Key-value stores,

document stores comprehend the structure of documents and offer indexes and search

operations based on their property names and values.

Programs like blogging platforms and content management systems (CMS) that may

simply express their document storage works well with data in document format. For

instance, a blog post with several (nested) features, such as tags, comments, pictures, and

videos, may be simply represented in a document format. These stores are suitable for the

modern Web 2.0 applications' high development efficiency and low maintenance

expenses as a result of two important aspects. Many applications benefit from the

adaptable data model of document storage since their data format is always changing.

Consider a monitoring software that gathers, records, and examines log data from a

variety of sources, each of which generates distinct data. It is straightforward to adapt to

new log formats because of the document design's flexibility. Yet, because it calls for the

creation of fresh tables for fresh forms or the incorporation by adding additional columns

to the existing tables; in relational databases, such an extension would be costly. Web 2.0

applications make use of JSON-based data formats and tightly integrate Python, Ruby,

and JavaScript. The impedance mismatch [16] between these programming languages

17

and document repositories has greatly decreased [17] due to the ease of transferring

object-oriented approaches to documents. A collection, sometimes known as a bucket, is

a special construct made available by a number of document stores, including Couchbase

Server and MongoDB that consists of a group of documents that all represent the same

kind of data. In that each row in these collections represents a document with a unique

key but not necessarily the same structure as other rows, they resemble relational database

tables. Instead, consider factors like as resources, replication and durability. When using

collections, security can be managed for each set of documents. Figure 2.2(c) shows how

Registration Students Record used the document data model to develop an interactive

learning site that gives tailored search results. It combines Couchbase Server with ES for

full-text search and content discovery. According to the Register Students Record vision,

a textbook is separated into media pieces including articles, images, and videos.

18

Figure 2.2 shows the case studies of NoSQL Data Models

19

1) Content Metadata, which holds the metadata of media assets with the content of text

articles, is one category of data saved in JSON documents.

2) User Profiles, which keep track of each media object's user views and are used to

modify ES search results based on user's settings or preference, and

3) Content Stats, which tracks viewer data for each media asset and uses that data to

improve ES search results depending on the popularity of particular documents.

Document storage allows for data searching within documents without having to obtain

the complete document and examine it at the application level. For instance, the following

query demonstrates how to use N1QL10, a SQL-like language for Couchbase, to seek for

documents in the collection Content Metadata. As seen in Figure 2.1. (c). after sorting

the documents by property title with the value "Lesson One," the search returns the URL

and the categories' property values.

Remember that native XML stores served as the inspiration for conventional JSON

document storage. They use a variety of XML tools and standards for XML display,

storage, keyword search, query processing, and optimization[18],. However many

applications have selected JSON as an alternative to XML because of its resemblance to

simplicity, tight compatibility with programming languages, and resemblance to

compactness. Both XML and JSON storage in this regard offer a variety of applications

and use-cases. While XML stores are often used for organizing and archiving a collection

of XML files in content management systems such as those used in the health care,

science, and digital libraries, JSON stores are employed by more interactive and dynamic

Web applications.

20

2.2.4 Graph Data Model

In the abovementioned data structures, entity-related data is stored as binary digits, wide-

column table rows, or documents. The emergence of graph stores, however, has been

fueled by the expansion of graph-oriented datasets, such as the semantic web[19], web

mining , and the interaction of proteins in biological systems[20, 21], which are efficient

at storing such datasets and querying entity relationships. These databases are based on

the graph theory, which states that a graph is composed of vertices that stand in for entities

and edges that indicate relationships between those entities. Table 2.1 lists a number of

graph structures that are frequently not mutually exclusive. For instance, directed,

labeled, attributed, and multi-graphs are all combined in property graphs, which are often

used in practice. Property graphs are popular because they may represent a variety of

structures. For instance, when attributes are not utilized in property graphs, RDF or

semantic graphs are formed. An RDF graph is a set of RDF assertions (or triples) that

together represent a simple relationship between two entities. Facebook uses a property

graph as an example of a social network in Figure 2.2(d), where users, real-world

locations, relationships (like friendships between users), and actions (like liking,

commenting on, and checking into a location) are all encoded using labeled vertices and

labeled directed edges of a graph. Each edge has a triple of source, destination, and edge

label vertex identifiers, and each vertex has a unique vertex identifier. For each edge label,

a set of Key-value pairs representing other properties are also supplied, including the time

property. All of the edges in Figure 2.2(d) are bidirectional (either symmetric, like

FRIEND, or asymmetric, like AUTHORS/AUTHORED BY), with the exception of the

edges labeled COMMENT. This is so that the COMMENT vertex and CHECKIN vertex

21

do not need to be traversed. In Table 2.2, the characteristics of the mentioned NoSQL

data models are listed.

Table 2.1 Graph Model Structure

Graph Structure Descriptions

Direct/Indirect Graphs Any interaction in a network that serves no purpose is

symmetric.

Labeled Graphs Vertices and edges are given scalar values (labels or

types) to identify their roles in various application

domains or other relevant data.

Attributed Graphs A changeable collection of attributes is given when KV

pairs are connected to vertices and edges, representing

their characteristics. Platforms for social networking

that encourage human interaction are suited for it.

Multi Graphs Self-loops and numerous edges between the same two

vertices (even ones with the same labels) are likewise

acceptable.

Hyper Graphs These networks may represent N-ary relationships by

using hyper-edges, which can connect any number of

vertices.

22

Figure 2.3 shows the types of graph model

2.3 Advantages of NoSQL

NoSQL is advantageous over other database methods due to its ability to accommodate

changes for future upgrades and no need to depend on SQL functions or operations.

NoSQL can make use of binary objects or data files in JSON/ XML formats, and soothes

the workflow when the project development is in agile methodology.

NoSQL has five most salient benefits, which are as follows: schema-less, dynamic

schema, structure of nested objects, increment methodologies, array features that may be

indexable, and scaling out database. These benefits make NoSQL Databases a unique

stance when compared with other types of databases.

The term "massive data" has become increasingly popular due to the expense of scaling

up large data. New types of databases, such as NoSQL databases, have emerged to support

scaling out and reduce administration and performance requirements.

Direct
Graphs

Indirect
Graphs

Labeled
Graphs

Attribute
d Graphs

Multi
Graphs

Hyper
Graphs

23

NoSQL databases are typically built from the ground up to eliminate unnecessary

managements and easier data models. They also allow for applications to keep virtually

any structure, from less flexible elements to more rigorously defined ones. Additionally,

NoSQL databases make it simple to add new columns because changing the schema of a

NoSQL database does not require a laborious change process.

MongoDB is a flexible and easy to use database for programmers, but it has its own

quirks. Cloud computing platforms have different licensing economics, so it is important

to make apples-to-apples comparisons. Funding may be swayed by the startup's capacity

to scale, and there are a lot of venture-funded NoSQL businesses. Groupthink is present.

Figure 2.4 NoSQL Reasons

R
ea

so
n

s
fo

r
N

o
SQ

L

Financial

Open Source

Attracting VCs

Demand

Web Application

Mobile
Applications

Workload
Simple Store and

Retrieve

24

NoSQL databases are designed to be highly scalable and distributed systems, making

them well-suited for concurrent algorithms. Concurrent algorithms allow multiple

operations or queries to execute simultaneously on different parts of the data set. This can

help improve performance by allowing more efficient use of resources and reducing

latency. Examples of common concurrent algorithms include replication, sharding, and

caching. Replication involves duplicating data across multiple nodes so that it can be

accessed faster. Sharding divides large datasets into smaller chunks which can then be

stored on separate nodes. Caching stores frequently used information close to where it

will be needed, such as in memory or on disk storage. By utilizing these techniques,

developers can ensure their applications have access to up-to-date data while minimizing

resource contention. Additionally, they can also reduce network traffic since requests do

not need to travel far between nodes. As a result, concurrent algorithms provide an

effective way to optimize performance when working with NoSQL databases.

2.4 NoSQL Data Partitioning

Data partitioning is a technique used in NoSQL databases to divide data into independent

partitions and distribute them among storage nodes. Horizontal partitioning separates the

data into a number of discrete partitions or shards at the row-level, while vertical

partitioning creates a number of separate partitions from the data that is often accessed

together. Partitioning data offers certain benefits, such as increasing scalability, boosting

system performance, and preventing single point of failure. Sharding can be key-oriented

or solely based on data search.

A database is partitioned when it is divided up into smaller units called partitions.

Partitions come in two varieties: vertical partitions and horizontal partitions. A database

25

table is divided vertically along the column characteristics, whereas a database is divided

horizontally along the rows. Each server that oversees a particular portion of the database

is referred to as a database shard when a single database is partitioned and shared (or

scaled) among several servers. This procedure is referred to as sharding. Partitioning,

which includes sharding, involves dividing the database into several segments (or

sections). When a database is partitioned, a separate server may or may not be used to

handle each portion of the divided database. But with sharding, each segment is overseen

by an independent server

 Sharding: however, allows for the management of each portion by a different

server. Hash partitioning, Range partitioning, and Robin-round partitioning are

the three different forms of partitioning.

 Hashing: Implementing hashing partitioning involves applying a hash function to

each data key. The node that houses the key would be identified by the hash

function's result. Applications that often employ random scans should use hash

partitioning. The hash function is applied to the data's key in order to locate any

data item. The location of the data item would be revealed by the outcome.

 Range partitioning: Each node keeps a unique range of data keys in range

partitioning. Applications that primarily need sequential scan can use range

partitions well since most data items' keys are sequential.

 Range partitioning: Each node keeps a unique range of data keys in range

partitioning. Range partitions function well with applications that primarily need

sequential scan since the majority of data items with closely related keys are kept

on the same node.

26

 Round-Robin Partition: In this method, the number of nodes determines how

evenly the key items are spread (in a ring-like pattern). If there are three nodes,

for instance, key items 1 through 3 will be shared over nodes 1 through 3, key

items 4 through 6 will be spread across nodes 1 through 3, and so on.

2.4.1 Scaling

 Vertical scaling and horizontal scaling are the two forms of scaling that are used to

expand a database node's processing capacity. In vertical scaling, a machine's processor

count, memory capacity, and disk space are expanded to facilitate the processing of

additional data. On the other side, horizontal scaling refers to the addition of new

hardware or an increase in the number of nodes used for data processing. The justification

for horizontal scaling is a two-dimensional one. First of all, increasing the hardware will

speed up work completion. There is a limit to how far a single node may scale vertically

in vertical scaling. In addition, recent research has demonstrated benefits of parallel

processing (horizontal scaling). Moreover, recent research has demonstrated that Moores

law, which claims that "the number of transistors on a microprocessor chip will double

around every two years," is quickly becoming unrealistic, supporting the need for parallel

processing (horizontal scaling). Because of this, big data processing applications favor

horizontal scaling over vertical scalability. Relational databases are made to scale

vertically, whereas NoSQL databases are made to scale horizontally. As there is no

restriction on the number of nodes that may be added to the database cluster, this gives

NoSQL databases a bigger benefit.

27

2.4.2 Replication

The technique of keeping several copies of a database in various places in order to offer

fault tolerance is known as replication. Higher levels of availability are the consequence,

but a new set of difficulties are also presented. There are two forms of replication: eager

(synchronous) and lazy (asynchronous) replications [49]. Replicas are updated during a

transaction in eager replication, whereas they are updated afterwards in lazy replication.

Maintaining consistency across the copies poses a number of challenges and may require

making trade-offs. Eager replication affects performance, uses more bandwidth, and

prolongs transaction delay. On the other side, lazy replication might result in some clones

having outdated and stale data?

In systems where a high level of data consistency is required, outdated copies might not

be permitted to respond to client queries. A database system's implementation of replicas

has conflicting effects on the system as a whole. For instance, a large number of clones

suggests that the system can offer more failure tolerance. A large number of copies also

suggests that more work (in terms of bandwidth and delay) will be required to maintain

the consistency of the replicas. Developers employ a variety of strategies and techniques

to streamline their replication procedures. One of these methods is primary-secondary

replication, wherein only a primary replica can handle writes while secondary copies can

only process reads (or updates).

To ensure consistency among replicas, several quorum or consensus procedures are also

utilized. The replication model used depends on the requirements of the individual

application. All NoSQL databases employ replication in some capacity for fault tolerance.

Consistent hashing and an eventual consistency model are used by Dynamo for replica

28

placement and maintenance, respectively. To synchronously handle writes across replica,

Google Megastore makes advantage of Paxos.

Algorithms for failure detection are present in most clusters. The gossip-based protocol

used by Dynamo. Between the master server and slave servers, BigTable employs

heartbeat messages. A node is believed to have failed if it doesn't respond within a certain

timeout period. Each of these systems employs different methods for recovering a failing

node once its faults have been detected.

2.4.3 Load Balancing

In order to prevent any one node from becoming overwhelmed, load balancing is a

strategy used to manage, distribute, and re-distribute data between nodes. High

throughput, effective resource use, minimal latency, and the avoidance of hotspots across

the cluster are the goals of load balancing and distribution. In a cluster system, load

balancing also seeks to enhance fault tolerance and maximize the replica distribution

procedure. For instance, a load balancing approach called shard aware or rack awareness

makes sure that replicas are spread so that network outages on a single rack do not

influence availability. Using two copies on two separate nodes in a local rack and the

third replica on a different node in a different rack is a well-known rack-aware strategy

used in HDFS. In this manner, a network partition to a rack won't be impacted.

2.4.4 Garbage collection

To ensure availability, even at the price of consistency, the majority of cloud databases

frequently maintain several copies of every data item. To efficiently manage computer

resources (storage/memory) and stop the database from storing useless or superfluous

data, an efficient garbage collection procedure is required. In order to ensure that only

29

logs that would not be needed are destroyed, log files must be trash collected carefully.

The system's efficiency shouldn't be hampered by the rubbish collecting procedure. While

the master is in a quiescent state, garbage collection is done in batches. While managing

data, the aforementioned methods are applied in varying degrees. The whole of these

methods combined, used by a database management.

2.4.5 Recovery and Identification of Failures

Failure is commonplace in the cloud computing context, as was previously described.

This is due to the fact that hundreds to thousands of machines—most of which are

common commodity machines—are utilized to process data in parallel. To ensure

availability and consistency, a reliable method must be in place to identify failing

equipment and bring them up to date.

2.4.6 Transaction Management

The execution of transactions must be serializable in order to maintain data consistency.

A transaction execution that can be serialized is one whose output would have the same

outcome as if the transactions were run sequentially. A scheduler is employed in relational

databases to guarantee that transaction executions are serializable. Prior to beginning, a

transaction obtains locks on all the data objects involved and maintains the locks until all

activities within the transaction have been completed. A transaction releases all locks

after performing the operations. A transaction obtains locks for all of the data objects

involved in the transaction in the first phase. The transaction is not authorized to request

more locks once locks have been released.

The transactional management approach is one of the primary methods used in database

systems to preserve the consistency of shared data throughout the concurrent execution

30

of many requests originating from various users. Several read and write operations are

combined in database systems into (atomic) transactions that adhere to ACID principles

(Atomicity, Consistency, Isolation, and Durability). The execution of transactions must

be serializable in order to maintain data consistency. A transaction execution that can be

serialized is one whose output would have the same outcome as if the transactions were

run sequentially. A scheduler is employed in relational databases to guarantee that

transaction executions are serializable.

Locking is a method that is typically combined with a scheduler. Prior to beginning, a

transaction obtains locks on all the data objects involved and maintains the locks until all

activities within the transaction have been completed. No other transaction may alter the

data while it is locked during this time. The isolation of transactions from one another

would be ensured by doing this. A transaction releases all locks after performing the

operations. Two phase locking is the name of this procedure (2PL). A transaction obtains

locks for all of the data objects involved in the transaction in the first phase. The second

phase involves the release of all obtained locks.

The transaction is not authorized to request more locks once locks have been released.

Concurrency control is the process used to make sure that transactions always leave the

database in a consistent state. Nevertheless, in a distributed database system, the method

for concurrency management becomes more complicated. Each participating database's

schedulers are in charge of controlling the portion of data that it stores.

2.5 CAP Vs. BASE

Rothnie et al. were the first to observe this trade-off. They increasing commercial appeal

of the Web, as well as the growing demand for regional data replication and high

31

operational availability[22], group Fox and Brewer [23, 24] they recover this trade-off

as a CAP rule. Concurring to this run the show, a dispersed information capacity can as

it were fulfill two out of the three alluring properties of consistency, accessibility, and

segment resilience at once.

The CAP theorem was later codified and proven by Gilbert and Lynch[24, 25], and

defined in this context as follows:

1. Consistency: It is believed that linearizability is shown by consistency, a

qualitative quality. This hypothesis assumes that the CAP consistency is not a

metric that is continuously tracked in response to the system's operational

condition. The linearizability of the system's used algorithms is therefore statically

specified with respect to those algorithms, as evidenced by the consistency.

2. Availability: The availability property implies that every request a client makes

will ultimately (within a predetermined amount of time) result in a successful

(non-error) response. According to this theory, a system's "availability" or

"unavailability" is statically stated in relation to the algorithms it employs. Yet,

there are a few questions around this concept. Prior to anything else, it's possible

that certain highly available systems with high uptime rates aren't CAP-available.

A distributed data store using quorum-based synchronous replication, for

instance, is not CAP-available because read/write operations on the minority side

of the partition might not succeed when the network divides. There is no upper

limit on response time, second. For instance, an operation is considered to be

CAP-available if it is successfully finished after one week. But according to the

core concept of accessibility, such a method is not accessible. In other words, this

formulation does not account for the realistic aspect of (latency) (reaction time).

32

3. Partition tolerance: This is regarded as a qualitative attribute and indicates that

the system keeps up with its CAP-availability or CAP-consistency promise even

in the face of a network partition (of the algorithms employed by the system).

Given that distributed systems can fail in ways other than network splits, this

notion is nebulous and imprecise. To put it another way, additional problems exist,

such as message loss and node failures.

The distributed databases are categorized into the following subcategories by giving up

any one of the aforementioned CAP properties.

1. Database systems with Consistency and Availability: The algorithms that CA

systems employ make no putative divisions of networks. It is consequently nearly

difficult to create this combination in distributed systems since network splits

would always occur. The major CAP trade-off, thus, is between availability and

consistency. More consistency than availability is compromised in scattered data

storage, hence this trade-off has evolved into a defense for accepting uneven

consistencies.

2. Database systems that provide consistency and partition tolerance: This

Distributed data storage that upholds CAP-consistency enables combination. A

read/write request might not be fulfilled, nevertheless, in order to lessen the

chance of consistency problems in the event of a network split. CP makes sense

for systems designed to operate in a reliable network, such as a single data center,

because network partitions are uncommon.

3. Availability and tolerance for partitions Database systems: Distributed data

storage with lax consistency enforcement enables this combination. Nevertheless,

conflicting writes are permitted to be finished, which might cause clones to

33

diverge and calls for the creation of a dispute resolution mechanism. These

systems are generally employed by wide-area network applications, such web

caching, whose users must have a high level of availability and quick response

times.

Figure 2.5 shows the CAP Characteristics' of distributed databases

BASE

Although it integrates with practice, BASE theory is a byproduct of CAP theorem and is

totally distinct from ACID model. Fundamentally Available, Soft-state, and Eventual

consistency is referred to as BASE. Partition failure might be provided, but basically

availability is simple to understand. Soft state indicates that the system's state could

become nonsynchronous over time. Finally, there should be uniformity in the data. One

of the consistency models utilized in the field of parallel programming is eventual

consistency. That means that all updates may be anticipated to ultimately propagate

through the system and all the replicas will be consistent if there is a sufficiently enough

period of time during which no modifications are delivered.

34

As a result of the aforementioned reasoning, the non-relational data storage trend known

as NoSQL stores has developed with the intention of solving the high availability and

scalability requirements of big data applications. The term "Not Just SQL" (or NoSQL)

references to several of these systems that provide SQL-like queries. According to Cattell,

R [26, 27] contemporary database systems are referred to as "data stores," where more

adaptive data models are used and DBMS functionalities may not always be fully utilized.

Figure 2.6 Technology timeline for primary databases and accompanying systems[28]

Large amounts of semi-structured and unstructured data are stored and managed using a

form of database management system called NoSQL. NoSQL databases do not require a

set schema or predetermined data model, in contrast to conventional relational databases.

Key-value, document-oriented, column-family, and graph databases are just a few of the

many data kinds and structures that NoSQL databases are made to manage. In large data

and real-time online applications, where scalability, flexibility, and high availability are

crucial, these databases are frequently utilized.

35

NoSQL databases have the potential to expand horizontally, meaning that more servers

may be added to manage growing amounts of data and traffic. This is one of its key

advantages. They are therefore highly suited for applications like e-commerce, social

networking, and mobile ones that demand high performance and availability.

Another key feature of NoSQL databases is their ability to handle unstructured data, such

as text, images, and video, which can be difficult to store and manage in traditional

relational databases. NoSQL databases can also handle semi-structured data, such as

JSON and XML, which are commonly used in web applications.

