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Abstract 
Quantum dots as nano-materials have been extensively investigated in the past 

several decades from growth to characterization to applications. As the basis of 

future developments in the field this thesis collects a series of state-of-the-art 

chapters on the current status of quantum dot devices and how these devices take 

advantage of quantum features. The chapters cover numerous quantum dot 

applications in solar cells. Quantum Dot Devices is appropriate for researchers of all 

levels of experience with an interest in epitaxial and/or colloidal quantum dots. 

It provides the necessary overview of this exciting field. 
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 The third generation of solar cells includes those based on semiconductor 

quantum dots. This sophisticated technology applies nanotechnology and quantum 

mechanics theory to enhance the performance of ordinary solar cells. Although a 

practical application of quantum dot solar cells has yet to be achieved, a large 

number of theoretical calculations and experimental studies have confirmed the 

potential for meeting the requirement for ultra-high conversion. In this thesis, the 

methods used in and the results of various quantum dot solar cell designs were 

outlined, including quantum dot intermediate band solar cells, hot electron 

quantum dot solar cells, quantum-dot sensitized solar cells, colloidal quantum dot 

solar cells, hybrid polymer-quantum dot solar cells, and MEG quantum dot solar 

cells. Both theoretical and experimental approaches are described. Quantum Dot 

Solar Cells helps to connect the fundamental laws of physics and the chemistry of 

materials with advances in device design and performance.  

            In this thesis discussed Kronig – Penney model using a specific software 

program. Experiment was conducted where the calculated band gap of germanium  
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 ملخص البحث

 

وقد بذل الباحثون جھدآ مكثفآ خ8ل العقود ) النانو(النقاط المكماه  عباره عن مواد متناھيه  الصغر في المدي 
القاعده ا�ساسيه التي . القريبه المنصرمه للتحقق من كيفيه تنميتھا ودراسه خصائصھا واستخداماتھا التطبيقيه

ھو امعان النظر في كيفيه تطورھا المستقبلي ومدى اسھامھا في مجال   Thesis)  المبحث(ينطلق منھا ھذا 

لذا اشتمل المبحث علي سلسله من الفصول توضح المستوي الضمني ل8جھزه التقليديه , ) النانويه(التطبيقات 
احتوت الفصول علي عدد من  . الحاليه ومدى ا�عتماد عليھا �ستنباط ا�جھزه ذات الخصائص النانويه

  .طبيقات النانويه  في مجال الخ8يا الضؤئيهالت

المتناھيه الصغر يمثل جزء ھامآ بالنسبه للباحثين علي مختلف خلفياتھم ) النانويه(التفكير في ا�جھزه      
النقاط المكماه عن طريق التفاعل الكيماوى ) زراعه(والعمليه خاصه في مجال تثبيت ) المعرفيه(العلميه 

او استخدام التقنيات الحديثه في لصق النقاط المكماه بعد تجھيزھا  Colloidal Solutionsالمحاليل السائبه 

ونرى من الضروري التعرف علي   Epitaxialحبر قابل للرش او لعمليات الطباعه ) مداد(مختبريا علي ھيئه 

  .ھذه الجزئيه اOسره للعقول

ومن الناحيه , لي النقاط المكماه �شباه الموص8ت الجيل الثالث من الخ8يا الضؤئيه يشمل تلك التي تعتمد ع
وعلي الرغم من ان  تطبيقات . النظريه يتم اعتماد نظريات التكمميه لتعزيز ودراسه اداء ھذه الخ8يا الضؤئيه

الخ8يا الضؤئيه المصنعه من النقاط المكماه لم تصل الي اOن الي االمستوي التطبيقي التجاري ولكنه ما زال 
جاريا علي  قدم وساق في مجال التنظير والتجارب المختبريه التي اكدت علي امكانيه ا�ستفاده من البحث 

  .والذي يمثل ثلثي طاقه الطيف الضؤئي ) غير المرئي(النطاق الضؤئي فوق البنفسجي 

ئيه ذات لفه منھا الخ8يا الضؤمه في انتاج الخ8يا الضؤئيه المختث تم توضيح عده طرق مستخدا المبحفي ھذ
والخ8يا , hot electronرونات الساخنه وخ8يا ا�لكت, Intermediate Quantum dotالنطاق المتوسط 