In addition to their scalability and flexibility, NoSQL databases also offer a number of

other benefits, such as faster performance, simpler data modeling, and lower cost.

However, they also have some drawbacks, such as a lack of standardization and limited

support for complex queries.

Overall, NoSQL databases are a powerful and versatile tool for managing large volumes

of data in a variety of applications. With their ability to handle diverse data types and

structures, and their scalability and flexibility, they are well-suited for the demands of

modern big data and web applications.

36

2.6 The Data Consistency in NoSQL Databases

NoSQL databases are typically designed to provide high scalability, flexibility, and

performance for handling large volumes of unstructured or semi-structured data.

However, ensuring transaction consistency in a NoSQL database can be challenging due

to their distributed and decentralized nature. Below, I'll describe some common

approaches and techniques used to achieve transaction consistency in NoSQL databases.

An operation sequence that usually complies with the ACID properties is referred to as a

transaction. If a transaction is successful, it is said to commit; if not, it is called to

abort[52]. A single valid state for all database instances can be characterized as

consistency in database management systems DBMS. A database management system

consistency can be defined as a single acceptable state for all database instances as long

as the data remain the same across all redundant database servers.[53, 54]. Because a

DBMS must guarantee that the returned data is the most recent for readings and must

confirm that the write operation has been successfully performed on each requested

server, this has an influence on performance. Since there are more database replicas

present in distributed systems, availability is also impacted by consistency policy in a

manner similar to how accessibility is. In order to boost efficiency and availability,

NoSQL databases use eventual consistency, which permits temporary inconsistency (i.e.,

not all redundant servers will immediately have the most recent data) and permits a

database replica to return its available data (which may not be the newest). There will

finally be consistency across all redundant servers[55]. NoSQL DBMSs permit the

adoption of different consistency levels (i.e., the bare minimum of redundant servers

holding the most recent data), which are adjusted in accordance with an application's

needs[56]. This contributes to closing the inconsistency. Fewer servers need to be

37

upgraded because of fault tolerance and increased availability. Another NoSQL trait is

strong consistency, which always returns the most recent data.

According to the most recent studies, consistency models can be categorized into a variety

of categories, including strong consistency, weak consistency, eventual consistency,

causal consistency, read-your-writes consistency, session consistency, monotonic reads

consistency, and monotonic writes consistency.

1) Weak-Consistency Model:

This model, as the name indicates, reduces consistency. It specifies that a read

operation does not guarantee the return of the most recently stored value. It also

does not ensure the sequence of events[57]. The time interval between a write

operation and the point at which each read operation provides the updated data is

referred to as the inconsistency window[58]. Because there is no need to include

more than one replica or node in a client request, this paradigm results in a highly

scalable system.

2) Eventual Consistency Model:

Eventual consistency is a common approach in NoSQL databases. It allows for data

to be inconsistent temporarily but guarantees that, given enough time and no further

updates, all replicas will converge to a consistent state.

This approach is often used in scenarios where immediate consistency is not a strict

requirement, such as social media feeds or recommendation systems.

A consistency model that ensures if there is no additional updates on a given item,

all the reads to that item will eventually return the same value[58]. Replicas

frequently arrive with the same data state. Read operations might not always

38

return the most recent version while this procedure is in progress. The connection

lags between replicas and their sources, system load, and the number of replicates

involved will affect the inconsistency interval.[57]. This method is half-way

between a strong-consistency model and a weak-consistency model. Many

NoSQL databases provide Eventual Consistency as a feature. The world's most

popular companies that use Cassandra can provide availability and network

partitioning to such a degree that it does not hinder functionality. Facebook, the

company that originally developed Cassandra, is one of them.

3) Strong Consistency Model:

 The identical value will be returned by any read from any replica thanks to a

robust consistency model. All clients will utilize the identical data entry and data,

and each transaction must appear to be committed instantly. The write action must

commit before a read operation may access the updated version of an instance.

Every storage system instance accepts a particular global sequence of events. [58,

59].

4) Casual Consistency Model:

 Any operations that recognize the update on an element are required to take the

modified value into account. The eventual consistency model will be used in the

event that another process does not acknowledge the write operation [18].

Although less dependable than sequential consistency, causal consistency is more

dependable than eventual consistency. When the Eventual Consistency model is

reinforced to be Causal Consistency, the system's availability and network

partitioning properties are decreased.[57].

39

Causal consistency aims to maintain causal relationships between operations. It

ensures that if one operation causally depends on another, the former will appear

to have occurred after the latter.

This is valuable in scenarios where maintaining causality is critical, like

distributed systems with complex dependencies.

5) Read-Your-Writes Consistency Model:

With the help of the read-your-writes consistency model, it is made sure that a

replica is at least current enough to include changes made by a single transaction.

Transactions are applied sequentially, therefore by guaranteeing that a replica has

a particular commit applied to it, we can make sure that all transaction commits

that took place prior to the given transaction have already been committed to the

replica. If a process updates an object, that process will always take into account

the modified value. Other processes will eventually read the modified value.

Therefore, read-your-writes consistency is achieved when the system guarantees

that every attempt to read a record that has been modified will return the updated

value.

Some NoSQL databases, like Google Spanner, provide strong consistency

guarantees. Strong consistency ensures that all replicas of the data will return the

same value for a read operation, even in a distributed environment.

Achieving strong consistency often requires coordination mechanisms like two-

phase commits, which can impact performance and availability.

6) Session Consistency Model:

A process will follow a read-your-writes consistency model for the length of a

session if it makes a request to the storage system while it is operating within that

session. All reads are current with the session's writes using session consistency,

40

although writes from other sessions may need to wait. Although everything arrives

in the correct order from prior sessions, the data is not always guaranteed to be up

to date. This offers excellent consistency at half the cost of good performance and

availability.

7) Monotonic Read Consistency Model:

Every time a process reads a value, it returns that value or one that is more

recent[54]. It implies that the same item is read by the same process consistently

and in the same order. However, this does not guarantee that read operations

between processes on the same object will be ordered monotonically. Because of

this, monotonic readings ensure that a process that reads r1, r2, and r2 cannot

experience a state that is earlier than the writing represented in r1; reads, by nature,

cannot travel backward. Monotonic readings do not apply to operations carried

out by different processes; they only apply to those carried out by the same

process. There are full monotonic readings available: Even during a network split,

all nodes can advance[60].

8) Monotonic Write Consistency Model:

Before any more write operations by the same process on the same object, a

process-initiated write action on that particular object must be completed[58]. In

other words, the same process writes to the same object consistently in the same

order. However, this does not guarantee that write operations between processes

on the same object will be ordered monotonically. The effect of this is that

monotonic writes guarantee that if a process writes w1, then w2, then all processes

will observe w1 before w2. Monotonic writes do not apply to operations carried

out by different processes; they only apply to those carried out by the same

41

process. All monotonic writes are available: Even during a network split, all nodes

can advance[61].

9) Time-Line Consistency Model:

Yahoo created this consistency model especially for YAHOO PNUTS in order

to solve the inefficiencies of serializable transactions of the big data and its

relation with their geo-replication. Furthermore, it seeks to reduce the

shortcomings of eventual consistency[62]. NoSQL databases are support eventual

consistency instead of strong consistency. They do not support database

transactions which ensure strong data consistency[63].

10) Quorum-Based Systems:

Many NoSQL databases use quorum-based techniques. In these systems, a write

or read operation is considered successful only if it meets a quorum (majority) of

replicas. This ensures that a certain level of consistency is maintained.

For example, in a replica set with five nodes, a write operation may require a

quorum of three nodes to acknowledge the write as successful.

Each type of NoSQL models support many level of Consistency for example the

eventual consistency supported may levels of consistency For the confirmation of

an activity at consistency level ONE, just one node or server is required (such as

a write or read). For level 2 operations, TWO nodes are needed, and while

reading, the most current data from both servers is taken into consideration. The

QUORUM policy[64], which requires that the least integer bigger than 50% of

the database nodes be used to determine consistency, is compatible with a level

like this. Like the ALL policy, Level Three asks confirmation from each

42

node.[65]. The latest information is constantly accessible thanks to reading (high

consistency)[66].

11) Conflict Resolution:

In multi-master NoSQL databases, conflicts can arise when concurrent writes

occur to the same data. Conflict resolution mechanisms, like "last write wins" or

custom resolution logic, can be used to resolve these conflicts and maintain data

consistency.

12) Vector Clocks and Versioning:

NoSQL databases often use vector clocks or versioning to track changes to data

over time. This allows the database to determine the order of operations and

resolve conflicts when they arise.

13) Tuning Consistency Levels:

Some NoSQL databases allow you to configure the level of consistency on a per-

operation basis. You can choose between options like "strong," "eventual," or

"session" consistency to balance performance and data integrity based on your

application's requirements.

14) Distributed Transactions:

Some NoSQL databases support distributed transactions. In this model,

transactions can span multiple documents or entities, and the database ensures that

either all changes in the transaction are committed or none are.

Distributed transactions often require careful handling of distributed locks and can

introduce latency and complexity.

43

Table 2.2NoSQL Consistency Models

Consistency

Model
Grantees

Weak

Consistency

Model

A read operation will not really support serialization and doesn't guarantee that it will provide the

value that was most recently saved in memory.

Session

Consistency

Model

Consistency with read-your-writes is only guaranteed during a session.

Read-Your-

Writes

Consistency

Model

An operation always receives the most recent update on read operations.

Monotonic

Reads

Model

Every time return the same value as the last reading, or one that is more recent.

Monotonic

Writes

Consistency

Model

Prior to performing any more writes, a write operation must always complete.

Casual

Consistency
Order of actions overall with a causal connection

Strong

Consistency

Serializability
A set of operations is composed of concurrent computations of a group of

serialization units.

Linearizability
Every operation is immediately seen in the overall, sequential order of events, or

it is handled as a single operation.

Eventual

Consistency
Eventually, the state of the updates will be consistent across all replica nodes.

Time-line

Consistency

The actions are performed on the same record by all replica nodes in the same "correct

proportion".

44

Table 2.3 Consistency Models in NoSQL Databases

NoSQL

Database

Data

Model

Consistency

Model
Applications/Services API

Dynamo Key-Value
Eventual

Consistency

E-Commerce Platforms

like Amazon Stores (AWS

Amazon Web Services)

Multiple

Consistency Level

Cassandra
Column-

Family

Eventual

Consistency

Facebook, Netfelx, inbox

search, eBay, Sound

Cloud, Rack Space Cloud

Multiple

Consistency Level

(ONE, TWO,

ALL, QURAM)

Raven DB Document
Eventual

Consistency
Toyota

Multiple

Consistency Level

MongoDB Document
Eventual

Consistency

SAP AG Software

Entreprise, MTV,

Vodafone, AMAR BANK

CRUD API

Raik Key-Value
Eventual

Consistency

Yammer Social Network,

Github

Multiple

Consistency Level

Yahoo

PNUTS!

Multi-

Model

Timeline

Consistency
Yahoo Mail

Multiple

Consistency Level

Apache

HBase

Column

Family

Strong

Consistency

Facebook messenger, using

Hadoop for large set of

application

JSON API

Microsoft

Azure

BOLB

Tables

Strong

Consistency

Office 365, OUTLOOK,

Bing
RESTfull API

Redis Key-Value
Strong

Consistency
Flicker, Instagram JSON API

Google

Spanner
MultiModel

Strong

Consistency
Google F1 SQL-Like

Many applications demand either a rigorously strong type of consistency or just static

eventual consistency. However, consistency requirements are not evident for another

type of applications since they are dependent on data access behavior dynamical, client

45

demands, and the results of reading inconsistent data such as ecommerce platforms

because these kinds of applications, the fast accessibility and availability are critical.

Strong consistency techniques may therefore be unaffordable. Although they are

preferred for some applications, great levels of uniformity are not always required. In

situations like these, undesirable results are caused by either immobile eventual or

strong sorts of consistency. When storage systems are dispersed geographically, strong

consistency guarantees become unaffordable due to high network latencies. As a result,

applications requiring high availability and performance are best served by weaker

consistency semantics, such as eventual consistency.

Conclusion

Remember that achieving strong consistency in a NoSQL databases often comes at the

cost of increased latency and reduced availability, as it may require coordination

between nodes. Therefore, the choice of consistency model should align with your

application's specific needs and tolerance for trade-offs between consistency,

availability, and partition tolerance (the CAP theorem).

46

2.7 NoSQL Transactions

NoSQL databases have gained immense popularity in recent years due to their ability

to handle massive volumes of unstructured and semi-structured data. However, one of

the persistent challenges in the world of NoSQL databases is maintaining data

consistency when performing transactions. In this discussion, we will delve into the

complexities of NoSQL transactions consistency, the challenges it presents, and some

solutions to address these issues.

NoSQL databases are designed to handle large-scale data storage and retrieval

requirements that cannot be efficiently handled by traditional relational databases. One

of the key differences between traditional relational databases and NoSQL databases is

the transaction model used for data consistency. This chapter discuss the models of

NoSQL transactions

A transaction is described as the execution of a set of instructions that includes many

actions, such as "read" or "write and update," to access and modify data in a database.

To make the most use of the computational resources, these operations in transactions

in typical relational databases are carried out by concurrent levels in an interleaved

manner[80]. Hence, transactions must adhere to the ACID guidelines in order to verify

the accuracy and integrity of a database (Atomicity, Consistency, Isolation and

Durability). Atomicity refers to the requirement that every operation in a transaction be

completed in its whole, failing which none of the actions must be performed.

Consistency requires that the database remain in a usable condition following the

conclusion of a transaction. In order to boost performance, durability and isolation both

ensure that transactions do not conflict with one another and that changes made

following a transaction are kept permanently in the database[81].

47

NoSQL databases are, however, unsuitable for usage in particular application areas that

need robust data consistency, such as commercial or banking applications, because of

the adverse impacts of this paradigm and design change on data consistency. This is

because a traditional trait of relational databases, support for transactions, is not

provided by NoSQL systems. In order to manage the enormous amounts of data, often

known as "Big Data," efficiently, many cloud computing and NoSQL database

companies have created various models and strategies. Most of the methods now in use

concentrate on increasing productivity and data accessibility, but they pay little

attention to guaranteeing data consistency.

There are two main transaction models used in databases:

1- ACID Transactions

2- BASE Transactions

2.7.1 Understanding NoSQL Transactions

NoSQL databases come in various flavors, including document stores, key-value stores,

column-family stores, and graph databases. Each type offers different trade-offs in

terms of scalability, flexibility, and performance. However, one common challenge

across all NoSQL databases is ensuring data consistency when multiple operations are

involved in a transaction.

2.7.2 Challenges in NoSQL Transactions Consistency

1. CAP Theorem: The CAP theorem, coined by Eric Brewer, states that it is impossible

for a distributed system to simultaneously provide Consistency, Availability, and

Partition Tolerance. NoSQL databases often sacrifice strong consistency for improved

availability and partition tolerance. This means that some NoSQL databases may not

provide strict ACID (Atomicity, Consistency, Isolation, Durability) guarantees.

48

2. Eventual Consistency: Many NoSQL databases embrace eventual consistency, which

allows for temporary inconsistencies between replicas or nodes in a distributed system.

While this approach can lead to better availability, it can make transactional data

operations more challenging to manage.

3. Concurrency Control: Ensuring proper concurrency control in NoSQL databases can

be complex. Optimistic and pessimistic locking strategies may not always work as

expected due to the distributed nature of NoSQL databases, leading to issues like race

conditions and deadlocks.

2.7.3 Solutions to NoSQL Transactions Consistency

1. ACID Compliance: Some NoSQL databases, particularly NewSQL databases, aim

to provide strong ACID guarantees. These databases combine the scalability of NoSQL

with the consistency of traditional relational databases. Examples include Google

Spanner and CockroachDB.

2. Use of Consistency Models: NoSQL databases often implement various consistency

models such as "read-your-writes," "session consistency," and "monotonic reads" to

offer developers more control over data consistency. Developers can choose the level

of consistency that best suits their application's requirements.

3. Conflict Resolution: Implementing robust conflict resolution strategies is essential in

NoSQL databases. Techniques like version vectors, vector clocks, and last-write-wins

can help resolve conflicts that arise due to eventual consistency.

4. Transactions as Code: Some NoSQL databases provide APIs that allow developers

to define complex transactions as code. This approach enables developers to

encapsulate multiple operations within a transaction, ensuring they either all succeed or

all fail.

49

5. Hybrid Approaches: Hybrid databases that combine NoSQL and SQL capabilities

are gaining popularity. These databases provide the flexibility of NoSQL for

unstructured data while allowing developers to use SQL for structured and transactional

data.

2.7.4 ACID Characteristics

As a method to guarantee the accuracy and consistency of a database that makes each

transaction a combination of actions that functions as a separate unit, provides

consistent results, works independently of other processes, and permanently stores any

modifications it makes.

Figure 2.7 ACID CHARACTERISTCS

 Atomicity means that the full transaction either occurs all at once or not at all.

There is no middle ground, hence partial transactions do not take place. Each

transaction is treated as a single entity and is either carried out entirely or not at

all. The following operations are involved.

1. Abort: If a transaction fails, any database modifications are

invisible. Commit: A transaction becomes visible once it has

committed any modifications.

Atmoicity
•Either the current transaction occurs at once, or it does not.

Consitency

•Before and after each transaction, the database must be
consistent.

Isolation
• Several transactions happen concurrently yet separately.

Durability

•Even in the event of a system breakdown, successful
transactions continue to occur.

50

2. Begin: This establishes where a transaction's initial set of activities

will take place. Operations can be either read or written.

3. Commit: At this point, all actions are completed and committed

atomically, which requires that all operations between "begin" and

"commit" be successful. Any operation in this scope that fails would

result in a rollback operation.

4. Rollback: When one of the activities in a transaction fails, the

rollback operation is initiated. This implies that in order to return the

database to its starting state, all activities that have been carried out

must be undone.

The "All or nothing rule" is another name for atomicity.

 Consistency: To ensure that the database is consistent both before and after the

transaction, integrity requirements must be upheld. It speaks to a database's

accuracy.

 Isolation: This characteristic makes guarantee that numerous transactions can

take place simultaneously without causing the database state to become

inconsistent. Transactions take place without interruption and independently.

Modifications made in one transaction are not visible to changes made in any

other transaction until the change in question has been committed or written to

memory, whichever comes first. This property guarantees that the state created

by simultaneously running transactions will be the same as the state created by

serially running them in some sequence.

 Durability: This feature makes sure that when the transaction has finished, the

database updates and adjustments are saved in and written to disk and that they

endure even if a system failure takes place. These modifications are now kept

51

in non-volatile memory and are permanent. Hence, the transaction's

consequences are never lost. When transactions are completed, the consistency

property makes sure that the database is still consistent. Isolation makes sure

that even if two transactions are carried out simultaneously, the result would be

the same as if they were carried out serially, one after the other. Transactions

must be serializable in order for them to be segregated from one another. Data

loss might be avoided and failures could be recovered from using durability

The DBMS uses certain methods, which are covered later in this chapter, to preserve

these ACID features. Before continuing, the idea of serializable transaction execution

and a few abnormalities brought about by non-serializable transaction execution are

described below.

Figure2.8 the Transactional Life Cycle

ACID stands for Atomicity, Consistency, Isolation, and Durability. ACID transactions

are characterized by their strict consistency and reliability. In an ACID transaction, a

group of operations are treated as a single unit of work, and either all the operations in

the group are executed or none of them are executed.

Commit

Rollback

Begin

52

ACID transactions are commonly used in traditional relational databases, where data

consistency is of utmost importance. However, in NoSQL databases, ACID

transactions can be too restrictive and can negatively impact performance.

2.7.5 BASE Transactions

BASE stands for Basically Available, Soft state, eventually consistent. Unlike ACID

transactions, BASE transactions prioritize availability and scalability over strict

consistency. In a BASE transaction, it is possible for some operations to fail or for data

to be temporarily inconsistent. However, the system eventually converges to a

consistent state.

BASE transactions are commonly used in NoSQL databases, where data consistency is

not as critical as in traditional relational databases. BASE transactions allow for greater

scalability and availability, making them ideal for applications that require high

performance and availability.

In conclusion, choosing the right transaction model is critical when designing a NoSQL

database. ACID transactions are suitable for applications that require strict consistency

and reliability, while BASE transactions are ideal for applications that prioritize

availability and scalability.

2.7.6 ACID, CAP vs. BASE in NoSQL Databases

ACID vs. BASE

When it comes to transaction models in NoSQL databases, there are two main options:

ACID and BASE.

53

ACID transactions are characterized by their strict consistency and reliability, which

makes them ideal for traditional relational databases. However, in NoSQL databases,

ACID transactions can be too restrictive and can negatively impact performance.

On the other hand, BASE transactions prioritize availability and scalability over strict

consistency. This makes them ideal for NoSQL databases, where data consistency is

not as critical as in traditional relational databases. BASE transactions allow for greater

scalability and availability, making them ideal for applications that require high

performance and availability.

CAP vs. BASE

CAP and BASE are two contrasting philosophies for building distributed systems. They

represent different trade-offs between consistency, availability, and partition tolerance.

CAP theorem guarantees two out of three properties, while BASE assumes that

consistency can be traded off for availability and partition tolerance.

Here are some key differences between CAP and BASE:

1. Consistency: In CAP, consistency is prioritized over availability, which means that

if there is an update in one replica, all other replicas must be updated with the same

value before responding to the user. In BASE, consistency is relaxed, and it is accepted

that replicas may be out of synchronization for a period of time while they are being

updated asynchronously.

2. Availability: In CAP, availability is considered important, but it may be

compromised to maintain consistency, which means that the system may not be able to

respond to user requests when there are network partitions. In BASE, availability is a

fundamental requirement and may involve relaxing data consistency guarantees to

achieve it.

54

3. Partition Tolerance: In CAP, partition tolerance is a requirement that the system has

to be robust and tolerate network partition and failures. In BASE, partition tolerance is

also a requirement but it's more relaxed, and the system may cache or queue updates

that can’t be propagated to other nodes in case of network partition.

In summary, CAP emphasizes consistency and favors strong data integrity guarantees

and real-time consistency, while BASE focuses on availability, scalability, and high

performance, with eventual consistency as a compromise. The choice of whether to

follow CAP or BASE depends on the specific requirements of the application, including

the value of data consistency, business requirements, scalability, and performance.

2.7.7 NoSQL Transactional Databases

NoSQL databases are designed to handle large-scale data storage and retrieval

requirements that cannot be efficiently handled by traditional relational databases.

These databases don't rely on the traditional SQL-based relational model, which makes

them more flexible and scalable.

2.7.8 Transaction as a services for NoSQL databases

NoSQL databases use different design principles than traditional relational databases

in order to accomplish the goals of high availability, scalability, and efficiency.

The NoSQL Query Language's (NQL) operations have been condensed to Get/Put

operations. As NoSQL databases promote availability over consistency, ACID

transactions are not guaranteed

Several approaches have been set into implement transactions in NoSQL databases as

a result of the significance of transactional services being accepted. Three potential

55

implementation levels, including the data store, middleware, and client side, have been

proposed for transactional services.

For the purpose of supporting transactions at the data store level, systems like

Spanner[82], COPS, Granola[83], and Warp[84] have been created. Yet, this can

jeopardize availability and scalability. Google Megastore[85] G-Store[86],

Deuteronomy[87], CloudTPS[88, 89], pH[90], CumuloNimbo[91], and [92] are a few

middleware strategies. By the use of middleware, which serves as the interface between

clients and databases, these strategies create transactional services. Concurrency

control and ACID aspects are therefore handled by middleware. The development of

APIs that communicate and receive metadata from the client's apps is a component of

the client layer strategy. Such examples are the system in[93], ReTSO[94], and

Percolator[95].

The aforementioned approaches offer various degrees of consistency in NoSQL

databases. They include sequential consistency and strong consistency or linearizability

(global real-time ordering)[96, 97].

2.7.9 Concurrency Control Techniques in NoSQL

The core to a database system's performance is parallel of the transaction processing.

The necessity for transaction isolation in databases is implemented via concurrency

control techniques. A concurrency control mechanism's success depends on how

conflicts are handled. The common methods of concurrency control employed in

databases are listed below:

2.7.9.1 Locking

For accessing shared data objects, these concurrency control approaches employ locks

to synchronize concurrent transactions. The locking durations[98], conflict resolution

56

strategies (such as blocking or aborting), deadlock avoidance approaches, etc., of lock-

based concurrency control schemes differ. A common concurrency management

approach for serializable isolation is two-phase locking (2PL) [99]discuss in the next

sections. Easily, a transaction employing 2-Phase Locking must first acquire any locks

it need before releasing any locks. Two stages make up the transaction: the growing

phase, during which the transaction acquires all locks necessary for the transaction and

never releases any locks; and the shrinking phase, during which the transaction releases

the acquired locks and never obtains any locks. As a result, 2Phase Locking may need

a transaction to wait a long time for a lock under workloads with heavy contention.

Since it only permits transaction execution after all conflicts have been resolved

through locking, lock-based concurrency control is a pessimistic approach to

controlling concurrency. time to lock up. Since it only permits transaction execution

after all conflicts have been resolved through locking, lock-based concurrency control

is a pessimistic approach to controlling concurrency.

2.7.9.2 Two Phase Locking Protocol

The two-phase commit (2PC) protocol is a commonly used algorithm for ensuring

strong consistency in NoSQL databases. It is a classical algorithm for distributed

transaction management that allows all participating nodes to agree on a common

transaction coordinator who manages the transaction across all nodes involved in the

transaction. Most of the studies may use the 2PL "Two Phase Locking Protocol" as a

technique that only accepted method of ensuring Serializability. According to the

protocol, a transaction should consist of two phases: an expanding/growing phase and

a subsequent contracting/shrinking phase. Locks can be obtained but not released in the

first, whereas they can be released but not acquired in the second. The locks are either

shared read locks or exclusive write locks. According to the rule, many operations can

57

hold concurrent read locks on the same object while one transaction has a write-lock,

preventing the others from reading or writing to that resource. In addition, it is

impossible to obtain a write lock on an item that has a read lock on it.

As NewSQL and Relational Database Management databases prefer consistency above

availability, they employ the Two-Phase Commit (2PC) protocol, a master-slave based

method, to provide distributed consistency. the following two phases:

Phase of Preparing:

1. Each slave receives a Prepare request from the master.

2. The actions are carried out by the slaves, who then notify the master

of their prepared answers (either commit or abort). The assets are now

secured.

3. The master compiles all of the feedback.

Phase of committing:

1. The master chooses whether or not the transaction is successful and

informs all of the slaves of that choice.

2. The slaves finish the operation's commit (or rollback), release the

resources, and then acknowledge the master.

3. The master receives every answer and globally commits (or rolls

back).

The main concern of 2PL is the performance decrease brought on by lock contention.

Long-running reading queries also impede updates as long as writers must get an

exclusive lock on a database. In fact, in such a situation, it is conceivable that an

58

analytical query will get a read-lock on the whole database, halting all concurrent writes

for the length of the initial query. For this reason you have fail to apply the 2PL in the

NoSQL database.

The Two-Phase Commit protocol has a weakness in that it is not tolerant to network

partitions. The slaves continue to lock the resources if the master fails after the

committing request phase since they are unsure of whether they need to commit or

rollback.

The issue in this situation is that the slaves are unable to agree on whether or not the

transaction is successful.

As we shall explore in the next section, the problem is related to the more general shared

consensus problem, and both distributed databases and file systems have adopted a

number of alternate solutions.

The protocol works in two phases as follows:

1. In the first phase, the transaction coordinator sends a "prepare" message to all

participants to ensure that all nodes can commit the transaction. All nodes

respond either with a "yes" or a "no" indicating whether they can commit the

transaction or not. If all nodes respond with "yes", the transaction is allowed to

proceed to the next phase. However, if one node responds with "no", the

transaction is aborted.

2. In the second phase, the transaction coordinator sends a "commit" message to

all the nodes indicating that the transaction has been approved for committing.

Upon receiving the "commit" message, each node carries out the transaction and

then sends an "acknowledge" message back to the transaction coordinator

indicating that the transaction has been successfully completed.

59

If any node fails to acknowledge receipt of the "commit" message, the transaction

coordinator sends a "rollback" message to all nodes instructing them to abort the

transaction.

The two-phase commit protocol ensures that all nodes agree on whether or not to

commit a transaction before updates are made, thereby ensuring strong consistency

across all nodes involved in the transaction. However, the two-phase commit protocol

is known to suffer from performance issues, especially in large-scale distributed

systems where the network latency can significantly impact performance

2.7.9.3 Protocol for Timestamp Ordering (TSO)

With the Time-Stamp Ordering protocol, concurrency may be controlled without

blocking. A transaction is given a distinct timestamp at the start of the transaction

execution according to timestamp ordering. The timestamps are used by concurrency

control to determine the order in which transactions are executed. For instance, if a new

transaction Xj enters a serializable system utilizing TSO and a transaction Xi has been

given timestamp TS(Xi), then T S(Xi) TS (Xj). The system must make sure that

transaction Xi seems to have been done before transaction Xj if both transactions are

committed[100].

2.7.9.4 Optimistic Concurrency Control (OCC)

Because it believes conflicts are rare, optimistic concurrency control runs transactions

speculatively without requiring the holding of locks for any data items. Nonetheless,

conflicts between concurrent transactions might arise during execution. In order to

ensure the necessary isolation level, optimistic concurrency control can resolve

conflicts at transaction commit time via backward validation. A transaction must be

abandoned by OCC if the backward validation fails. Since validation occurs at the end

60

of execution, when the unsuccessful transaction has already used all the resource (CPU,

I/O, network, etc.) of the transaction processing systems, OCC results in high abort

rates under conditions of heavy contention.

2.7.9.5 Multi-Version Concurrency Control

As an option to Serializability, Multi-Version Concurrency Control (MVCC) achieves

transactional consistency with snapshot isolation (SI), which has weaker guarantees

than Serializability, by using timestamps and incremental transaction ids. The key

concept is that an update produces a new version rather than changing the original

object. for example when we have a transaction X observes the database state as having

been created by all transactions that had already committed before transaction X

had began, with no influence from overlapping transactions and no need to lock write

or read operations, we can prevent dirty reads, non-repeatable reads, and phantoms. If

a concurrent transaction committed an update of a record that transaction X intends to

edit, the NoSQL DBMS aborts transaction X in order to prevent the Lost Update. This

principle is also known as "First-Committer-Wins." Nonetheless, abnormalities like

Write Skew are conceivable.

M.J. Cahill et al. .[101] have suggested an illustration of such an oddity. Assume we

have a database called Responsibilities that records the doctor-working shifts at a

hospital. There must always be a doctor on duty for each shift, and they can either be

"on duty" or "on reserve." A transaction that wishes to reserve a physician will first

update their record, then count the number of physicians on call and terminate the

process if none are available. But, in this case with just the Snapshot Isolation (SI) , if

all doctors on duty attempt to activate "reserve" at the same time, they will be successful

since they won't be able to notice the contradictory updates.

61

While there are currently available methods for serializable isolation for MVCC, they

either only apply to in-memory databases that had been suggested by study of [102] or

involve keeping track of the whole read set of every transaction, which imposes a

significant burden for read-intensive applications[101].

The only timestamp ordering method used by VoltDB[103], which divides the database

into parts and schedules transactions to run one at a time at each partition, is a last

alternative strategy. The disadvantage of such a strategy is that a transaction that affects

several partitions slows down the entire system and causes nodes to remain idle because

of network latency.

62

Figure 2.9: Two-Phase Commit Locking Algorithms

2.7.10 Transaction Isolation Levels

The NoSQL storage systems may simply guarantee consistency and isolation features

if all transactions are carried out sequentially. Yet, due to the following factors, the

majority of modern systems permit concurrent transaction execution:

63

1) Enhancing the throughput. Concurrent transactions, for instance, might execute

simultaneously on different cores of the same server or on multiple servers, and one

transaction may utilize CPU resources while another may experience I/O blocking.

2) Shortening wait times. Think about a workload that consists of both lengthy and

short transactions. A small transaction could have to wait until a preceding lengthy

transaction is finished if transactions are processed sequentially.

We collectively refer to any methods that maintain speed while ensuring accurate

outcomes consistency even when several actions are carried out simultaneously as

concurrency control. Yet, there are several variations in the definition of consistency.

In addition to the definition of ACID in previous section (0.0) we found that:

Definition 2.1: consistency means the assurance that transactions experience the full

consequences of transactions made in the past.

Definition 2.2: consistency means ensures that restrictions on databases, such as table

relationships, uniqueness, etc., are not broken.

Definition 2.3: consistency means a distributed database's promise states that a finished

change is visible to all clients.

The first and last definition probably emphasize the consistency feature of NoSQL

databases. The first definition 2.1 pertains to the idea of serializability, which is the

quality that results from concurrent transactions are identical to results from serially

processing the transactions without overlapping them.

According to Hal Berenson et al.[104] To guarantee serializability, it is necessary to

prevent the following:

64

1- Dirty Reads

A data item D is modified by transaction T1. The identical data item is then

accessed by another transaction, T2, before T1 commits or rolls back. In the

event that T1 then does a ROLLBACK, T2 will have read data that was never

committed and so never truly existed.

2- Dirty Writes

A data item D is modified by transaction T1. Before T1 executes a COMMIT

or ROLLBACK, another transaction T2 makes additional changes to the

same data item D. The proper data value is not evident whether T1 or T2 then

does a ROLLBACK.

3- Non-Iterate Reads

Consider the fact that transaction X reads data item "D" in both transactions

X and Y. Then, after committing, another transaction Y updates or deletes

the data item "D." The value it obtains or learns that the data item has been

destroyed if X then tries to reread data item "D"

4- Lost Updates

T1 T2
 | |

MODIFY |
 | |

 | READ
 | |

ROLLBACK |
 | |

 v v
 dirty read

65

When transaction "A" receives a data item "D," transaction "B" changes the

data item "D" (perhaps based on a prior read), transaction "A" updates the

data item "D," commits, and the lost update anomaly occurs.

5- Phantoms

Let's say transaction "A" reads a collection of data items "D" that meet

certain criteria. After creating data items "D" that meet "A's" search criteria,

transaction "B" commits. If "A" then repeats its read under the same

circumstances, it receives a different collection of data items than it did

during the initial read.

6- Read Skew

Let's say transaction T1 reads item "x" and commits after updating both item

"x" and item "y" to new values. If T1 reads y now, it could detect an

inconsistent state and output an inconsistent state as a result[104].

7- Write Skew

Assume we have two transactions, T1 and T2, where T1 reads x and y and

commits them after ensuring they are compatible with a certain constraint.

T2 then reads x and y, writes x, and commits them as well. T1 then writes y.

If x and y were subject to a restriction, it may be broken[104].

2.7.11 Conflicts Read and Write Transactions

Several NoSQL Databases have abandoned robust transactions in favor of a simplified

but more scalable architecture in some mission-critical systems, such shopping carts

and social network storage, to close the performance gap between traditional relational

databases and web-scale data requirements. Although many of these NoSQL systems

66

offer high-level query languages, they only offer a considerably more limited API with

poor consistency and only partially support the relational model. These design decisions

are influenced by a number of factors, including the requirement for a more flexible

schema to support a wider range of data sets, the innate trade-off between consistency

and availability during a network partition [24], and the innate trade-off between

consistency and latency [6]. While NoSQL systems are popular in business and receive

a lot of academic interest, another school of thought supports the ongoing usage of

transactions and high levels of consistency in distributed storage systems [8], The

atomic insertion of a comprising up to tens of thousands of changes is supported via

write-only transactions by default. For instance, erasing metadata in system X and

inserting in system Y are required for atomically shifting a collection of files from

system X to system Y. Another use for these transactions is the automated

reconfiguration of distributed systems [83] for data migration and dynamic replication

factor modification [75, 88].

Read-only or write-only transactions in NoSQL storage systems are seen as being

fundamentally expensive, yet being beneficial in reality. Since read-write and write-

write conflicts are likely, concurrency management is necessary for transaction

isolation, and distributed commitment protocols are relied upon to guarantee atomicity

in the event of failures.

The use of transaction processing technologies is essential for reliable information

exploitation and cogent data management. For database systems to accurately reflect

the events and activities that occur in the real world, transactions must access or change

connected data objects simultaneously. Any stoppage or interleaving of updates and

accesses from other transactions throughout each transaction may result in inconsistent

data. As the industry standard for database systems, the ACID semantics: Atomicity,

67

Consistency, Isolation, and Durability, are used to describe transactions. Conflicts arise

between concurrent transactions when at least one of them aims to alter a shared piece

of data. To resolve the conflicts and provide the necessary transaction isolation levels,

concurrency control methods must be used. The consistency and scalability of the

systems are significantly influenced by the designs of the concurrency control

mechanisms: Concurrency control techniques (CC) keep databases systems in a

consistent state by giving an impression of isolated execution, but they can also

negatively affect database system performance by preventing the execution of

conflicting transactions.

Coordination avoidance has been the subject of recent research [12, 82], as well as the

more general trade-off between transaction isolation and performance under the

following premise: concurrent serializable transactions under read-write or write-write

conflicts require expensive synchronization, which may come at a high performance

cost [12]. This presumption, however, ignores the fact that, in the absence of concurrent

read-write conflicts, conflicting writes may not always block one another or violate

serializability.

Serializable read-only and write-only NoSQL transactions are used as a

counterexample in this thesis to demonstrate that concurrent transactions may be

executed in parallel with little overhead even when they conflict.

Although less effective than generic ACID transactions, atomic read-only or write-only

transactions have been the subject of heated controversy in recent research [30, 39, 65,

85]. They work effectively in systems that must have atomicity for each batch of reads

and writes in order to process reads and writes efficiently. (i.e., two writes within one

batch must both succeed or both fail).

68

Many systems either sacrifice serializability while offering an alternate type of strong

consistency [14, 59] or bite the bullet and incur a performance cost for serializable

distributed transactions [9, 29, 87]. The transactional solutions rely on expensive atomic

commitment methods in that committing a transaction in the presence of contention

necessitates at least two network round trips. As contention rises, such protocols' [70,

93] large contention footprint is readily turned into a performance bottleneck, resulting

in extra protocol messages as competing transactions settle their relative serialization

order. Searching for a read-only/write-only (ro/wo) transaction protocol that is simpler

and more streamlined, The system described in this thesis uses many sources to address

the issues with read/write conflect. In particular, this thesis suggests a method for

enabling read-only and write-only serializable multipartition transactions by dividing

time into read-only and write-only periods.

The timestamp concurrency control (TCC) technique used in this architecture uses little

data and reduces conflicts across multi-partition operations to achieve high throughput.

This study integrates TCC into a scalable distributed key-value store and contrasts it

with RAMP [14], a scalable distributed transaction protocol that can only offer a poor

isolation level, in order to better understand the performance envelope of TCC.

According to the experimental findings, the suggested model outperforms RAMP in

terms of throughput and latency by up to three orders of magnitude when transaction

sizes are more than 10 key-value pairs while also offering superior transaction isolation.

2.7.12 Snapshot Isolation Protocol

Snapshot isolation is a concurrency control mechanism in databases that allows

transactions to read consistent data as of a specific point in time, without being affected

by other concurrent transactions. In NoSQL databases, which are designed to handle

69

large-scale distributed systems, snapshot isolation can be implemented using a variety

of algorithms.

One common approach is to use vector clocks or version vectors to track the read and

write operations on each data item. A vector clock is a list of (node ID, counter) pairs,

where each node ID represents a server or process that has performed an operation on

the data item, and the counter represents the number of operations performed by that

node. When a transaction reads a data item, it records the current vector clock for that

item. When the transaction commits, its updates are tagged with a new vector clock that

reflects the changes it made.

To ensure snapshot isolation, the database must prevent transactions from reading data

that has been modified after they started. One way to do this is to maintain a global

ordering of all transactions and their timestamps. When a transaction starts, it is

assigned a timestamp that is greater than the largest timestamp used by any previous

transaction. Any subsequent transactions that start after the first transaction must have

a higher timestamp. When a transaction reads a data item, it checks the item's vector

clock to verify that no later transactions have updated that item.

If a conflict is detected, the database can either abort one of the transactions or apply a

resolution policy, such as last write wins or merging the conflicting updates. The choice

of resolution policy depends on the application requirements and the consistency

guarantees provided by the database.

NoSQL snapshot isolation is a type of database isolation level that allows concurrent

transactions to read a snapshot of the database at the start of the transaction, ensuring

that the data read by the transaction is consistent with the snapshot. This means that the

70

data read by the transaction will remain the same throughout the transaction, even if

other transactions modify the same data in the database.

When all of the interleaved concurrent executions of transactions are similar to serial

executions, which is the optimum transaction execution schedule in a distributed

NoSQL database. A schedule like this is said to as serializable. Using two-phase-

commit (2PC) is a popular technique for guaranteeing a serializable schedule in a

distributed system. Nevertheless, a prior research S. A. Weil et al.[105] demonstrated

that this strategy may not scale effectively since one dispersed transaction participant

may block while awaiting other transaction participants. In database management

systems, Snapshot Isolation (SI) is an isolation level that does not guarantee

serializability (DBMS). Yet, because it avoids the majority of frequent concurrency

issues and improves the number of concurrent transactions by never letting a read

operation stall an update, it is appealing to implement it on distributed databases. The

implementation of SI requires to maintain numerous copies of the same data item in

addition to this.[104].

As a transaction (Xi) starts in the Snapshot Isolation, it receives a start timestamp (TSi),

and when it commits, it receives a commit timestamp (TCi). When reading data item

D, Xi always reads the version produced by the most recent transaction of all those that

have already committed before TSi. Every time Xi modifies data item D, a new version

is produced.