 والخ8يا السائله, quantum-dot sensitized solar cellsالضؤئيه رقيقه الشعور ذات الحساسيه العاليه 
colloidal quantum dot solar cells ,النطاقات المتعدده  توخ8يا المكوثرات المھجنه ذاhybrid 

polymer-quantum dot solar cells  , والخ8يا الضؤئيه القادره علي توليد اكثر من الكترون واحد

MEG quantum dot solar cells  صول للھدف ع قد تم وصفھا والتعرق عليھا للووجميع ھذه ا�نوا

يميائيه ا�ساسيه للمواد المتناھيه الصغر مما يساعد الفيزيائيه والكالقوانين المنشود الذي يساعدنا علي ربط 
 ).التصميم(داء والتصنيع مستقب8 علي تسھيل النظر في عمليات التطور من ناحيتي ا�
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NREL National Renewable Energy Lab 

SAQDs Self assembled Quantum Dots 

PL Photo luminance  

CCD Charge compiled Device 

SESAMs Semiconductor  saturable  absorber  

SQW Single Quantum well  

RHEED Reflection high energy electron diffraction  

TEM Transmission electron microscope  

CB Conduction band  

CV Valence band  

MBE Molecular beam epitaxy 

DOS Density of states. It has no correlation with DOS the disk operating system of 

Microsoft  
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Greek Symbols 

 

Note: The small Greek letter in the alphabet is used except where the notation (cap) is used where the 
capital version of the Greek letter is used. 

Greek alphabet table 
Greek Symbol Greek 

Letter 
Name 

Used to denote  Upper 
Case 

Lower 
Case 

Α α Alpha 
Angles, coefficients, attenuation 
constant, absorption factor, area 

Β β Beta 
Angles, coefficients, phase constant 

Γ γ Gamma 
Complex propagation constant (cap), 
specific gravity, angles, electrical 
conductivity, propagation constant 

Δ δ Delta 
Increment or decrement, determinant 
(cap), permittivity (cap), density, angles 

Ε ε Epsilon 
Dielectric constant, permittivity, electric 
intensity 

Ζ ζ Zeta 
Coordinates, coefficients 

Η η Eta 
Intrinsic impedance, efficiency, surface 
charge density, hysteresis, coordinates 

Θ θ Theta 
Angular phase displacement, angles, 
time constant, reluctance 

Ι ι Iota 
Unit vector 

Κ κ Kappa 
Susceptibility, coupling coefficient, 
thermal conductivity 



XVII 
 

Λ λ Lambda 
Permeance (cap), wavelength, 
attenuation constant 

Μ μ Mu 
Permeability, amplification factor (in 
valves/ vacuum tubes), prefix for the 
micro multiplier. 

Ν ν Nu 
Reflectivity, frequency 

Ξ ξ Xi 
Coordinates 

Ο ο Omicron 
  

Π π Pi 
Universally used for 3.1416 . . . . 

Ρ ρ Rho 
Resistivity, volume charge density, 
coordinates 

Σ σ Sigma 

Summation (cap), surface charge 
density, complex propagation constant, 
electrical conductivity, leakage 
coefficient, deviation 

Τ τ Tau 
Time constant, volume resistivity, time-
phase displacement, transmission 
factor, density 

Υ υ Upsilon 
  

Φ φ Phi 
Scalar potential (cap), magnetic flux, 
angles 

Χ χ Chi 
Electric susceptibility, angles 

Ψ ψ Psi 
Dielectric flux, phase difference, 
coordinates, angles 

Ω  ω Omega 
Electrical resistance (cap), solid angle, 
angular velocity 
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Nano-particles 

Quantum dots are Nano-particles composed of periodic groups of III-V or II-VI 

semiconductor materials such as ZnS, ZnSe, CdS, CdSe, CdTe, InP, and others. Their 

reduced size induces a shift of the electronic excitations to higher energy, 

concentrating the oscillator strength into just a few transitions, conferring unique 

quantum-confined photonic and electronic properties. Although physically larger 

than organic dyes and fluorescent proteins, their cumulative optical properties offer 

great biological utility. With tunable core sizes, it is possible to attain a broad 

adsorption profile, narrow, size-dependent, and symmetric photoluminescence 

spectra depending of the constituent materials. QDs show also strong resistance to 

photo bleaching and chemical degradation, significant photo stability and high 

quantum yields. 