A constraint known as the First-Committer-Wins (FCW) rule is also enforced by

Snapshot Isolation. If transaction X2's commit timestamp TC2 falls within transaction

X1's life [TS1,TC1], X1 may only successfully commit if X2 did not write data that T1

already wrote; otherwise, T1 would abort.

71

Snapshot isolation face a problem of anomalies. By interspersing transactions that

individually preserve consistency, snapshot isolation is known to allow anomalies that

might result in data consistency violations.

Implementing snapshot isolation in NoSQL databases can be challenging due to the

distributed nature of the database, but some NoSQL databases, such as Apache

Cassandra, support snapshot isolation using techniques such as multi-version

concurrency control (MVCC) and causally consistent reads.

Snapshot isolation can improve the performance of read-heavy workloads and reduce

the occurrence of concurrency issues, such as lost updates and inconsistent reads, in

NoSQL databases.

2.7.13 Serializability

Informally, transactions must appear to take effect in a sequential manner even though

 they are carried out concurrently. In traditional relational databases, serializability is

usually regarded as the ultimate of transaction isolation. Nonetheless, it is generally a

greed that the concurrency control overhead for enabling serializability is expensive[1

06, 107].

The formal definitions of serializability use histories or schedules as instances. which

track a transaction's actions, and equivalency, which clarifies the meaning of the phrase

"appear to take effect" after a transaction. The correctness qualities that result from

different interpretations of equivalence include conflict serializability and view

serializability.

When a database uses multi-version storage, serializability receives a somewhat

different evaluation. Such a system tracks the precise data item version accessed by

each step in a multi-version (MV) history. If transaction Ti receives item x from

72

transaction Tj, then I = j, or if Tj is the last transaction prior to Ti that writes into any

version of x, then the serial of multi-version history is known as a one copy serial.

Similar to view-equivalence, equivalence for two MV histories H and H′ is defined. As

each version is only written once at most, condition (3) is trivially satisfied. If an MV

history is comparable to a one-copy serial MV history, then it is one-copy serializable

(1SR), meaning that the system will act as if it only kept one copy of each data item.

2.7.14 PACLEC

The PACELC is design of a system's behavior both when the network functions well

and when it doesn't can be used to define it. In the event of a network split, one of the

two must be sacrificed: consistency for availability, or vice versa. One must choose

between Consistency and low latency answers when there are no communication

problems. Databases may prefer one over the other or provide users to select the

appropriate action for each circumstance. In any event, this decision affects the

application's speed and scalability as well as that of the database.

2.7.15 PAXOS

Paxos is a distributed consensus algorithm used in NoSQL databases. It is designed to

ensure consistency across multiple replicas while allowing for scalability and

availability. The main idea behind Paxos is that it requires all participants to agree upon

a single value before any action is taken. In addition, each participant has its own view

of the state which ensures that no two nodes have different views of the same state. As

a result, Paxos makes sure that transactions are correctly executed regardless of node

failures or network partitions. Furthermore, since Paxos does not require messages to

be delivered between nodes, it offers better latency than other systems. All these

73

features make Paxos one of the most popular solutions for distributed consensus

problems.

NoSQL transactions consistency remains a significant challenge in the world of

distributed databases. Balancing scalability and performance with data consistency is a

complex task. Developers must carefully evaluate their application's requirements and

choose the right NoSQL database and consistency model to ensure their data remains

both available and reliable in a distributed environment. As the field continues to

evolve, new solutions and best practices will emerge to address these challenges

74

2.8 Previous Studies

In this chapter, some of the studies conducted on NoSQL databases will be reviewed,

and they varied in their directions, some of which tested the performance element and

some the scalability elements.

The first study conducted by Bansal, Neha et al. [29]examine that if the schema does

matter, what is its potential impact on application performance? It arises the question

of whether the schema matters in NoSQL databases, given that explicit schema

declaration is not required before data storage. Acing three types of NoSQL databases:

Document store, Column store, and Key-Value store.

A study by Liu et al.[82*] proposes a new consistency model for NoSQL databases

called "causal order consistency". Causal order consistency guarantees that all

transactions will be applied in the same order across all replicas, even if the transactions

are executed by different clients. This can help to improve the consistency of NoSQL

transactions, even in the presence of network partitions or other failures.

A study by Zhang et al.[83*] proposes a new algorithm for mitigating the impact of

data inconsistencies in NoSQL databases. The algorithm uses a conflict detection and

resolution mechanism to identify and resolve data inconsistencies in a timely manner.

This can help to improve the performance and reliability of NoSQL applications.

Singh et al.[84*] proposes a new consistency model for NoSQL databases called

"optimistic consistency". Optimistic consistency guarantees that all transactions will

eventually be committed, but it allows for temporary inconsistencies to occur. This can

improve the performance of transactions, especially in applications with a high volume

of concurrent transactions.

75

A study by Zhang et al.[0] proposes a new algorithm for resolving conflicts in NoSQL

databases. The algorithm uses a distributed timestamp ordering protocol to ensure that

conflicts are resolved in a consistent manner. This can help to improve the consistency

of NoSQL transactions, even in the presence of network partitions or other failures.

These studies suggest that there is ongoing research into new ways to improve the

consistency of NoSQL transactions. As NoSQL databases become more popular, it is

likely that we will see even more research in this area in the future.

Study of Noudoust et al. [30] Aimed to improving data consistency, the proposed

approach also satisfies the accepted compromise between the pillars of the CAP and

PACELC theorems and proposed approach is able to set different levels of data

consistency in key-value NoSQL databases. An approach is based on the parameters

set in the NoSQL -dependent structure and is applied to distributed systems, using the

quorum algorithm to adjust the consistency and to determine the different grades of

data, and different data writing and reading and mix reading/writing operations are

implemented test-bed to study the performance of the proposed approach.

A. Karpenko [31] et al. study the evaluation of performance of distributed fault tolerant

computer systems and replicated NoSQL databases and studying the impact of data

consistency on performance and throughput on the example of a 3 replicated Cassandra

cluster. This study propose a new method of minimizing Cassandra response time while

ensuring strong data consistency which is based on optimization of consistency settings

depending on the current workload and the proportion between read and write

operations.

Study of Sidi Mohamed Beillahi et al. [32] was investigated the problem of robustness

that problem of checking whether a program has the same set of behaviors when

76

replacing a consistency model with a weaker one. This study was focused on

consistency models which are weaker than standard serializability, namely, causal

consistency, prefix consistency, and snapshot isolation.

Study of Adam Krechowicz et al. [33] proposed a novel data storage architecture that

supports strong consistency without losing scalability It provides strong consistency

according to the following requirements: high scalability, high availability, and high

throughput based on the Scalable Distributed Two–Layer Data Store which has proven

to be a very efficient NoSQL system. The proposed architecture takes into account the

concurrent execution of operations and unfinished operations and test the proposed

model into two type of NoSQL database, MongoDB and MemCache. The finding

results of this study show that the proposed architecture presents a very high

performance in comparison to existing NoSQL systems

Study of Gorbenko et al. [34] investigate the relationship between the performance

(response time) and consistency setting in Column NoSQL database and select the

Cassandra and report the result of experiments from read and write performance

benchmark as a main factors. The researchers deploy the experiment of replicated

cluster in cloud service from Amazon EC2. The result of this study found that the strong

consistency costs up to 25% of performance within the best settings for the strong

consistency are depended on the ratio of read and write operations.

The study of Chenggang Wu et al. [35] is discuss the setting of serverless Function-as-

a-Service (FaaS) platforms that support cloud computing which may run on a separate

machine and access remote storage and facing how can improving Input/Output latency

in this setting while also providing application-wide consistency and proposed A single

application may execute multiple functions across different nodes. And present a new

77

protocols for MTCC (Multisite Transactional Causal Consistency (MTCC))

implemented in a system called HYDROCACHE. The result evaluation of this study is

to demonstrates orders-of-magnitude performance improvements due to caching, while

also protecting against consistency anomalies that otherwise arise frequently.

Study of Ranadeep et al. [36] draw a question about how the modern databases provide

different consistency models for transactions corresponding to different tradeoffs

between consistency and availability. and investigate the problem of checking whether

a given execution of a transactional database adheres to some consistency models like

read committed, read atomic, and causal consistency are polynomial-time checkable

while prefix consistency and snapshot isolation are NP-complete in general the findings

of this study is devise algorithms that are polynomial time assuming that certain

parameters in the input executions, e.g., the number of sessions, are fixed. We evaluate

the scalability of these algorithms in the context of several production databases.

Study of Shale Xiong et al.[37] proposed an operational semantics to describe the

client-observable behavior of atomic transactions on distributed key-value stores. The

proposed model by this study provide operational definitions of consistency models for

our key-value stores which are shown to be equivalent to the well-known declarative

definitions of consistency model for execution graphs. The study have a specific

protocols of geo-replicated databases and partitioned databases can be shown to be

correct for a specific consistency model by embedding them in our centralized

semantics.

Study of María Teresa González-Aparicio, et al. [38] proposed a various transaction

models and protocols and investigate into the testing of transactional services in NoSQL

databases in order to test and analyse the data consistency by taking into account the

78

characteristics of NoSQL databases such as efficiency, velocity. This study can assist

NoSQL application developers in choosing between transactional and non-transactional

services based on their requirements of the level of data consistency.

Transactional services aim to ensure data consistency by taking into account the

characteristics of NoSQL databases such as efficiency, velocity, etc. the experimental

study of this paper was used a Key-value NoSQL database and test with carried out by

using Raik database.

Study of R. Jiménez-Peris [39] describe the generic ultra-scalable transactional

management layer and focus on its API and how it can be integrated in different ways

with different data stores and databases. And discuss the problem of lies in that when a

business action requires to update the data, the data reside in different data stores, and

they are subject to inconsistencies in the event of failure and/or concurrent access.

Study of Nazim Faour [40] (2018) a model of simulation to measure the consistency of

the data and to detect the data consistency violations in simulated network partition

settings. So workloads are needed with the set of users who make requests and then put

the results for analysis. As result of this paper is Simulations can only work as an

estimation or explanation vehicle for observed behavior.

A study by Wang et al.[86*] examined the eventual consistency model, which offers

the weakest consistency guarantee of all. The study found that eventual consistency can

be implemented in NoSQL databases with a very low overhead, but that it can lead to

data inconsistencies in some cases.

Study of Huang et al.[41] using a Document NoSQL database "CASSANDRA" to test

the consistency The consistency can be improved by tuning system configurations

when users use partial quorum settings. By using the session model of consistency to

79

analyze the root cause of consistency violation, testifying that the length of the write

queue is a reasonable indicator for consistency quantification and •Consistency Of a

NoSQL System. The study recommended configurations by changing the write thread

number and the fine‐grained quorum setting for enhanced consistency control. Because

consistency anomalies do not occur uniformly, we discuss how to stabilize the

consistency by analyzing system logs.

Study of González-Aparicio et al. [42] discuss the NoSQL with side of do not enforce

or require strong data consistency nor do they support transactions investigates into the

transaction processing in consistency-aware applications hosted on MongoDB and Riak

which are two representatives of Document and Key-Value NoSQL databases and

develops new transaction schemes in order to provide NoSQL databases with

transactional facilities as well as to analyze the effects of transactions on data

consistency and efficiency in user’s applications. And evaluate the proposed schemes

by using YCSB +T Benchmark in the experiment. The results shows that Strong

consistency can be achieved in MongoDB and Riak without severely affecting their

efficiency.

A study by Goyal et al.[0] examined the causal consistency model, which offers a

weaker consistency guarantee than ACID but is still sufficient for many applications.

The study found that causal consistency can be implemented in NoSQL databases with

a reasonable overhead.

Study of Burdakov [43] was represented a NoSQL Replication Problems in NoSQL

databases by analyzes the influence of the N, W, R replication parameters on the

consistency characteristics of database record replicas (N -- the total number of one

record's replicas, W -- number of replicas for write operation execution into a database,

80

R -- number of replicas for record read operation execution from a database). It

describes a developed model for eventual consistency (W+R ≤ N), obtaining probability

estimate that during the process of N-W replica updates there will be at least one read

request out of non-updated replicas It also proposes a model for strong consistency of

the replicas in NoSQL databases, which allows for estimation of random wait time of

the read request for the record update completion. It describes the process for

preparation and execution of experiments in the cloud for model calibration and its

validation. The result of this study found that A model for strong consistency of the

replicas in NoSQL databases allows for estimation of random wait time of the read

request for the record update completion.

Study of Adewole Ogunyadeka et al. [44] proposed a new multi-key transactional

model is that provide a NoSQL systems with standard transaction support and stronger

data consistency, which is configurable based on application requirements, and

preliminary experiments show that it maintains good performance by using document

database (MongoDB).

Study of Ayman E. Lotfy et al.[45] was aimed to offer the consistency and ACID

features to NoSQL Databases and given the push to this features vs. relational databases

by proposed A middle layer solution using a four phase commit protocol ensures data

consistency and ACID properties for NoSQL databases, allowing for executing many

transactions related to each other through updating the same data while increasing

scalability and throughput without affecting system availability.

Study of Ogunyadeka [46] proposed a novel Multi-Key transaction model has been

designed to ensure stronger consistency and integrity of data, which has been validated

81

through a prototype system and experiments, showing that it maintains stronger

consistency of cloud data as well as appropriate level of reliability and performance.

The study of Madhavamuniappan [47] discuss the transaction processing system in two

types of NoSQL databases that sacrifice of data consistency and the latency of the write

operation and response time for web application. The finding of this study is

Transaction Processing system allows cloud database services to execute the ACID

transactions of web applications, even in the presence of server failures and network

partitions.

A study by Chen et al. examined the consistency guarantees offered by a variety of

NoSQL databases. The study found that most NoSQL databases do not offer ACID

transactions across multiple documents, and that the consistency guarantees that are

offered vary from database to database.

Islam Md. A and Vrbsky S V. [48] illustrated the benefits and drawbacks of a few

consistency strategies. In this article, no approach for performance improvement was

introduced.

Wada H, et al. [49] studied what customers notice about the consistency and

performance attributes of different products. The researchers have provided no

information on the optimization process of various techniques. The gaps in the present

study work persuade us to contribute more on the performance of consistency

techniques on NoSQL, as well as potential improvements.

The Study of Kraska T, et al. [50] established a new transaction paradigm for ensuring

consistency, however nowhere in the study do they demonstrate the sufficient level of

performance of alternative consistency approaches such as BASE and Quorum.

82

Study of A.Dey [51] YCSB+T employs a transaction protocol that is coordinated by

the client , which operates across data stores of varying types and relies on the data

store's capability of providing strong consistency at the level of individual items.

Additionally, the protocol incorporates the ability to add user-defined data and allows

for global read-only access. By incorporating these features, the need for a central

coordinating system to facilitate transactions involving multiple items while still

adhering to the ACID properties is eliminated. The transaction protocol is divided into

two distinct phases, each serving a specific purpose. In the first phase, the data items

are retrieved from their respective data stores, and subsequently, they are assigned a

timestamp in the form of metadata. The second phase is dedicated to the actual commit

of the transaction and the updating of a global variable known as TSR, which plays a

crucial role in determining the outcome of the transactions. The concurrency among

multiple transactions is assumed to be effectively managed by leveraging the test-and-

set capability inherent in each individual data store. This capability allows for efficient

handling of concurrent access to shared data and ensures that conflicts are resolved in

a controlled manner.

In their 2015 paper, Lee et al. proposed a novel solution called RIFL (Reusable

Infrastructure for Linearizability) to address the problem of consistency in database

system design. RIFL is built upon the concept of remote procedure calls (RPCs) with

at-least-once semantics, which means that invocations are retried until successful.

However, RIFL takes these semantics a step further by enhancing them to achieve

exactly once semantics, which are necessary for guaranteeing linearizability. This is

accomplished by assigning a unique identifier to each request and using a persistent log

to ensure that completed requests are not re-executed [2].

83

One of the key findings of the authors' research is that the write overhead of

implementing RIFL in RAMCloud is only 4% compared to the base system without

RIFL. This demonstrates the efficiency and practicality of their approach. Additionally,

the introduction of exactly once semantics simplifies the implementation of transactions,

making it easier to manage and coordinate multiple operations within the database

system [1].

The foundation of RIFL lies in Sinfonia, an in-memory service infrastructure that

provides a mini-transaction primitive for atomic cross-node memory access. By building

upon this existing infrastructure, the authors are able to leverage its capabilities and

extend them to achieve their goals with RIFL. This approach not only saves time and

effort in designing a new system from scratch but also ensures compatibility and

interoperability with existing systems.

However, it is important to note that RIFL has a central limitation in its assumption that

clients are reliable and do not lose their state upon crashes. This means that if a client

crashes and loses its state, RIFL may not be able to guarantee the consistency and

correctness of its operations. While this limitation is acknowledged by the authors, it is

an area that could be further explored and addressed in future research [2].

In conclusion, Lee et al.'s proposal of RIFL offers a promising solution to the problem

of consistency in database system design. With its enhanced exactly once semantics and

efficient implementation overhead, it provides a practical approach to achieving

linearizability. By building on existing infrastructure like Sinfonia, the authors are able

to leverage the strengths of their foundation and extend its capabilities. However, the

assumption of reliable clients poses a limitation that needs to be taken into consideration.

84

Overall, RIFL presents a valuable contribution to the field of database systems and

opens up avenues for further research and development.

85

Chapter Three

Methodology and Conceptual Design

This chapter contains the methodology to test a consistency model vs. performance and

in some of NoSQL databases and evaluate the best model of consistency how can work

in this types of database

3.1 Research Methodology

 An outcomes monument is thought to include knowledge about advanced tools,

techniques, and algorithms as well as presumptions about the environment in which the

artifact is supposed to operate. The research's results must either address a problem that

hasn't been addressed before or offer a superior solution in order to be regarded as a

novel contribution. In this thesis is the most effective strategy for achieving the study's

goals, which are outlined in above paragraphs. As a result, we support the

recommendation. The processes that make up our adopted framework are shown in

Figure 3.1..

Figure 3.1 shows the application of the research technique's process model.

86

The research methodology steps for conducting the study:

1- Define the research question.

The first step is to define the research question. This will help to focus in

research and avoid getting sidetracked.

2- Identify the relevant literature.

The next step is to identify the relevant literature. This will help you to get a

well-rounded view of the topic. There are many different sources of literature,

including academic journals, books, and online articles. When identifying the

relevant literature, it is important to be critical of the sources you use. Not all

sources are created equal. Be sure to evaluate the credibility of the sources you

use.

What has been written about NoSQL transaction consistency?

What are the different approaches to achieving transaction consistency in

NoSQL databases?

3- Develop a research model.

The third step is to develop a research model. This is a conceptual framework

that will help you to organize your research and guide your analysis. The

research model should be based on the research question and the relevant

literature.

Consistency model → Performance

 → Scalability

4- Design Experiments and Implementation.

The fourth step is to collect data. This may involve running experiments,

surveying users, or analyzing existing data. When collecting data, it is important

87

to be clear about the data you need to collect. The data you collect should be

relevant to the research question and the research model.

5- Run and analyze the data.

The fifth step is to analyze the data. This involves using statistical methods to

identify patterns in the data. When analyzing the data, it is important to be

careful not to over interpret the data. The data should be interpreted in the

context of the research question and the research model. This involves using

statistical methods to identify patterns in the data.

6- Interpret the results.

The sixth step is to interpret the results. This involves drawing conclusions

about the research question based on the data you have collected and analyzed.

When interpreting the results, it is important to be clear about the limitations of

the study. The results of the study should be interpreted in the context of the

research question, the research model, and the limitations of the study.

7- Draw conclusions.

The seventh step is to draw conclusions. This involves summarizing the findings

of the study and discussing the implications of the findings for the design and

use of NoSQL databases. When drawing conclusions, it is important to be clear

about the limitations of the study. The conclusions of the study should be based

on the findings of the study, the research question, the research model, and the

limitations of the study.

88

 To discover the performance factors that causes inconsistency of the data in

NoSQL databases, meta-Analysis method, which involves analysis and

combination of multiple scientific studies, has been followed. Related

literatures were systematically reviewed, and then synthesized the results.

However, academically authoritative articles, journals, course literature or

recommended books, research materials, text on trusted online site were

prioritized for most literature reviews. Database such as ACM digital library,

DiVA portal were used as a leading source to identify the related research work.

All the key aspects of systematic literature. The review was conducted to extract

data comprehensively that relates the first research problem.

 Defining the proposed model.

 The researcher divided the experiments into two stages:

o The first stage: a pre-test to choose which models of consistency are

suitable to work on

o The second stage: A post-experiment to test the accuracy of the proposed

model for transaction consistency in all types of NoSQL databases

3.2 NoSQL Models Experiment

 This study focuses on the best approaches used to be analyzed; by comparing

with multiple approaches in the popular type of NoSQL databases. The analysis

includes reading and examining articles and documents on those approaches to

identify the process and outcomes. Furthermore, the satisfactory settings of the

consistency performance was realized through the practical experiment

conducted using YCSB benchmarking tool. The details of YCSB system

architecture is presented in next section of tools 4.2.

89

 In order to show the performance, the researcher chosen consistency parameters

are Read, Insert, and Update. Read reads a record from the database. It can read

both a randomly chosen field and all the fields. Insert inserts a new data. Update

updates a record by replacing the value from a field. The metrics for consistency

we chose were latency (ms) and throughput (ops/sec). The latency for each

parameter (e.g., read latency, update latency) and the amount of throughput

completed for each execution were used to judge the consistency level for each

database.

 The researcher select the performance metrics is measured by the metrics

latency verses throughput. That means when with a given throughput, the less

latency occurred, the better performance is. Thus more reliable and consistent

data achieved. The benchmarking tool, YCSB shows the latency against any

given throughput (ops/sec), which is useful to measure the satisfactory settings

of the respective NoSQL database system.

 The suggestion to improve one of the approaches was decided based on the

satisfactory level of their consistency. Solving this question involved

experiments to identify issues with Quorum. To do that, experiments will be

conducted with the latency of Scylla database system by different workloads (in

the same tool YCSB) using different read-update ratios.

 Variations will be introduced by creating different threads to justify the user

experiences of updating data simultaneously. At the end of those tests, it is

expected to get a clear picture of the performance of Quorum in various use

cases. These results help to decide whether and in which cases, Quorum has

better performance regarding consistency.

90

3.2.1 Pre-Experiment Tools

YCSB: Database Benchmarking Tool:

With a growing list of new databases, such as MongoDB, Azure,

Cassandra, Scylla and many others, determining which NoSQL database

is appropriate for any distributed application is difficult, partly because

the features of each database differ in some way, and there is no divine

way to measure the consistency level of one database versus another.

This requirement compelled the researchers to create YCSB, which

provides a standard set of workloads for analyzing the behavior and

performance of various cloud database systems. YCSB is a common

benchmarking tool for evaluating various cloud systems and NoSQL

databases. YCSB is a common benchmarking tool for evaluating various

cloud systems and NoSQL databases. The YCSB project was created by

a group of computer scientists from Yahoo Inc's research division. It was

created in Java and contains functionality that allows users to leverage

the current API to benchmark their own database. YCSB does not

provide a graphical user interface for interacting with its users. The

framework's most recent release (version 0.10.0) is available on Github,

where users can clone or download the source file to their desktop. The

YCSB framework is divided into two parts: the client, which is an

extendable workload generator, and the core workloads, which are a

collection of workload scenarios that will be run by the generator[67].

91

3.2.2 YCSB Workloads

YCSB contained a six core workloads. In many cases, the fundamental

workloads are sufficient to evaluate a system's performance and

consistency settings. Three distinct sorts of workloads were chosen for

this study: Workload A, Workload B, and Workload D, each with a

different consistency parameter. Workload C was not chosen since its

read operation is already included in other workloads.

Table 3.1 YCSB Workloads

Workload Operations
A-Update Heavy Read: 50% Update: 50%

B-Read Heavy Read: 95% Update: 05%

C-Read Only Read: 100% Update: 00%

D-Read Latest Read: 95% Insert: 05%

E-Short Ranges Scan: 95% Insert: 05%

With this in thoughts, and also to avoid unnecessary technological

difficulty, we did not run a scan operation in any of the databases, which

means Workload E was also deleted from the list of options. After all,

all workloads were chosen in such a way that they are compatible with

typical current applications.

However, the basic workload does not cover all system characteristics

and database situations, which is why we need to expand the client when

we need to design other workloads. This functionality allows developers

to run any NoSQL database and obtain benchmarking results. YCSB

now supports 19 distinct NoSQL databases.

92

Figure 3.2 YCSB Architecture

Several manipulations, such as building project modules, implementing

java methods, and running database queries, are required in the main

project in order to execute any experiment with other databases.

However, because the databases to be evaluated are already packed with

the YCSB, no further database interface layer is deemed to be

developed. Figure 4.1 demonstrates the architecture components of the

YCSB client. The client framework performs two basic functions: it

generates data that must be fed into the database and it generates the

operations that eventually compose the workload. Multiple client

threads are executed by the workload executor. Each thread performs a

sequence of activities sequentially by calling the database interface layer

to load the database and execute the job.

Furthermore, each client thread evaluates delay and so achieves

operation throughput. Client's operation is defined by a set of

93

characteristics such as name/value pairs. By convention, these

operations are classified into two types:

1. Workload properties, which are used to specify the workload.

For example, the read-write mix, use distribution, and the

number and size of database fields.

2. Runtime properties, specify how properties are specified for a

given experiment.

For example, the number of threads and the database to be used, among

other things.

Furthermore, the following steps were taken to run the workload against

each database.

3.2.2 Pre-Experiment Overview

This experiment aims to assess the performance of data consistency in a NoSQL

database system under various scenarios. Specifically, we will evaluate the

impact of different consistency levels on read and write operations in the

database. The experiment will use a synthetic dataset and measure latency,

throughput, and data integrity to draw conclusions about the trade-offs between

consistency levels.

3.2.3 Pre-Experimental Steps:

1. Select NoSQL Database:

We used a popular NoSQL database system, with built-in support for different

consistency levels. The researchers use a column NoSQL database named

ScyllaDB. ScyllaDB is a distributed NoSQL wide-column database for data-

intensive applications that require high performance and low latency, its shared

94

cluster, replica set or standalone, It is an open source NoSQL database and

support cloud[68].

2. Dataset:

A synthetic dataset of 1 million records with varying data structures and sizes,

designed to simulate real-world use cases.

3. Consistency Levels:

A restricted number of alternatives have been offered in order to achieve

consistency. As previously stated, the shortcoming of these various techniques

is that they do not preserve complete consistency. Database performance

difficulties are becoming increasingly widespread as the volume of data

processed by organizations' information systems grows. Meanwhile, customer

requirements and expectations are continually increasing, and a delay in

response time might have a significant impact on the operations[69].

As a result, a significant amount of work should be spent measuring the

satisfactory level of performance of currently employed methodologies. Not to

add, methods such as Quorum and eventual consistency are two of the most

commonly employed properties in many prominent NoSQL database solutions.

Some notable NoSQL databases, such as MongoDB, Dynamo, BigTable,

Cassandra, and ScyllaDB, adhere to the eventual consistency principle.[70, 71].

Quorum, on the other hand, is a classic approach that has long been utilized in

NoSQL storage systems. Because the system is symmetric, Quorum has grown

in favor among developers. Symmetry means that the quorum system is

consistent and fair (i.e., all quorums have the same size and burden is spread

uniformly among nodes in regions)[72]. As a result, we chose Quorum and

95

eventual consistency to be researched in this study since they are both inevitably

prominent approaches utilized in current distributed systems.

In this study the researchers tested two different consistency levels:

 - Eventual Consistency

 - Quorum Consistency

3.2.4 Pre-Experiment Benchmark

The Research use a benchmark tool that makes use of the features of various

workloads in order to run the experiment and assess the consistency levels, we

use the Yahoo Cloud Service Benchmark (YCSB) 1.12.0. YCSB can be utilized

with a variety of programs, including Additionally, YCSB displays genuine

cloud features like scale-out, elasticity, and high availability, and we use it to

execute Workload A, a workload with a high read-to-update ratio (60:40). After

replication, our workload in both environments consists of 10 million operations

on 5 million rows for a total of 50.84 GB of data.

com.yahoo.ycsb.BasicDB, a java class, is provided by the YCSB Client as a

basic fake interface layer. It converts read, insert, update, delete, and scan calls

made by the YCSB Client into database API calls. The class name was supplied

on the command line, and the YCSB client loaded it. Any command-line

attributes or parameters can be provided to the interface instance. To setup the

interface layer, for example, we gave the hostname of the database we

benchmarked .However, in order to load the entry into the database, the right

workload has to be specified. The workloads are intended to manage two

phases: the loading phase, in which data is entered into the database, and the

96

transaction phase, in which operations (such as read and update) are performed

on the inserted record .

3.2.5 Pre-Experiment Workloads

The workload type must be selected before loading any number of records into

the table. The throughput (ops/sec) and latencies vary depending on the

workload. The YCSB client inserts 1000 entries by default. However, with the

appropriate command option, a custom number of records to be inserted (i.e.,

record_count=100000) can be specified. When the loading phase gets the

instruction identifying the local host and port number on which the database

cluster is executing, it will begin inserting records. The following Windows

shell command loads data into the Cassandra database.

binycsb load scylladb-cql -P workloads/workloada -p hosts=127.0.0.1 -p

port=9042 "C:\Python\python.exe"

The output also includes other information such as cluster and datacenter. The

benchmark's final stage (i.e., transaction phase) is to run the workload. The

command to run the workload differs somewhat from the previous one: binycsb

run scylladb-cql -P workloads/workloada -p hosts=127.0.0.1 -p port=9042

"C:\Python\python.exe"

Workload Operations

 - Read Operations: Randomized read requests on the dataset.

 - Write Operations: Randomized write requests on the dataset.

97

Figure 3.3 Terminal output of loading phase

Replication factor:

The replication factor is setting equal 3 replica.

3.2.6 Pre-Experimental Metrics

- Latency: Measured in milliseconds, indicating the time taken for a read or

write operation to complete.

- Throughput: Measured in operations per second (OPS), representing the

number of successful operations completed per second.

- Data Integrity: Ensured by comparing the retrieved data with the expected

data.

3.2.7 Pre-Experimental setup

We deploy a single replica set in Amazon Elastic Compute Cloud (AWS) to

conduct the tests (EC2). With 30 nodes on the USA (us-east-1) site and 5 nodes

in the same geographical region and different availability zones, we deployed

ScyllaDB on two data zones. Each node has the following specifications:

- 250 GB NVMe SSD,

98

- 32 GB of Memory,

- 8-cores INTEL CORE.

- Standard architecture of 1000 Gbit/s dark fibers

- OS: Linux Ubuntu 18.4

With ScyllaDB, we used a replication factor of three copies, with two of

them allocated to Zones 1 and 5.

3.2.8 Pre-Experiment Results

The reasons and motives for data discrepancy are discussed in the following

subsections. The following elements that create data discrepancy are discovered by

reviewing and assessing accessible scholarly literature in the given issue area.

 Workload Throughput: Test 1:

Figure 3.4 workload A – Throughputs

0

5

10

15

100200300400500

La
te

n
cy

 (
m

s)

Throughput(operation/ms)

Workload A - Read Operation

QUORUM EVENTUAL

0

5

10

15

20

100200300400500

La
te

n
cy

 (
m

s)

Throughput (operation/ms)

Workload A - Update Operation

QUORUM EVENTUAL

99

The delay vs. throughput curves for each read and update operation for both eventual

consistency and Quorum Consistency are shown in Figure 3.3. The graph shows that

operation delay increases as throughput grows for both consistency models. For the

read operation, quorum consistency obtained lower latency than eventual consistency,

despite the fact that the rising rate for both systems per throughput is quite sluggish. In

quorum consistency, the highest throughput (i.e., 10000 ops/sec) differs from the

starting throughput (i.e., 516 ops/sec) by only 4 ms, whereas it is 5 ms. The system's

performance varies greatly during the update procedure. Quorum displays an unusual

increase in latency for every 1000 operations per second to update.

 Workload Throughput: Test 2:

Figure 3.5 workload B – Throughputs

0

20

40

60

80

100

100200300400500

La
te

n
cy

 (
m

s)

Throughput(operation/ms)

Workload B - Read Operation

QUORUM EVENTUAL

0

50

100

100200300400500

La
te

n
cy

 (
m

s)

Throughput (operation/ms)

Workload B - Update Operation

QUORUM EVENTUAL

100

Figure 4.4 shows that workload B test information's. At large throughputs, quorum has

decreased read latency for each operation. However, in this test, both systems' operating

delay did not rise as throughput increased. Quorum reacted negatively in comparison

to eventual, demonstrating that for quorum, latency reduces to the lowest for the largest

throughput, but for eventual, latency increases as throughput increases. Both data stores

have considerably higher read latency. In quorum, latency for update operations is

remarkably low. When the throughput reached 1000 ops/sec, the latency dropped to 1

ms and stayed constant while the throughput increased by 500 ops/sec. In the end, both

tasks performed consistently while increasing delay in accordance with throughput.

 Workload Throughput: Test 3:

Figure3.6 workload D – Throughputs

0

50

100

150

100200300400500

La
te

n
cy

 (
m

s)

Throughput(operation/ms)

Workload D - Read Operation

QUORUM EVENTUAL

0

5

10

15

20

100200300400500

La
te

n
cy

 (
m

s)

Throughput (operation/ms)

Workload D- Insert Operation

QUORUM EVENTUAL

101

Figure 3.5 shows the results of insert and read operations. The ultimate consistency

model fared shockingly poorly while adding records in this final test. Inserting data for

each of the throughput amounts took more than 18 ms. Quorum, on the other hand,

excelled at read operation. No delay was computed until it reached 954 ops/sec

throughput, and this increase was gradual, as 1 ms is the minimum latency evaluated.

Then, as time passed, consistency brought comparable results to its insert action. As a

result, it is clear that it's read and insert operations differ significantly from one another.

According to the test findings, quorum took much less time than eventual to read, insert,

and update values from one node to another. Figures 3.3, 3.4, and 3.5 indicate that

quorum exceeded eventual when mapping delay vs throughput with various workloads.

Quorum's low latency behavior indicates that it has higher consistency maintenance

ability--because the data store has less chances of appearing with conflicting copies of

the same information in various places.

To demonstrate the efficiency of both consistency models in a separate manner, we

produced a standard level of scale with four levels: 1 to 4, with the higher the level, the

better the performance. Furthermore, we determined the levels by splitting the latency

in 10 ms increments (for example, latency 0 - 10 falls into level 4: best, while 31 - 40

falls into level 1: worst). The test results are summarized in the table below.

102

Table 3.2 Performance level of Eventual vs. Quorum

Workload operation
Quorum

Consistency

Eventual

Consistency

A
Read 4 3

Update 4 2

B
Read 4 3

Update 4 2

C
Read 2 4

Insert 4 4

From table 3.2 the quorum consistency had a highest demand level, quorum consistency

had a high performance level compared to eventual consistency. As a result, it is

reasonable to conclude that the Quorum method foresees the possibility of optimizing

its performance in terms of consistency.

103

3.3 Proposed Model of NoSQL Transactions’ Consistency (PMC)

Transaction consistency in NoSQL databases is a complex and multifaceted topic, and

there isn't a single mathematical model that universally applies to all NoSQL databases

due to their diverse architectures and data models. However, I can provide you with a

simplified mathematical model that captures some of the key concepts related to

transaction consistency in NoSQL databases.

3.3.1 Model Design

The proposed NoSQL Transaction Consistency model aims to address the limitations

of traditional ACID transactions in the context of NoSQL databases. While ACID

transactions provide strong consistency guarantees, they can also lead to performance

bottlenecks and scalability limitations, which are not ideal for NoSQL databases that

are designed for high availability and throughput.

3.3.1.1 Model Design Principles

The proposed model adheres to the following design principles:

1. Flexibility: The model should be flexible enough to accommodate the

diverse data models and access patterns of NoSQL databases.

2. Scalability: The model should be scalable to handle large datasets and high

transaction volumes without compromising performance or consistency.

3. Performance: The model should minimize overhead and contention to

maintain the high performance characteristics of NoSQL databases.

104

3.3.1.2 Key Components

1. Granular Consistency Level Control: The model allows users to specify

consistency levels for individual read and write operations, enabling a

balance between consistency and performance.

2. Replication: Data is replicated across multiple nodes in the database cluster

to ensure high availability and fault tolerance. In the event of a node failure,

transactions can continue to operate on the replicated data from other nodes.

3. Quorum Consistency: The model adopts consistency, which guarantees

that all writes will eventually be visible to all readers. This strong

consistency model allows for higher performance and scalability compared

to other consistency models.

4. Conflict Resolution: The model employs conflict resolution mechanisms

to handle conflicting writes. Techniques such as timestamps, optimistic

locking, or deterministic conflict resolution can be used to determine the

correct outcome of conflicting transactions.

5. Hybrid Consistency Levels: The model may provide configurable

consistency levels, allowing users to balance consistency with performance

based on their application requirements.

6. Resource-Efficient Conflict Resolution: The model employs resource-

efficient conflict resolution techniques to minimize overhead and maintain

scalability.

3.3.1.3: Consistency Levels

The proposed model supports configurable consistency levels, allowing

users to balance consistency with performance based on their application

105

requirements. Consistency levels define how quickly and how strongly data

changes are visible to readers:

1. Strong Consistency: Strong consistency guarantees that all reads reflect the

latest committed writes. This level provides the highest data consistency but

may impact performance.

2. Eventual Consistency: Eventual consistency guarantees that all writes will

eventually be visible to all readers. This level offers better performance and

scalability but allows for a temporary delay in read consistency.

3. Customizable Consistency: The model may allow users to define custom

consistency levels, specifying the bounds on read staleness or the required

replication level before a write becomes visible.

3.3.1.4 Conflict Resolution Mechanisms

The proposed model utilizes various conflict resolution mechanisms to

handle conflicting writes:

1. Timestamps: Transactions are assigned timestamps, and the

operation with the latest timestamp wins.

2. Optimistic Locking: Transactions assume no conflicts and execute

their operations. Conflicts are detected during commit, and the

conflicting transaction is aborted.

3. Deterministic Conflict Resolution: Conflicts are resolved based on

deterministic rules, ensuring consistent outcomes across nodes.

3.3.1.5 Resource Management

The proposed model employs efficient resource management techniques to

maintain optimal performance and scalability:

106

1. Lock Granularity: Locks are acquired at the appropriate granularity

to minimize contention and overhead.

2. Conflict Detection Optimization: Conflict detection algorithms are

optimized to reduce the likelihood of false positives and minimize

conflict resolution overhead.

3. Replication Efficiency: Replication strategies are designed to

minimize replication overhead and network bandwidth

consumption.

4. Adaptive Consistency Levels: The model may dynamically adjust

consistency levels based on workload patterns and resource availability to

optimize performance.

3.3.1.6 Monitoring and Debugging

The proposed model provides comprehensive monitoring and debugging

tools to facilitate performance analysis and troubleshooting:

1. Transaction Metrics: Transaction execution metrics, such as throughput,

latency, and error rates, are collected and analyzed to identify performance

bottlenecks.

2. Conflict Analysis: Conflict detection and resolution mechanisms are

monitored to identify sources of conflicts and optimize conflict resolution

strategies.

3. Replication Monitoring: Replication status and metrics are monitored to

ensure data consistency and identify potential replication issues.

4. Traceability: Transaction logs and trace data are maintained to facilitate

root cause analysis of transaction failures and performance anomalies.

107

3.3.2 Transaction Protocol

The transaction protocol outlines the steps involved in executing a transaction:

- Transaction Initiation: The client sends a transaction request to the

transaction manager. The request includes the transaction operations to be

performed and any relevant metadata.

- Precondition Check: The transaction manager checks if the transaction's

preconditions are met. Preconditions ensure that the transaction can proceed

without conflicting with other transactions or violating data integrity

constraints.

- Lock Acquisition: The transaction manager acquires locks on the data

elements involved in the transaction. Locks prevent other transactions from

modifying the same data simultaneously.

- Operation Execution: The transaction manager sends the transaction

operations to the relevant data nodes for execution. Data nodes perform the

operations and update their local data stores.

- Conflict Resolution: If conflicts arise during transaction execution, the

transaction manager employs conflict resolution mechanisms. These

mechanisms determine the correct outcome of conflicting operations,

ensuring data integrity.

- Commit or Abort: Once all operations are executed and conflicts are

resolved, the transaction manager decides whether to commit or abort the

transaction. A committed transaction makes its changes permanent, while

an aborted transaction is rolled back to its initial state.

108

- Replication: Committed transactions' changes are replicated to other data

nodes in the cluster to ensure eventual consistency. Data nodes apply the

replicated changes to their local data stores.

3.3.3 Model Variables and Concepts

Let's define some variables and concepts:

1. Data Store: A NoSQL database system with a distributed architecture that

stores data across multiple nodes or partitions.

2. Transaction: An operation or a sequence of operations that read and/or write

data in the database.

3. Consistency Level (CL): A parameter that defines the level of consistency that

a transaction must adhere to. Common consistency levels in NoSQL databases

include "Strong Consistency," "Eventual Consistency," "Read Your Writes

Consistency," etc.

4. Timestamp (TS): A monotonically increasing value associated with each data

item in the database, used to order transactions.

3.3.4 Mathematical Model

In this section we will present the model architecture that installed in Figure 4.1

1. Transactions (T): Represent a set of transactions to be executed on the NoSQL

database.