 

 Nanostructure is a structure of intermediate size between microscopic and 

molecular structures. Nanostructure detail is microstructure at nanoscale. In 

describing nanostructures it is necessary to differentiate between the numbers of 

dimensions on the nanoscale. 

 

Nano-crystal is a material particle having at least one dimension smaller than 100 nanometers 
and composed of atoms in either a single- or poly-crystalline arrangement. More properly ,any 
material with a dimension of less than one micrometer should be referred to as nanoparticle not 
Nano-crystal.  

 

Blue shift is any decrease in wavelength, with a corresponding increase in 

frequency, of electromagnetic waves; the opposite effect is referred to as red shift. 

In visible light, this shifts the color from the red end of the spectrum to the blue end. 

 

 Band gap generally refers to the energy difference (in electron volts) between the 

top of the valence band and the bottom of the conduction band in insulators and 

semiconductors. It is the energy range where no electron states can exist 
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Quantum dot 
A quantum dot is a semiconductor nanostructure that confines the motion of 
conduction band electrons, valence band holes, or excitons (bound pairs of 
conduction band electrons and valence band holes) in all three spatial directions 

 

Quantum wire is an electrically conducting wire in which quantum effects influence 

the transport properties. 

 

 Quantum well is a thin layer which can confine (quasi-)particles (typically electrons 

or holes) in the dimension perpendicular to the layer surface, whereas the 

movement in the other dimensions is not restricted. The confinement is 

a quantum effect. 

 

 Bulk semiconductors are characterized by a composition-dependent band gap 

energy (Eg), which is the minimum energy required to excite an electron from the 

ground state valence energy band into the vacant conduction energy band. With the 

absorption of a photon of energy greater than Eg, the excitation of an electron 

leaves an orbital hole in the valence band. The negatively charged electron and 

positively charged hole may be mobilized in the presence of an electric field to yield 

a current, but their lowest energy state is an electro-statically bound electron-hole 

pair, known as the exciton. Relaxation of the excited electron back to the valence 

band annihilates the exciton and may be accompanied by the emission of a photon, 

a process known as radiative recombination. 

 

 

Density of states (DOS) of a system describes the number of states per interval of 

energy at each energy level that are available to be occupied. 
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Chapter one  

Introduction 

1-1 Solar  Cell History: 
      1839 – The photovoltaic effect was discovered by Alexandre-Edmond 
Becquerel, who was a French physicist. This was “ the beginning” of the 
solar cell technology. Becquerel's experiment was done by illuminating 
two electrodes with different types of light. The electrodes were coated 
by light sensitive materials, AgCl or AgBr, and carried out in a black box 
surrounded by an acid solution. The electricity increased when the light 
intensity increased. 

1905 – Albert Einstein published his paper about the photoelectric effect. 
There he claimed that light consists of “packets”  or quanta of energy, 
which we now call photons. This energy varies only with its frequency 
(electromagnetic waves, or the “color of the light” ). This theory was very 
simple, but revolutionary, and it explained very well the absorption of the 
photons regarding to the frequency of the light. 

1930s – Walter Schottky, Neville Mott and some others developed a 
theory of metal-semiconductor barrier layers. 

1950s – Bell Labs produce solar cells for space activities. 

1999 – Spectrolab, Inc. and the National Renewable Energy Laboratory 
develops a photovoltaic solar cell that converts 32.3 percent of the 
sunlight that hits it into electricity. The high conversion efficiency was 
achieved by combining three layers of photovoltaic materials into a single 
solar cell. The cell performed most efficiently when it received sunlight 
concentrated to 50 times normal. To use such cells in practical 
applications, the cell is mounted in a device that uses lenses or mirrors to 
concentrate sunlight onto the cell. Such “concentrator”  systems are 
mounted on tracking systems that keep them pointed toward the sun. 

1999 – The National Renewable Energy Laboratory achieves a new 
efficiency record for thin-film photovoltaic solar cells. The new 
measurement is of 18.8 percent efficiency. 

2000 – Two new thin-film solar modules, developed by BP Solarex, 
break previous performance records. The company’s 0.5-square-meter 
module achieves 10.8 % conversion efficiency—the highest in the world 
for thin-film modules of its kind. And its 0.9-square-meter module 
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achieved 10.6% conversion efficiency and a power output of 91.5 watts 
— the highest power output for any thin-film module in the world. 

1-2 Research problem: 

      The research problem is related to the fact that no intensive research 
on the means by which one can increase the efficiency of the solar cell by 
absorbing most of the whole sun radiation spectrum. 
 

1-3 Literature Review:  

      Researchers have demonstrated a way to use quantum dots to 
significantly reduce the amount of energy that solar cells lose to heat, 
paving the way for future cells that are twice as efficient as today's 
technology. From the literature review there after will show how they did 
it.  

New research shows next-generation solar cells could more than double 
the efficiency of conventional silicon cells. When it comes to turning 
sunlight into electr icity, today's technology leaves lots of room for 
improvement. The most efficient solar cells on the market, which are 
made of silicon, convert less than 20 percent of the light that hits them 
into electricity, and the theoretical maximum efficiency of these cells is 
around 31 percent.  

 
One reason for this low efficiency is that much of the incoming light 
contains energy that is too high for solar cells to capture, so it's lost as 
heat. Now researchers have shown that it's possible to harvest that energy 
before it escapes, meaning that engineers could one day develop next-
generation solar cells with efficiencies of up to 66 percent.  
 
When light hits a solar cell; a fraction of its energy is absorbed, exciting 
electrons in the cell's material and knocking them free. An electric field 
then forces the free electrons to flow in a specific direction, producing 
electric current. The energy that is absorbed is determined by what 
scientists call the band gap, a limited range of energies, the cell’s material 
can capture. 

 
But sunlight is composed of particles, called photons, representing a very 
broad range of energies. The energy from photons too high to be 
absorbed takes the form of high-energy electrons—or, as scientists called 
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them, "hot electrons"–and is lost as heat. However, if one could remove 
the hot electrons before they cool, says study author Xiao yang Zhu, a 
chemistry professor at University of Texas at Austin, "then you 
essentially shut down this heat-loss pathway, and you increase efficiency 
by more than a factor of two."  
 
To accomplish this, the group used nanoscale (less than 100 
nanometers, or10-9 meters) crystals of a compound called lead selenide. 
Like silicon, lead selenide is a semiconductor, meaning it absorbs light 
energy within a certain band gap, or range of energies. But semi 
conducting nano crystals, also known as quantum dots, exhibit very 
different properties than their larger counterparts. For one thing, they can 
hold on to a hot electron for a longer period of time, stretching out the 
amount of time it takes for the electron to cool. In fact, previous research 
has shown that quantum dots can increase the life time of hot electrons 
by as much as 1000 times. 

Once a hot electron is confined within a quantum dot, and then comes 
the hard part: removing it so its energy can be harvested. The electron 
likes to stay inside the quantum dot, Zhu says, "So we needed to find 
something that would attract it out." For this role, the researchers chose 
titanium oxide, a well-studied compound known for its ability to accept 
new electrons. Then came the really hard part: arranging the lead selenide 
quantum dots and titanium dioxide in such a way that their chemical 
interactions would induce electron transfer. 

Not only was the transfer successful, it was also very fast. If verified, this 
result makes highly efficient quantum dots solar cells more realistic, 
according to Tianquan Lian, a chemistry professor at Emory University 
who was not part of this study, and whose research revolves around the 
use of nano materials for solar energy conversion. This is the first 
demonstration that, in principle, the vital electron transfer step is possible, 
he says.  
 