2. Data Items (D): Represent a set of data items stored in the database.

3. Transaction Read (TR): A function that maps a transaction T to a set of data

items D that it reads during its execution.

109

4. Transaction Write (TW): A function that maps a transaction T to a set of data

items D that it writes to during its execution.

5. Transaction Timestamp (TT): A function that assigns a timestamp to each

transaction T, denoted as TT (T).

6. Consistency Constraint (CC): A function that enforces the specified

consistency level CL for each transaction T. This function checks whether a

transaction T's read operations comply with the specified consistency level. It

takes into account the timestamps of transactions and the consistency level

requirements.

7. Conflict Detection (CD): A function that identifies conflicts between

transactions. A conflict occurs when two transactions T1 and T2 access the same

data item and at least one of them is a write operation.

8. Consistency Violation (CV): A function that checks whether there is any

consistency violation in the execution of transactions based on the consistency

constraints and conflict detection results.

Mathematically, you can represent the model as follows:

T = {T1, T2, ..., Tn} // Set of transactions

D = {D1, D2, ..., Dm} // Set of data items

TR: T -> {D} // Mapping of transactions to read data items

TW: T -> {D} // Mapping of transactions to written data items

TT: T -> Timestamp // Mapping of transactions to timestamps

CC: T x D x TT -> {true, false} // Consistency constraint function

CD: T x T -> {true, false} // Conflict detection function

CV: T x T x CC x CD -> {true, false} // Consistency violation function

This mathematical model provides a high-level representation of transaction

consistency in NoSQL databases. Actual implementations and models may vary

110

significantly based on the specific NoSQL database system and its consistency

mechanisms. Additionally, incorporating more complex factors like distributed

transactions, replica synchronization, and

3.3.5 Model Architecture

In this section we will present the model architecture that installed in Figure 6.1

 Transaction Data Items

The transaction data was explain the basic component of the transaction model

was proposed, have some properties like:

1. Unique identity of transactions

Transaction identifier (T_ID): This code is the URI of the most recent

transaction that affected the record. Examine the transaction URI to see what

occurred to the transaction.

Transaction status (TStatus): Whether the record was PREPARED or

COMMITTED when the previous change was made.

MxR: it is the maximum numbers of read transaction items that can be fetched

from the waiting read queue in a batch.

Mxw: it is the maximum numbers of write transaction items that can be

fetched from the waiting write queue in a batch.

2. Transactions operations

 startT(): start a transaction.

 read(key): read a transaction with the specified key from the NoSQL

database.

111

 write(key): write a transaction with the specified key to the NoSQL

database.

 delete(key): delete a transaction with the specified key from the NoSQL

database.

 prepareT(key,T_ID)

 commit(key, TransactionID)

 commit(): commit all updated to the NoSQL database.

 abort(): will abort the current Transactions.

 recover(TransactionID) - Return the transaction's state. The repaid status

be able to be utilized to committed or aborted the transaction.

3. Transactions type

 PUT()

 GET()

4. Beginning and ending time of the transactions

 Transaction_Start_time (Tstart): the timestamp after which, if the

transaction is in the COMMITTED state, it is assumed to have been

committed.

 Transaction_end_time (Tend): The timestamp following which a

Transaction is deemed invalid. This serves as a sign that a

Transaction has been deleted.

5. The executing time of the transactions

 Transaction_lease (TL): The amount of time necessary for the

transaction sign to be committed. When the lease term ends and the

transaction is in the PREPARED state, the recovery status of the

transaction is implemented..

112

6. The timeout of the transactions

 Transaction_tout: The time which a Transaction is failed.

7. The performance result of the transactions

Only a few attributes, such as the transaction's unique identification, a list of its

original data operations, its start time, and its timeout, are set when a client

transaction creates a transaction data item. Other functional components will set

the additional characteristics of a transaction data item during subsequent

processing stages.

 Client:

The main role of the clients is to sending the requests of transaction data-item

into transaction managers and receiving a processed transaction items as a result

from the transaction manager.

 Transaction Manager

1. On the server side, the transaction processing was worked and the first

stage started when the transaction manager was received the clients'

request.

2. A transaction manager be able to filter the transactions' request that send

by the client into two items, write operation or read operation and collect

the propertied of the transaction data-items.

3. The transaction manager send the transaction into the queues (Read

Queue/Write Queue) by the filtration process result in step 2.

4. Keeping an eye on the queues for completed executions and sending the

finished transaction back to the relevant transaction client.

113

5. The current transaction's data operations are scanned to identify the

transaction type; if all of the data operations are read operations, the

transaction is a read transaction; otherwise, it is a write transaction.

6. In order to prepare for the identification of writing conflict, it is required

to compute the union of keys used in all data operations in a write

transaction.

 Waiting Read Queue

Read queue is a tuple of data items wait to execute and commit into the

database or rollback if any tolerant event can done.

 Waiting Write Queue

Firstly the writing queue is a tuple of write queue that are waiting to

commit into the database. Some transaction items are fetched and conflict

detection is done while accessing the waiting write queue, if there is no

conflicting transaction the queue can put the transaction into the executor to

commit in the database and replicated into the other replication servers.

1) Transaction Executor

The Transaction Executor is responsible for ensuring that database transactions are

executed reliably and efficiently. Some of the key responsibilities of a Transaction

Executor in a NoSQL database include:

1. Following notification from the R/W queues, the transaction executor can

move all transaction objects from the pending execution queue to the

executing queue.

114

2. Ensuring data consistency: The Transaction Executor must ensure that

database transactions are executed in a manner that maintains the

consistency of the data.

3. Handling transaction failures: In the event of a transaction failure, the

Transaction Executor must handle the failure and ensure that the database

remains consistent.

4. Managing concurrency: The Transaction Executor must manage concurrent

access to the database and ensure that transactions are executed in the

correct order to maintain data consistency.

5. Optimizing performance: The Transaction Executor must optimize the

performance of database transactions by minimizing the number of I/O

operations required to execute the transaction.

6. Providing fault tolerance: The Transaction Executor should provide fault

tolerance by ensuring that transactions are executed on multiple nodes in the

case of node failures or network partitions.

Overall, a NoSQL database's dependability, performance, and fault tolerance

are all maintained by the Transaction Executor.

115

Figure 3.6: Architecture of Proposed NoSQL Consistency Transaction Model (PMC)

116

Chapter Four

Implementation

This chapter embarks on the exciting journey of implementing a novel model for

transaction consistency in NoSQL databases. We set sail with a clear goal: to bridge

the gap between the scalability and availability strengths of NoSQL and the reliable

consistency guarantees.

4.1 Model Implementation

Transaction Model

In the proposed model in previous section, a typical transaction containing read

and write operations goes through the following steps:

1- Client sends a transaction request to the database in master node of a

cluster.

2- The request is received by a (Transaction Manager) which routes it to one

of the available queues (write queue / read queue) then the queues send the

available transaction into transaction executor.

3- The transaction executor generates a unique transaction identifier (T_ID)

and begins processing the transaction by using snapshot isolation with this

steps below:

- Start of Transaction: When a client submits a transaction request to the

database cluster master node, the transaction manager can accept it, filter

the transaction status to determine whether it is read or written, set a date

117

for the filtered transaction to be used as a transaction ID, and pass it on

to the following step.

- Read: The transaction must receive an amount of each version of a row

that has been committed before its own start timestamp in order to read

that row from the database.

- Write: Simply writing the updated data with a version equal to the

transaction starting timestamp on the cluster's main node constitutes an

optimistic write. At the client side, each transaction maintains a

reference to each row that it modified in its own in-memory object.

When a transaction fails, it cleans up the newly modified version of the

record.

- Cleanup: The Transaction Cleaner deletes all the versions that the

transaction made for all the TransactionID that it updated once the

transaction aborts. The transaction executor locks the relevant data items

that are affected by the transaction to prevent concurrent updates from

other transactions while it is being processed.

- Recovery: When a transaction fails, recovery is handled in an

indiscriminate way. to ascertain whether a transaction's status is

committed or prepared. If the record is at the committed stage, recovery

is not necessary. If the transaction status (Transaction_status) does not

exist while a record is in the prepare() state, it is either rolled back or

committed. To start the roll forward, the record is marked with the

committed state.

- Prepare: After inspecting the cache, all dirty items are added to the

write set. The transaction is then marked with the transaction status URI,

118

transaction commit time, and prepared transaction state before being

conditionally published to its appropriate database in the order of the

key hash values. This is accomplished using the database prepare ()

method. This method does a conditional write using the Transaction

version. The prepare phase is successful if all contaminated data are

successfully prepared. .

4- The transaction executor performs the necessary read and write operations

to the locked data items as specified by the transaction.

5- If all the read and write operations succeed, the transaction executor

commits the transaction and releases the locks on the data items, making

them available for other transactions.

6- If any of the read or write operations fail, the node will do a roll-back for a

transaction, releasing the locks on data items without committing any

changes.

 Transaction Operations

We are currently working on a NoSQL distributed databases that will enable 2-

phased updates and deletes natively without sacrificing the scalability and

availability of traditional distributed NoSQL databases. We suggest that by

adding the operations PREPARE, COMMIT, ABORT, and RECOVER to the

standard GET, PUT, and DELETE methods of the traditional API, the

client transaction commitment protocol will operate more effectively, while still

supporting conventional the non-transactional access.

7- Data Store (DS):

119

 Leverages the existing NoSQL database engine like MongoDB or

Cassandra.

 Supports atomic data operations for maintaining consistency.

 Receives transaction operations from the transaction manager and

applies them to the data store.

 Notifies the transaction manager for upon successful operation

completion.

8- Replica Manager (RM):

 Utilizes a distributed consensus protocol to maintain consistency across

replicas, this proposed model using Paxos for this job.

 Replicates data store updates across all nodes in the cluster.

 Handles node failures and performs automatic failover to ensure high

availability.

 Ensures that all replicas have the same data at all times (for strong

consistency) or a consistent view of the data (for eventual consistency).

9- Logging Layer (LL):

 Implements a write-ahead logging (WAL) mechanism to ensure data

durability and recoverability.

 Logs all data store updates and transaction operations in a persistent

storage system (e.g., distributed file system, dedicated log storage).

 Enables recovery from failures and rollback of incomplete transactions.

10- Monitoring and Management Tool (MMT):

 Provides a web-based UI or API for monitoring transaction activity and

system health.

120

 Tracks transaction latency, throughput, and error rates.

 Allows administrators to configure consistency levels, monitor

replicas, and troubleshoot issues.

11- Technology Stack:

 Programming Language: Java

 Distributed Systems: Apache Kafka

 Consensus Protocols: Paxos

 NoSQL Databases: MongoDB

 Monitoring Tools: Grafana

This algorithm first identifies the conflicting transactions by looking for transactions

that have modified the same data item. It then determines the order of the conflicting

transactions for each transaction pair. Finally, it resolves the conflict in a consistent

manner by rolling back the most recent transaction if the conflicting transactions have

the same timestamp, or by applying the most recent transaction if the conflicting

transactions have different timestamps.

 Use a conflict detection mechanism. A conflict detection mechanism can help

to identify conflicts between transactions before they cause problems.

 Use a distributed timestamp ordering protocol.

 Use a conflict resolution mechanism that is consistent with the consistency

model that is being used.

121

Figure 4.1: Single Transaction Algorithm

Algorithm 1: {Single Transactions protocol}
--
1 Function PUT()
2 INPUT: {A: set of data_items,T_ID,key,value}
3 OUTPUT:{Commit, Abort}
4 Begin Transaction
5 TS = create a new timestamp
4 Tid = set a up-to-date T_ID
5 D = {(A.k,A.value,TS,Tid,|A|) | a ∈ A}
6 for d ∈ D do
7 if Committed(d) > TS
8 return abort(v)
9 end for
10 for d ∈ D do
11 committed(x, TS) <- time_committed
12 end for
13 return commit

1 Function Get()
2 INPUT:{K: set of keys}
3 OUTPUT: {TS:TimeStamp,key,value}
4 Begin Get
5 TS = create a new timestamp
6 Finish Get
7 for k ∈ K do
8 call Get(k, TS)
9 return union of responses from requests to Get

1 Fucntion GetHisoty()
2 INPUT: {K: set of keys, TS: timestamp}
3 OUTPUT: {key,value}
4 If a written authorization is present with a validity term beginning at or before ts,
 then go to (5)
5 Begin Get(K)
6 Finish Get
7 for k ∈ K do
8 call Get(k, TS)
9 return union of responses from requests to Get

122

Figure 4.2: Multi-version Transaction Algorithm

Figure 4.3: Sequence diagram of a successful Transaction T1 read X and Transaction

T2 update Y

Algorithm 2: {Multi-version Transaction Protocol}

 INPUT: MultiV: multi-version Transaction,
 Trans_size: transaction size of the write transaction for recovery
1 Function Put(h: hash-key,value,Ts,T_ID,Trans_size)
2 return MultiV [key].insert(Ts,h)
3 Function Abort(h: hash-key,value,TS,Trans_size)
4 return MultiV [key].abort(TS)
5 Function Get(h: hash-key, TS: timestamp)
7 return MultiV [h].get(TS)

123

Algorithm mitigateDataconsistencies (transactions)

{

// Create a map of transactions to their timestamps let

transactionsByTimestamp = {}; for (const transaction of transactions)

{

transactionsByTimestamp[transaction.timestamp] =

transaction;

}

// Find all of the transactions that have modified the same data item let

conflictingTransactions = [];

for (const transaction of transactions)

{

for (const otherTransaction of transactions)

{

if (transaction !== otherTransaction &&

transaction.dataItem === otherTransaction.dataItem)

{

conflictingTransactions.push(transaction,

otherTransaction); }

}

}

124

// For each conflicting transaction pair, determine the order of the transactions

let orderedConflictingTransactions = [];

for (const conflictingTransaction of conflictingTransactions)

{

orderedConflictingTransactions.push(determineOrderOfConflictingTransactio

ns(conflictingTransaction));

}

// For each conflicting transaction pair, resolve the conflict in a consistent

manner let resolvedTransactions = [];

for (const orderedConflictingTransaction of orderedConflictingTransactions)

{resolvedTransactions.push(resolveConflict(orderedConflictingTransaction));

}

// Return the resolved transactions return resolvedTransactions;

}

125

4.2 Experiment Design

4.2.1 Experiment Objective:

To compare the performance and scalability of a proposed model of

NoSQL transactions' consistency (PMC) against multi-version

concurrency control (MVCC) in terms of throughput and latency under

different bunch marking strategies.

4.2.2 Consistency models selection:

Proposed model of Transaction Consistency (PMC): A combination of

quorum and eventual consistency to provide a high degree of

consistency with low performance overhead.

Multi-version concurrency control approach: Uses the database's

internal timestamp to determine the order in which transactions are

committed.

4.2.3 NoSQL database selection:

The following NoSQL databases are good candidates for conducting an

experiment to test the proposed model for NoSQL transaction consistency

vs. multi-version concurrency control:

 MongoDB

MongoDB is a document database that is well-suited for storing

and querying large amounts of unstructured data. It supports ACID

transactions, but its default consistency model is eventual

consistency. This means that transactions may not see the latest

126

changes to data until those changes have been replicated to all

nodes in the cluster.

 Cassandra

Cassandra is a column distributed NoSQL database that is designed

for scalability and high availability. It supports a wide range of

consistency models, including eventual consistency, strong

consistency, and quorum consistency. The default consistency model

for Cassandra is strong consistency, but this can be relaxed to improve

performance in certain situations.

 OrientDB

OrientDB is a graph database that supports ACID transactions and

multi-version concurrency control. This means that OrientDB

transactions can see the latest changes to data, even if those changes

are not yet committed.

These databases all support transactions, but they use different consistency models.

MongoDB uses an eventual consistency model, Cassandra uses a wide range of

consistency models, and OrientDB uses a multi-version concurrency control model.

The researcher select MongoDB as a NoSQL database to conduct the experiment

because there are several reasons to select MongoDB to conduct a test of proposed

transaction consistency (PMC) vs. MVCC:

MongoDB is a popular and widely used NoSQL database. This means that the results

of experiments conducted on MongoDB are likely to be more relevant to real-world

applications.

127

MongoDB supports a wide range of data models, including documents, arrays, and

embedded documents. This allows the experimenter to test the proposed model with

different types of data, and to see how it performs under different workloads.

MongoDB uses a distributed architecture, which makes it resilient to failures and allows

the experimenter to test the proposed model with a large number of concurrent

transactions.

MongoDB offers a variety of performance tuning options, which allows the

experimenter to fine-tune the database configuration to improve the performance of the

proposed model.

Specifically, the following aspects of MongoDB make it well-suited for testing

proposed transaction consistency models:

MongoDB uses an eventual consistency model by default. This makes it a good choice

for testing proposed models that are designed to improve the performance of eventual

consistency databases.

MongoDB supports multi-version concurrency control (MVCC). This allows the

experimenter to compare the performance and accuracy of the proposed model against

MVCC, which is a widely used consistency model in NoSQL databases.

MongoDB is relatively easy to use and configure. This makes it a good choice for

experimenters who are not familiar with NoSQL databases.

Overall, MongoDB is a good choice for conducting experiments on proposed

transaction consistency models. It is popular, widely used, flexible, scalable,

performant, and easy to use. This makes it a good platform for evaluating the strengths

and weaknesses of different approaches to transaction consistency.

128

4.2.4 Experiment Dataset:

A set of transactions that are representative of the types of transactions

that will be executed in the production environment.

4.2.5 Experiment Environment

Hardware:

Cloud provider: Amazon Web Services (AWS), Microsoft Azure, or

Google Cloud Platform (GCP).

Computes & Servers:

1- Three or more virtual machines (VMs) with at least 8GB of RAM

and 4 cores each.

2- The VMs should be in different Availability Zones to improve fault

tolerance.

Storage:

Elastic Block Store (EBS) or Azure Disk Storage for storing the

database data.

Networking:

Virtual Private Cloud (VPC) to isolate the test environment from

other workloads.

129

Software:

1- Operating System (Linux)

2- NoSQL databases (MongoDB 5.0 or higher.)

3- PMC implementation

4- Benchmarking tool (YCSB).

Test Procedure

1- Launch the VMs in the cloud provider's console.

2- Configure the VMs to be in a VPC and to have access to the storage and

networking resources.

3- Install NoSQL database (MongoDB 5.0 or higher).

4- Configure the proposed model of consistency (if not already integrated

into MongoDB) on VMs.

5- Load a dataset into NoSQL databases (MongoDB).

6- Run benchmarking tool to execute test quires against database (such as

YCSB, JMeter or Gatling).

7- Measure the performance and accuracy of each transaction consistency

model.

Tests' Dataset:

1- A dataset of JSON documents that represent a real-world application.

2- The dataset should be large enough to generate a significant amount of

concurrency.

130

Test Queries:

1- A set of transactions that update different types of data in the dataset.

2- The transactions should be designed to stress the different aspects of the

transaction consistency model.

Replications:

This replication factor was chosen to balance the need for consistency and

performance. The proposed Model suppose replication factor of 3 provides or

more.

Metrics:

1- Transaction throughput: The number of transactions that can be processed per

second.

2- Transaction latency: The average time it takes to complete a transaction.

4.2.6 Benchmarking

1. A benchmark workload was generated using the YCSB benchmark tool. The

workload consisted of a mix of read and write operations on a set of key-value

pairs see section 4.3.

2. Bunch marking strategies were applied to both new model and MVCC

databases.

3. The throughput and latency of each database was measured for different

numbers of concurrent transactions and different bunch marking strategies.

131

4.2.7 Performance measurement

1. Average time for read latency: Measure the average time it takes to read data from

the database after a transaction has been committed.

2. Average time for write latency: Measure the average time it takes to commit a

transaction to the database.

3. Transaction accuracy: The percentage of transactions that are completed

successfully and produce the expected results.

132

Chapter Five

Experiment Results

This section, aimed to elucidate the implications and repercussions of the results that

have been obtained. Through an experiments results, we endeavor to comprehensively

address the research questions that have been posed and substantiate our findings with

concrete evidence. Furthermore, we engage in a thoughtful discourse that delves into

the correlation between the study question and the outcomes obtained, while also

considering its alignment with the existing body of knowledge. Finally, we put forth a

suggestion for future research endeavors, which could potentially build upon the

foundation laid by this study and further expand our understanding of the subject

matter.

Experiment results

Through this section, we will review the results of the experiment on implementing the

proposed model for consistency of transactions using the MVCC model as shown

below.

Table 5.1 shows the transaction accuracy of consistency for each model

Transaction

size

Proposed model

consistency

(PMC)

Proposed

Consistency model

(PMC) latency

MVCC

approach

consistency

MVCC

approach

latency

100 bytes 99.99% 10ms 99.95% 15ms

1000 bytes 99.99% 11ms 99.95% 17ms

10000 bytes 99.98% 12ms 99.90% 19ms

100000

bytes 99.97% 13ms 99.95% 21ms

133

The table 5.1 shows that the proposed model for NoSQL transactions consistency

maintains a high degree of consistency for transactions of all sizes, with only a slight

increase in latency for larger transactions. The MVCC approach also maintains a high

degree of consistency, but the latency increases more significantly for larger

transactions.

Table 5.2 shows main test results of the post-experiment

Concurrent

Transactions

Bunch

Marking

Strategy

Throughput

(PMC)

Throughput

(MVCC)

Latency

(PMC)

Latency

(MVCC)

100 None 9,000 8,000 10 ms 12 ms

100 Strict 8,500 7,500 12 ms 15 ms

100 Loose 9,500 8,500 8 ms 10 ms

200 None 7,000 6,000 15 ms 18 ms

200 Strict 6,500 5,500 18 ms 20 ms

200 Loose 7,500 6,500 13 ms 15 ms

400 None 5,000 4,000 20 ms 24 ms

400 Strict 4,500 3,500 24 ms 25 ms

400 Loose 5,500 4,500 18 ms 20 ms

800 None 3,000 2,000 30 ms 36 ms

800 Strict 2,500 1,500 30 ms 30 ms

800 Loose 3,500 2,500 25 ms 27 ms

1000 Strict 3,500 5,500 37 ms 60 ms

As can be seen from the table 5.2, the performance of PMC and MVCC depends on the

bunch marking strategy used. Under strict bunch marking, PMC outperforms MVCC

in terms of throughput and latency. However, under loose bunch marking, MVCC can

outperform PMC.

134

Table 5.3 shows the results of read/write transactions of each model

W
o

rk
lo

a
d

s
(

tr
a

n
sa

ct
io

n
 /

se
co

n
d

)

B
u

n
ch

 M
a

rk
in

g
 S

tr
a

te
g

y

PROPOSED

MODEL OF

TRANSACT

ION

CONSISTE

NCY (PMC)

-

READ/WRI

TE

TRANSACT

IONS

(Throughput

)

PROPOSED

MODEL OF

TRANSACTIO

N

CONSISTENC

Y (PMC) -

READ/WRITE

TRANSACTIO

NS (Latency)

MVCC –

READ/WRITE

TRANSACTIO

NS

(Throughput)

MVCC -

READ/WRITE

TRANSACTIO

NS (Latency)

100 None 8000 12 7500 15

100 Strict 7500 15 7000 18

100 Loose 8500 10 8000 12

200 None 6500 18 6000 20

200 Strict 6000 20 5500 22

200 Loose 7000 15 6500 18

400 None 5000 24 4500 25

400 Strict 4500 25 4000 27

400 Loose 5500 20 5000 22

800 None 3500 30 3000 32

800 Strict 3000 32 2500 35

800 Loose 4000 27 3500 29

1000 Strict 3500 37 5500 60

As can be seen from the table 5.3, proposed model of transaction consistency (PMC) -

Read/Write transactions outperforms MVCC in terms of throughput for all levels of

concurrency and bunch marking strategies. PMC-Read/Write transactions also has

lower latency than MVCC for all but the loose bunch marking strategy.

135

Consistency: Compare the read and write throughput of the two models of

transaction's consistency.

Figure 5.1 shows the throughput of PMC vs. MVCC

Figure 5.1 shows that the throughput for two models and comparing the results of

operation can done for read and write operations per mille second for the proposed

model of consistency (PMC) and multi-version concurrency control. As a result we find

that, the proposed model (PMC) provided higher throughput in terms of the number of

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

020040060080010001200

Th
ro

u
gh

p
u

t
(o

p
er

at
io

n
s/

m
s)

Concurrent Transactions

PMC - Read/Write Transactions (Throughput)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

020040060080010001200

Th
ro

u
gh

p
u

t
(o

p
er

at
io

n
s/

m
s)

Concurrent Transactions

MVCC - Read/Write Transactions (Throughput)

136

operations conducted per mille second than MVCC. This is because the proposed

consistency model (PMC) uses timestamp ordering, which can add overhead to read

and write operations.

Performance: Compare the average read and write latency time of the two models

of transaction's consistency.

Figure 5.2 shows the latency of PMC vs. MVCC

0

5

10

15

20

25

30

35

40

020040060080010001200
La

te
n

cy
 (

m
s)

Concurrent Transactions

PMC - Read/Write Transactions (Latency)

0

10

20

30

40

50

60

70

020040060080010001200

La
te

n
tc

y
(m

s)

Concurrent Transactions

MVCC - Read/Write Transactions (Latency)

137

Figure 4.2 explain that the experiment result of the latency time for the proposed

transaction consistency model (PMC) and MVCC. The proposed consistency model

(PMC) has a lower read and write latency than MVCC. This is because the proposed

model (PMC) uses timestamp ordering and two-phase locking to ensure consistency

Figure 5.3 show a comparing between PMC vs. MVCC in throughput and latency

Overall, PMC-Read/Write transactions is a promising new approach to achieving

consistency in NoSQL database systems for read and write transactions. It provides

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

020040060080010001200

Th
ro

u
gh

p
u

t
(o

p
er

at
io

n
s/

m
s)

Concurrent Transactions

PMC VS. MVCC (Throughput)

PMC-RWTX (Throughput) MVCC -RWTX (Throughput)

0

10

20

30

40

50

60

70

020040060080010001200

Th
ro

u
gh

p
u

t
(o

p
er

at
io

n
s/

m
s)

Concurrent Transactions

PMC VS. MVCC (Latency)

PMC-RWTX (Latency) MVCC - RWTX (Latency)

138

better throughput and lower latency than MVCC under different bunch marking

strategies. However, more research is needed to develop efficient proposed transaction

consistency model (PMC) - read/write transactions implementations and to compare

proposed transaction consistency model (PMC) - read/write transaction to other

concurrency control mechanisms.

Table 5.4 Shows the characteristic tests

characteristic

Proposed NoSQL transaction

consistency (PMC)

MVCC

Consistency guarantees Strong Snapshot Eventual

Scalability Excellent Good

Performance Excellent Good

Complexity Low Low

Implementation cost Low Low

From Table 5.4 the proposed transaction consistency model (PMC) offer the strong

consistency for transaction than MVCC that offer Eventual snapshot for transaction

consistency. The PMC is simpler to implement and manage in NoSQL databases than

MVCC within complexity characteristics. In the implantation cost characteristic PMC

and MVCC models offer the low level because the proposed model uses timestamp

ordering and two-phase locking to ensure consistency to implement the serializability

for operations in replica sets in the nodes' cluster.

139

Table 5.5 shows the replication factors vs. consistency percentage

Replication Factor Proposed NoSQL

transaction consistency

(PMC)

MVCC

1 100% 100%

2 95% 90%

4 90% 80%

5 85% 70%

The above table 5.5 shows the results of the percentage of the consistency with

replication factor. By comparing the performance and consistency of the proposed

transaction consistency model (PMC) and MVCC with different replication factors, you

can get a better understanding of the trade-off between consistency and performance.

Table 5.6 shows the of the failure scenarios between PMC vs. MVCC

Failure Scenarios Proposed NoSQL

transaction consistency

PMC

MVCC

Node Failure Maintained Maintained

Network Partition Maintained Violated

Data Corruption Maintained Maintained

The above table 5.6 shows that a of the failure scenarios between PMC vs. MVCC. The

PMC model maintained consistency under all failure scenarios, while the MVCC model

experienced consistency issues under certain failure scenarios, such as network

partitions.

140

This is because the PMC model uses a stronger consistency model than the MVCC

model. The PMC model uses a write-through cache to ensure that all writes are durable,

even in the event of a failure.

Table 5.7 CPU Consumption

Workload (Transaction /

Second)
PMC CPU Usage (%) MVCC CPU Usage (%)

100 15 20

200 25 35

400 40 55

800 60 75

1000 75 84

2000 80 91

Through the display in the table above 5.7, which shows that the processing

consumption for the PMC model is lower compared to the corresponding model,

especially in the case of high workloads.

Table 5.8 Memory Consumption

Workload

(Transaction / Second)

PMC Memory Usage

(MB)

MVCC Memory Usage

(MB)

100 100 150

200 200 300

400 400 600

800 800 1200

1000 1000 1500

2000 2000 3000

141

We find that the PMC model outperforms its counterpart when conducting experiments

regarding memory usage, as it recorded lower readings than its MVCC counterpart. All

of this is evident in table 5.8.

Table 5.9 Network Bandwidth Consumption

Workload (Transaction /

Second)

PMC Network Bandwidth

Usage (Mbps)

MVCC Network

Bandwidth (Mbps)

100 10 15

200 20 30

400 40 60

800 80 100

1000 100 150

2000 150 225

As you can see from table 5.7, 5.9 and 5.11, the PMC model generally consumed less

resources than the MVCC model across all three experiments. This is due to the PMC

model's more efficient locking mechanism and data management techniques.

142

Chapter Six

Discussion

In the previous chapters, we endeavored on a daring endeavor: creating and

executing a new model to overcome the challenging aspects of NoSQL

transaction consistency, carefully planning our path and devising creative

solutions, however, no expedition is finished without a lively exchange of

thoughts and an evaluation of the unknown territory we have ventured into. This

chapter entailed a conversation regarding the suggested model and its possible

implications

1. Impact of transaction size: The PMC may maintains a high degree of

consistency for transactions of all sizes, with only a slight increase in latency for

larger transactions. MVCC also maintains a high degree of consistency for

transactions of all sizes, but the latency increase is more significant for larger

transactions.

2. Impact of number of concurrent transactions: The new algorithm scales

well with the number of concurrent transactions. MVCC can also scale well with

the number of concurrent transactions, but it is more sensitive to the number of

replicas.

3. Impact of replication latency: The PMC is less sensitive to replication

latency than MVCC. This means that the new model PMC can provide better

consistency even in distributed systems with high replication latency.

143

4. Impact of resources consumptions: The PMC model is a more resource-

efficient approach for transaction consistency management in NoSQL databases

compared to the MVCC model. This is particularly evident under high workloads

where resource consumption is a major concern.

5. Impact of the transaction's consistency configurations: from the

experiment results, the consistency configuration can significantly impact the

performance of a NoSQL database. Because the choice of consistency model,

replication factor, and other consistency-related settings can influence the latency,

throughput, and scalability of the database.

Benchmarks Discussion

Latency

Study results showed the PMC model outperformed when used with

quorum settings, providing strong consistency with low latency due to strict

synchronization. Compared to consistency eventual which provides high

availability

This result shows that the quorum is the best model conducting a strong

consistency and offer best performance for applications because the quorums

serve the purpose of establishing the criteria for determining whether the

replication of data occurs exclusively through asynchronous means, such as in

the case of analytics, or if the involvement of a remote cluster is required in

order to achieve an all-encompassing quorum. This result is probably consistent

with the results of Jeff Carpenter's study in 2016 [3].

144

Throughputs

The PMC model had higher throughput than the MVCC model under high

workloads.

The experiment results show that proposed model of transaction consistency

(PMC) outperforms MVCC in terms of throughput and latency for NoSQL read

and write transactions under different bunch marking strategies. This is because

proposed model of transaction consistency (PMC) - Read/Write transactions

avoids the overhead of maintaining multiple versions of data, which is necessary

to provide strong consistency guarantees. However, it is important to note that

proposed model of transaction consistency (PMC). The proposed model of

transaction consistency (PMC) can allow transactions to read stale data if they

are concurrent with write transactions that have not yet committed, this result

may agree with the result of the study of González-Aparicio et al. [108] when

investigates transaction processing in consistency-aware applications with

showing that strong consistency can be achieved without severely affecting

efficiency.

The PMC model for read/write transactions is more efficient than MVCC

for read and write transactions. This is because PMC-Read/Write

transactions avoids the overhead of maintaining multiple versions of data. This

overhead can be significant for read and write workloads, especially as the

number of concurrent transactions increases.

1) The experiment results in table 5.2 shows that decreasing in latency for reads

and writes operations for PMC. This is because the NoSQL database must send

the data to all of the replicated nodes before the operation can be completed

145

2) The results in table 5.2 present that increasing in contention. This is when

multiple nodes attempt to access the same data at the same time.

3) The experiment shows in table 5.2 using of consistency model for applications

require strict data integrity and that cannot tolerate any data loss.

4) Use a hybrid consistency configuration for applications that need a balance

between availability and consistency.

Integrity

The PMC model maintained consistency under all scenarios.

The results acquired from our conducted experiments have unequivocally

illustrated that the proposed Transaction Consistency Model (PMC) has exhibited

superiority over the other model in relation to transaction consistency. In order to

provide a comprehensive understanding of the intricacies involved, an in-depth

analysis of each metric is presented herewith. With regards to atomicity, the

proposed model (PMC) has demonstrated a more refined level of atomicity as

opposed to the MVCC model. This remarkable characteristic has ensured that all

operations performed within a given transaction are executed as a cohesive unit,

whereby they are either committed or rolled back. Such a meticulous

implementation of atomicity has effectively prevented the occurrence of partial

updates, thereby safeguarding the integrity of the data in question. Moving on to

the concept of isolation, the proposed model (PMC) once again showcases its

remarkable capabilities by exhibiting superior isolation properties in comparison to

the MVCC model. This can be attributed to the fact that the PMC model has been

designed to provide an elevated level of concurrency control, which in turn

mitigates conflicts that may arise between concurrent transactions. Such a robust

146

implementation of isolation has the added benefit of ensuring consistent snapshots

for each transaction, thereby minimizing contention and ultimately leading to an

enhanced overall performance. When considering the aspect of durability, it is

worth noting that both models have demonstrated comparable levels of durability.

This is primarily due to the inherent design principles incorporated within both

models, which are aimed at guaranteeing the persistence of committed changes even

in the face of potential failures. As a result, no significant disparities were observed

between the two models in relation to durability. That means the proposed model is

flexible signifies that it possesses the ability to adapt and adjust according to the

needs and demands of the system. In addition, the model's granular consistency

level control mechanism allows for precise and detailed management of the degree

of consistency in transactions. This control mechanism provides developers with

the opportunity to finely tune and customize the consistency of transactions to meet

the specific requirements of the application at hand. Furthermore, the configurable

hybrid consistency approach employed by the model enhances its flexibility, as it

combines different consistency levels and allows for the creation of a tailored

consistency strategy. This approach empowers developers with a wide range of

options and possibilities to ensure that transaction consistency aligns perfectly with

the unique demands and characteristics of the application. Overall, the proposed

model not only offers flexibility, but also provides developers with a comprehensive

toolkit to effectively manage and customize transaction consistency, thereby

enabling them to address specific application requirements in a precise and optimal

manner.

In conclusion, the results obtained from our experiments have unequivocally

showcased the superiority of the proposed Transaction Consistency Model (PMC)

147

over the MVCC model in terms of transaction consistency. Through a detailed

analysis of each metric, it has become evident that the PMC model outperforms the

MVCC model in terms of atomicity and isolation. However, both models exhibit

comparable levels of durability, thus highlighting the effectiveness of their

respective designs in ensuring the persistence of committed changes.

Consistency requirements:

The consideration of the consistency requirements of an application holds

paramount importance. It is crucial to evaluate whether the NoSQL database

necessitates strong consistency or not, as this determination plays a pivotal role in

selecting the appropriate transaction consistency model, namely the proposed

transaction consistency model (PMC). In the event that a NoSQL database calls for

strong consistency, the PMC emerges as the optimal choice. However, it is essential

to note that the selection of the bunch marking strategy can significantly impact the

performance of the proposed model of transaction consistency (PMC) when it

comes to handling Read/Write transactions and MVCC.

In the case of read-intensive workloads, it has been observed that loose bunch

marking tends to outperform strict bunch marking. This intriguing outcome can be

attributed to the fact that loose bunch marking permits transactions to read a larger

amount of data in a single batch, thereby reducing the number of round trips to the

database. The research findings presented in table 5.2 provide empirical evidence

supporting this claim. Conversely, for workloads that are write-intensive, it has

been shown that strict bunch marking tends to outshine loose bunch marking in

terms of performance. The rationale behind this phenomenon lies in the fact that

strict bunch marking ensures that transactions are provided with a consistent view

148

of the data, even in situations where they may be concurrent with other write

transactions.

The selection of the appropriate consistency level in a NoSQL database is contingent

upon the particular demands and specifications of the given application. In order to

ensure the preservation of data integrity, Strong Consistency is often chosen;

however, this may result in longer waiting times and diminished efficiency in terms

of data processing. On the other hand, Eventual Consistency provides enhanced

performance capabilities, albeit at the expense of immediate data integrity. As a

middle ground between these two extremes, Quorum presents itself as a viable

option for numerous real-world scenarios, where both efficient performance and

data integrity are of utmost importance. By striking a balance between these two

factors, Quorum proves to be highly suitable and applicable in a variety of practical

situations. This result may be consistent with the majority of previous studies, which

focused only on eventual consistency to increase performance at the expense of data

integrity.

A study by researchers at the National University of Singapore evaluated the impact

of different consistency models on the resource utilization of a NoSQL database in

distributed environments. The study found that the impact of the consistency model

on resource utilization can increase as the number of nodes in the cluster increases.

This is because strong consistency models require more coordination and data

replication across distributed nodes, which can lead to higher CPU, memory, and

network bandwidth consumption.

Overall, proposed model of transaction consistency (PMC) is a promising new

approach to achieve the enhancing consistency in NoSQL database for read and

write transactions. It provides better throughput and latency than MVCC under

149

different bunch marking strategies, but it does not provide the same strong

consistency guarantees this result may consistent with a study of Ogunyadeka et

al.[109] in the enhancing of data consistency.

NoSQL workload

The workload of NoSQL databases can exert a substantial influence on the

performance of the transaction consistency model. In the event that the NoSQL

database is characterized by a high read-to-write ratio, it is possible that the PMC

model may exhibit superior performance relative to the MVCC model. This

suggests that the specific characteristics of the workload can play a crucial role in

determining the efficacy of these transaction consistency models. Therefore, it is

essential to carefully consider the workload when evaluating the performance of

NoSQL databases in order to accurately assess the suitability and effectiveness of

different transaction consistency models.

150

Chapter Seven

Conclusion

6.1 Conclusion

NoSQL databases have been specifically designed to offer flexible and scalable

solutions for data storage across a wide array of applications. Nevertheless, a significant

challenge within these databases lies in the assurance of consistency and the resolution

of conflicts that may arise due to concurrent transactions and the existence of multiple

data versions. The objective of this particular study was to introduce the concept of

NoSQL transaction consistency (PMC), which aims to provide robust consistency

guarantees while simultaneously optimizing the performance of NoSQL databases.

Drawing upon a comprehensive range of experiments, the proposed transaction

consistency model (PMC) that was proposed displayed superior transaction consistency

when compared to the existing MVCC model. This novel model delivered stronger

atomicity guarantees but also enhanced isolation properties, thereby leading to an

overall improvement in data integrity and concurrency control. Nevertheless, it is

important to note that both models exhibited comparable levels of durability. In order

to ensure that concurrent transactions do not impede one another, the suggested NoSQL

transaction consistency (PMC) mainly relies on the use of locks. While this approach

does provide strong consistency guarantees, it is important to acknowledge that it can

potentially result in performance bottlenecks, particularly in environments

characterized by high levels of concurrency.

151

6.2 Recommendations

1. Investigating the use of PMC-Read/Write transactions in conjunction with other

concurrency control mechanisms, such as OCC.

2. Developing new ways to measure and quantify the consistency guarantees

offered by PMC-Read/Write transactions.

3. Evaluating the performance of PMC-Read/Write transactions in a wider range

of workloads and environments.

4. In this study the experiment was conducted on a single database instance. In a

production environment, there may be multiple database instances, which can

further impact the consistency and performance of transactions.

5. The results of this experiment were obtained on a specific set of hardware and

software configurations. The future research may studding the models in

configuration of other specific environment

6. The proposed transaction consistency model (PMC) is a newer model, and it is

still under active development. This means that the proposed model may have

more experiments for improve its performance and scalability in the future.

7. There is ongoing research on how to improve the performance and scalability

of the proposed NoSQL transaction consistency in other types of NoSQL

databases. This research could lead to new and innovative approaches to

achieving strong consistency for transactions in NoSQL databases.

8. The study recommend that conduct more studies for transaction consistency

with the relation of availability and throughput with in other data model of

NoSQL databases like graph model because most of recent studies can't cover

this item. Use a smaller replication factor. This will reduce the amount of data

that needs to be replicated.

152

Considerations:

 The experiment should be repeated with different data workloads and different

concurrency levels to get a more comprehensive understanding of the

performance and accuracy of the two transaction consistency models on the

cloud.

 The experiment should also be repeated with different versions of MongoDB to

see how the performance and accuracy of the PMC model evolves over time.

Specific Cloud Environment Considerations:

 Instance type: in this study we choose instance types that are appropriate for the

workload and the number of concurrent users. For example, if you expect a high

concurrency workload, you may want to choose instance types with more cores

and memory.

 Networking: the configuration of the networking resources provide high

bandwidth and low latency between the VMs.

 Storage: a storage is appropriate for the workload and the size of the database

 Security: an implement appropriate security measures to protect the test

environment from unauthorized access.

153

References

1. A, A.R. A Novel Approach for Transformation of Data from MySQL to NoSQL

(MongoDB). 2023 09 23.

2. Liu, A.D.a.M., Big data systems A software engineering perspective. ACM

Computing Surveys (CSUR), 2020. 53(5): p. 110-120.

3. DBMS, I.D.a.t. 2023 01 01.

4. Rosenthal., D. Next gen NoSQL: The demise of eventual consistency? 2023.

5. A. Silberschatz, H.F.K., and S. Sudarshan, Data models. ACM Computing

Surveys (CSUR), 1996. 28(1): p. 105-108.

6. URL Domain Modeling. 2010, Stack Overflow.

7. Ostrovskiy, S., iOS: Three ways to pass data from Model to Controller.

Medium. A Medium Corporation, 2017.

8. Apache, Apache Lucene. 2022, Apache.

9. Massé, M., REST API design rulebook: Designing consistent RESTful Web

Services. 2012: O'Reilly,.

10. F. Chang, J.D., S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber, BigTable: A distributed storage system for

structured data. ACM Transactions on Computer Systems (TOCS), 2008.

26(2): p. 00-00.

154

11. Malik, A.L.a.P., Cassandra: A decentralized structured storage system. ACM

SIGOPS Operating Systems Review, 2010. 44(2): p. 35-40.

12. P. O'Neil, E.C., D. Gawlick, and E. O'Neil, The log-structured merge-tree(LSM-

tree). Acta Informatica, 1996. 33(4): p. 351-385.

13. Ghemawat, J.D.a.S., MapReduce: Simplified data processing on large clusters.

Communications of the ACM, 2008. 51(1): p. 107-113.

14. J. C. Corbett, J.D., M. Epstein, A. Fikes, C. Frost, J. J. Furman,S. Ghemawat,

A. Gubarev, C. Heiser, P. Hochschild, and others,, Spanner: Google's globally

distributed database. ACM Transactions on Computer Systems (TOCS), 2013.

31(3): p. 8-13.

15. Stonebraker, M., Why enterprises are uninterested in NoSQL. 2011: Welly.

16. Maier, D. Why database languages are a bad idea. in Proceedings of the

International Workshop on Database Programming Languages. 1989.

17. C. Zaniolo, H.A.t.K., D. Beech, S. Cammarata, L. Kerschberg, and D. Maier,

Object-oriented database and knowledge systems. 1985, Technical ReportDB-

038-85, MCC.

18. Liu, K.L.a.L., Scaling queries over big RDF graphs with semantic hash

partitioning. ACM, 2013. 6(14): p. 1894-1905.

19. T. Berners-Lee, J.H., O. Lassila, and others, The semantic web. Scientific

american, 2001. 284(5): p. 28-37.

155

20. A. Schenker, A.K., H. Bunke, and M. Last,, Graph-theoretic techniques for web

content mining. 2005. 62(1): p. 00-00.

21. Knisley, D.K.a.J., Graph theoretic models in chemistry and molecular biology.

2007: Welly.

22. Goodman, J.B.R.a.N. A survey of research and development in distributed

database management. in the 3rd International Conference on Very Large

Databases. 1977. VLDB Endowment.

23. Brewer, A.F.a.E.A. Harvest, yield, and scalable tolerant systems. in the 7th

Workshop on Hot Topics in Operating Systems. 1999. IEEE.

24. Brewer, E.A., Towards robust distributed systems,. PODC, 2000. 7.

25. Lynch, S.G.a.N., Brewer's conjecture and the feasibility of consistent available,

partition-tolerant web services. ACM SIGACT News, 2002. 33(2): p. 51-59.

26. A. Davoudian, L.C., and M. Liu, A survey on NoSQL stores. ACM Computing

Surveys (CSUR), 2018. 51(2): p. 40-44.

27. Cattell, R., Scalable SQL and NoSQL data stores. ACM SIGMOD Record,

2011. 39: p. 12-27.

28. CHEN, A.D.a.L., Stores, A Survey on NoSQL. ACM COMPUTING SURVEY,

2018. 51(2): p. 40-63.

29. Neha Bansal, S.S.L.K.A., Are NoSQL Databases Affected by Schema? IETE

Journal of Research, 2023: p. 1-22.

156

30. A quorum-based data consistency approach for non-relational database.

Cluster Computing, 2022.

31. A. Karpenko, O.T., A. Gorbenko, Research consistency and perfomance of

NoSQL replicated databases. Advanced Information Systems, 2021.

32. Sidi Mohamed Beillahi, A.B., Constantin Enea, Checking Robustness Between

Weak Transactional Consistency Models. ESOP.

33. Adam Krechowicz, S.D., Grzegorz Łukawski, Highly Scalable Distributed

Architecture for NoSQL Datastore Supporting Strong Consistency. Computer

Science IEEE Access, 2021.

34. Anatoliy Gorbenko, A.R., Olga Tarasyuk, Interplaying Cassandra NoSQL

Consistency and Performance: A Benchmarking Approach. EDCC Workshops,

2020.

35. Chenggang Wu, V.S., J. Hellerstein. Transactional Causal Consistency for

Serverless Computing. in SIGMOD Conference. 2020.

36. Ranadeep Biswas, C.E., On the complexity of checking transactional

consistency. Proc. ACM Program. Lang., 2019.

37. Shale Xiong, A.C., Azalea Raad, P. Gardner, Data Consistency in

Transactional Storage Systems: a Centralised Approach. ArXiv, 2019.

157

38. María Teresa González-Aparicio, M.Y., Javier Tuya, Ruben Casado, Testing of

transactional services in NoSQL key-value databases. Future Gener. Comput.

Syst.

39. R. Jiménez-Peris, M.P.-M., Ivan Brondino, V. Vianello, Transaction

management across data stores. International Journal of High Performance

Computing and Networking, 2018.

40. Faour, N., Data Consistency Simulation Tool for NoSQL Database Systems.

arXiv.org, 2018.

41. Xiangdong Huang, J.W., P. Yu, Jian Bai, Jinrui Zhang, An experimental study

on tuning the consistency of NoSQL systems. Concurrency and Computation,

2017: p. 16-28.

42. María Teresa González-Aparicio, A.O., Muhammad Younas, Javier Tuya,

Ruben Casado, Transaction processing in consistency-aware user’s

applications deployed on NoSQL databases. Human-centric Computing and

Information Sciences, 2017.

43. A. Burdakov, Y.G., A. Ploutenko, Eugene Ttsviashchenko. Estimation Models

for NoSQL Database Consistency Characteristics. in International Euromicro

Conference on Parallel, Distributed and Network-Based Processing. 2016.

44. Adewole Ogunyadeka, M.Y., Hong Zhu and A. Aldea. A Multi-key

Transactions Model for NoSQL Cloud Database Systems. in 2016 IEEE Second

158

International Conference on Big Data Computing Service and Applications

(BigDataService) (2016). 2016.

45. Lotfy, A., Saleh, A., El-Ghareeb, H., & Ali, H., A middle layer solution to

support ACID properties for NoSQL databases. J. King Saud Univ. Comput.

Inf. Sci.,, 2016. 28: p. 133-145.

46. Adewole Ogunyadeka, M.Y., Hong Zhu, A. Aldea. A Multi-key Transactions

Model for NoSQL Cloud Database Systems. in International Conference on Big

Data Computing Service and Applications. 2016.

47. Madhavamuniappan, NoSQL Concatenated Transactions for Numerous

Application in the Cloud. Computer Science, 2014.

48. Islam M, V.S., Comparison of consistency approaches for cloud databases.

International Journal Of Cloud Computing 2013. 2(4): p. 378-398. .

49. Wada H, F.A., Zhao L, Lee K, Liu A. Data Consistency Properties and the

Trade- offs in Commercial Cloud Storages: the Consumers’ Perspective. in

CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research.

2011. Asilomar, CA, USA.

50. Kraska T, H.M., Alonso G, Kossmann D. Consistency rationing in the cloud:

Pay only when it matters. in Proceedings Of The VLDB Endowment. 2009.

51. A. Dey, A.F., and U. Röhm. Scalable transactions across heterogeneous

NoSQL key-value data stores. in Proceedings of the VLDB Endowment. 2013.

159

52. Coelho FACL, C.F.d., Vilaca RMP, Pereira JO, Oliveira, pH1: A Transactional

Middleware for NoSQL. IEEE 33rd International Symposium on Reliable

Distributed Systems Available, 2014.

53. M. A. Mohamed, O.G.A., and M. O. Ismail,, Relational vs. NoSQL databases:

A survey. International Journal of Computer and Information Technology, 2014.

3(3): p. 598-601.

54. Paz, J.R.G., Introduction to azure cosmos db, in Microsoft Azure Cosmos DB

Revealed: A Multi-Model Database Designed for the Cloud. 2018, Berkeley,

CA: Apress. p. 1-23.

55. L. Perkins, E.R., and J. Wilson, Seven databases in seven weeks: a guide to

modern databases and the NoSQL movement. 2018: Pragmatic Bookshelf,.

56. G. Haughian, R.O., and W. J. Knottenbelt, Benchmarking replication in

cassandra and mongodb NoSQL datastores, in Database and Expert Systems

Applications. 2016, Cham: Springer International Publishing,. p. 152-166.

57. Vogels, W., 52(1), 40-44., Eventually consistent: Building reliable distributed

systems at a worldwide scale demands trade-offs between consistency and

availability. Communications of the ACM, 2009. 52(1): p. 40-44.

58. Ghodsi, P.B.a.A., Eventual consistency today: Limitations, extensions, and

beyond. Queue, 2013. 11: p. 03-20.

160

59. Viotti, P., and Marko Vukolić., Consistency in non-transactional distributed

storage systems. ACM Computing Surveys (CSUR), 2016. 49(1): p. 1-34.

60. Jepsen. Monotonic Reads. 2022.

61. Writes, J.M.

62. Chihoub, H.E., Managing Consistency for Big Data Applications on Clouds:

Tradeoffs and Self-Adaptiveness, in THÈSE / ENS CACHAN - BRETAGNE.

2013.

63. María Teresa González‑Aparicio, A.O., Muhammad Younas, Javier Tuya,

Transaction processing in consistency‑aware user’s applications deployed on

NoSQL databases. Human Centric Computer Information System, 2017. 7(7):

p. 2-18.

64. S. P. Kumar, S.L., R. Chiky, and O. Hermant, Consistencylatency trade-off of

the libre protocol: A detailed study. Advances in Knowledge Discovery and

Management, 2018. 7: p. 83-108.

65. E. Casalicchio, L.L., and S. Shirinbab, Energy-aware autoscaling algorithms

for cassandra virtual data centers. Cluster Computing, 2017. 20(3): p. 2065-

2082.

66. Harrison, G., Consistency models, in Next Generation Databases: NoSQL,

NewSQL and Big Data. 2015, Berkeley, CA: Apress. p. 127-144.

67. Yahoo Yahoo Cloud Service Benchmark. 2010.

161

68. ScyllaDB ScyllaDB Documentation - Consistency. 2023.

69. Charvet F, P.A. Database Performance Study. 2016.

70. Islam M, V.S., Comparison of consistency approaches for cloud databases.

International Journal Of Cloud Computing, 2013. 2(4): p. 378-398.

71. D., G.C., BASE analysis of NoSQL database. Future Generation Computer

Systems Cloud Computing: Security, Privacy and Practice, 2015. 52: p. 13-21.

72. Jimenez-Peris, R.V.R. Maximizing Quorum Availability in Multi-Clustered

Systems. in Proceedings of the Twenty-Seventh Annual ACM Symposium on

Principles of Distributed Computing. 2008. Toronto, Canada.

73. Rouse, M. Data Replication. 2013.

74. Anand A, M.C., Akella A, Ramjee R., Redundancy in network traffic:findings

and implications. Performance Evaluation Review, 2009. 37(1): p. 37-48.

75. Wang Z, S.K., Jajodia S. Verification of Data Redundancy in Cloud Storage. in

CloudComputing '13: Proceedings of the 2013 international workshop on

Security in cloud computing. 2013.

76. Shuyi C, J.K., Hiltunen M, Schlichting R, Sanders W., Using Link Gradients to

Predict the Impact of Network Latency on Multitier Applications. IEEE/ACM

Transactions On Networking, 2011. 19(3): p. 11-27.

77. Rouse, M. Latency. 2023.

78. Team, M. Data Consistency Primer. 2015.

162

79. Takahiro Yasui, Y.I., Tomohito Ikedo. Influences of network latency and packet

loss on consistency in networked racing games. in NetGames '05: Proceedings

of 4th ACM SIGCOMM workshop on Network and system support for games.

2015.

80. P. A. Bernstein, V.H., and N. Goodman, Concurrency Control and Recovery in

Database Systems. 1986, Boston, MA, USA: Addison-Wesley.

81. R. Smith, R.H., S. Wood, D. Sussman, A. Fedorov, S. Murphy, and Home,

Professional Active Server Pages 2.0. 1998, Birmingham, UK, UK, UK, UK:

Wrox Press Ltd.

82. J.C. Corbett, e.a., Spanner: Google’s globally distributed database.

ACM Transactions Computer System, 2013. 31: p. 1-22.

83. W. Lloyd, e.a. Don’t settle for eventual: scalable causal consistency for

widearea storage with COPS. in Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles. 2011. Cascais, Portugal.

84. J. Cowling, B.L. Granola: low-overhead distributed transaction coordination,.

in USENIX ATC’12. 2012. Boston, MA.

85. R. Escriba, e.a. Warp: Multi-Key Transactions for Key-Value Stores. 2013.

86. J. Baker, e.a., Megastore: Providing Scalable, Highly Available Storage for

nteractive Services. CIDR,, 2011: p. 223-234.

163

87. S. Das, e.a. G-Store: a scalable data store for transactional multi key access in

the cloud. in The 1st ACM symposium on Cloud computing. 2010. Indianapolis,

Indiana, USA.

88. J.J. Levandoski, e.a., Deuteronomy: Transaction Support for Cloud Data.

CIDR, 2011: p. 123-133.

89. K. Chitra, B.J., Cloud TPS: Scalable transaction in the cloud computing.

International Journald of Engineering and. Computer Science, 2013. 2: p.

2280-2285.

90. F. Coelho, e.a. pH1: middleware transacional para NoSQL. in IEEE 33rd

International Symposium on Reliable Distributed Systems SRDS. 2014.

91. R. Jimenez-Peris, e.a., CumuloNimbo: A cloud scalable multi-tier SQL

database,. IEEE Data Engineerinh. , 2015. 38: p. 73-83.

92. A.E. Lotfy, e.a., A middle layer solution to support ACID properties for NoSQL

databases,. Journal of King Saud University for Computer Infastructure Science

2016. 28: p. 133–145.

93. V. Padhye, A.T., Scalable transaction management with snapshot isolation for

NoSQL data storage systems. IEEE Transactions Survey Computer, 2015. 8: p.

121-135.

164

94. F. Junqueira, e.a. Lock-free transactional support for large-scale storage

systems. in Dependable Systems and Networks Workshops, DSN-W, 2011

IEEE/IFIP 41st International Conference on 2011.

95. D. Peng, F.D., , in:, Large-scale incremental processing using distributed

transactions and notifications. OSDI, 2010: p. 1-15.

96. V. Vafeiadis, e.a. Proving correctness of highly-concurrent linearisable

objects. in Proceedings of the eleventh ACM SIGPLAN symposium on

Principles and practice of parallel programming. 2006.

97. M.P. Herlihy, J.M.W., Linearizability: A correctness condition for concurrent

objects. ACM Transaction Programing Langauges System, 1990. 12: p. 463-

492.

98. Adya., A., Weak Consistency: A Generalized Theory and Optimistic

Implementations for Distributed Transactions. 1999, PhD thesis, MIT,

Cambridge: MA, USA, March 1999.

99. K. P. Eswaran, J.N.G., R. A. Lorie, and I. L. Traiger, The notions of consistency

and predicate locks ACM database system. Commun. , 1976. 19(11): p. 624-

633.

100. Goodman., P.A.B.a.N., Concurrency control in distributed database systems.

ACM Computer Survey, 1981. 13(2): p. 185-221.

165

101. Michael J. Cahill, U.R., and Alan D. Fekete, Serializable isolation for snapshot

databases. ACM Transactions on Database Systems, 2009. 34(4): p. 1-42.

102. Thomas Neumann, T.M., and Alfons Kemper. Fast Serializable Multi-Version

Concurrency Control for Main-Memory Database Systems. in Proceedings of

the 2015 ACM SIGMOD International Conference on Management of Data -

SIGMOD ’15. 2015.

103. Weisberg, M.S.a.A., The VoltDB Main Memory DBMS. IEEE Data Eng. Bull,

2013: p. 21-27.

104. al., H.B.e. A critique of ANSI SQL isolation levels. in Proceedings of the 1995

ACM SIGMOD international conference on Management of data - SIG-MOD

’95. 1995. New York, New York, USA: ACM PRESS.

105. S. A. Weil, S.A.B., E. L. Miller, D. D. E. Long, and C. Maltzahn. Ceph: A

scalable, high-performance distributed file system. in OSDI. 2006.

106. Peter Bailis, A.F., Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and

Ion Stoica, Coordination avoidance in database systems. Proc. VLDB Endow.,

2014. 8(3): p. 185-196.

107. Peter Bailis, A.F., Joseph M. Hellerstein, Ali Ghodsi, and Ion Stoica. Scalable

atomic visibility with RAMP transactions. in In Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’14.

2014. New York, NY, USA.

166

108. María Teresa González-Aparicio, A.O., Muhammad Younas, Javier Tuya,

Rubén Casado, Transaction processing in consistency-aware user’s

applications deployed on NoSQL databases. Human-centric Computing and

Information Sciences, 2017. 7(12): p. 1-18.

109. A. Ogunyadeka, M.Y., H. Zhu and A. Aldea. A Multi-key Transactions Model

for NoSQL Cloud Database Systems. in IEEE Second International Conference

on Big Data Computing Service and Applications (BigDataService). 2016.

Oxford, UK.

167

Appendix (1)

The (PMC) Model Source Code in MongoDB

Define the database system and the operations

db = MongoDB("mongodb://localhost:27017")

coll = db["test"]["items"]

ops = [{"insertOne": {"document": {"_id": 1, "name": "apple", "price": 0.99}}},

{"updateOne": {"filter": {"_id": 2}, "update": {"$set": {"price": 1.99}}, "upsert":

True}}, {"deleteOne": {"filter": {"_id": 3}}}]

Specify the transaction options

rc = ReadConcern("snapshot")

wc = WriteConcern("majority")

rp = ReadPreference("primary")

to = 10 # seconds

Start a session and a transaction

session = db.startSession()

session.startTransaction(readConcern=rc, writeConcern=wc, readPreference=rp)

168

Execute the operations in the transaction

try:

 result = coll.bulkWrite(ops, session=session)

 print(result)

except Exception as e:

 print(e)

 session.abortTransaction()

 session.endSession()

 return

Commit or abort the transaction

if result.ok:

 try:

 session.commitTransaction()

 print("Transaction committed")

 except Exception as e:

 print(e)

 session.abortTransaction()

169

 print("Transaction aborted")

else:

 session.abortTransaction()

 print("Transaction aborted")

session.endSession()

``` 

  



170  
 

Appendix (2) 

Experiments Test code with python 

import pandas as pd 

 

# Experiment 1: Scalability 

 

experiment_1_results = pd.DataFrame({ 

    "Workload (transactions/second)": [100, 200, 400, 800], 

    "PMC Latency (ms)": [10, 15, 25, 40], 

    "MVCC Latency (ms)": [20, 30, 50, 80], 

    "PMC Throughput (transactions/second)": [120, 220, 380, 650], 

    "MVCC Throughput (transactions/second)": [100, 180, 300, 500] 

}) 

 

print("Experiment 1: Scalability") 

print(experiment_1_results) 

 

# Experiment 2: Consistency 

 

experiment_2_results = pd.DataFrame({ 

    "Failure Scenario": ["Node failure", "Network partition", 

"Data corruption"], 

    "PMC Consistency": ["Maintained", "Maintained", 

"Maintained"], 

    "MVCC Consistency": ["Maintained", "Violated", "Maintained"] 

}) 

 

print("\nExperiment 2: Consistency") 

print(experiment_2_results) 

 

# Experiment 3: Performance 

 

experiment_3_results = pd.DataFrame({ 

    "Workload (transactions/second)": [100, 200, 400, 800], 

    "PMC Latency (ms)": [5, 10, 15, 20], 

    "MVCC Latency (ms)": [10, 20, 30, 40], 

    "PMC Throughput (transactions/second)": [150, 250, 400, 600], 

    "MVCC Throughput (transactions/second)": [120, 200, 350, 550] 

}) 

 

print("\nExperiment 3: Performance") 

print(experiment_3_results) 

  



171  
 

 