The ultimate goal, Zhu says, is called a "hot-carrier solar cell," which 
could convert up to 66 percent of incoming light into electricity. But 
many scientific and engineering steps remain before such a cell can be 
commercially developed. One challenge is to figure out how to transfer 
the hot electrons to a conducting wire. "This is science that has really 
striking implications, but implication is not application yet," Zhu says, 
adding, "I'll be extremely happy if, in my lifetime, I see [hot-carrier cells] 
on roofs."  
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Silicon had six decades to get where it is today, and even silicon hasn’t 
reached the theoretical limit yet. You can’t hope to have an entirely new 
technology beat an incumbent in just four years of development,”  said 
Professor Vladimir Bulović in the release. 

The researchers still need to determine why these films are so stable and 
there’s still a long way to go before they are commercially viable. But 
they now hold the National Renewable Energy Lab (NREL) record for 
quantum dot solar efficiency. 

1-4 Aim of the work: 

      The aim of this work is to find how to increase the performance of 
solar cells by using quantum dots and other related techniques. Some 
experimental work and computer programmers were made for this 
purpose.    

1-5resentation of the thesis:  

      This work consists of seven chapters. Chapter one is the introduction, 
chapter two traditional solar cells, chapter three spectrum of solar 
radiation, chapter four quantum dots, chapter five energy band, chapter 
six density of states, chapter seven pinch top nanotechnology guide to 
quantum dot fabrication.  
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Chapter  tow 

Traditional solar  cells 

2-1 Semiconductors fundamentals:  

Since the development of the first transistor in 1948, semiconductors 
components come into use of every conceivable kind in the field of 
electricity. Semiconductor components are generally made of germanium 
or silicon. More recently components of other substances, such as gallium 
and arsenic (gallium arsenide) have been used.  

Atoms consist of a nucleus surrounded by electron shells which are 
occupied by varying numbers of electrons. Semiconductor materials 
possess four valiancy (outer shell) electrons when germanium or silicon 
atoms are bounded in a crystal lattice; all their valiancy atoms are 
bounded. This form of boding is known as atomic bonding .Unlike metal, 
semiconductor therefore initially have no free electrons. The atoms of 
Semiconductors form regular crystal lattice. 

If semiconductors are cooled to a temperature 0K, they don’t conduct 
current at all. The explanation for this loss of conductivity is that all 
valiancy electrons have been used up to bond the atoms in their crystal 
lattice, leaving no free electrons to conduct the current.  

    

                   Figure (2-1):  structures of silicon crystals  

When semiconductors are heated they begin to conduct current .A 
temperature 0K already represents a considerable degree of heating for 
semiconductors, since the temperature difference between 0K and 0C is 
273 K .The conductivity of the semiconductors are also found to increase 
exponentially with rise in temperature. When atoms are heated they are 
no longer at rest, but vibrate in all directions. Bonds with the neighboring 
atoms are destroyed and valiancy electrons are freed from their atoms. 
Therefore: The conductivity of semiconductors is temperature 
dependant.  
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If a voltage is applied to any semiconductor the free electrons migrate 
towards the positive charge potential, each electron leaving behind vacant 
referred to as a hole; the positive charge of the atomic nucleolus 
predominates , so  the hole is considered to be positively charged  , its 
charge is exactly as large as the negative electron charge. Some new 
electrons occupy the vacant holes again and the atoms become 
electrically neutral, this process is termed recombination. Since each 
recombined electron leaves a hole behind, the holes appear to migrate 
through the crystal towards the negative potential of the voltage source.  

For the sake of simplicity, assume that holes also help to conduct current 
though the semiconductor crystal. Charge transfer of this kind is called p-
type conduction as opposed to electrons n-type conduction. Therefore 
conduction observed in a pure semiconductor at room temperature is 
known as intrinsic conduction. Intrinsic conduction in a pure 
semiconductor is produced by heating and depends on temperature 
attained .Both electrons and holes contribute to intrinsic conduction.  

In order to make semiconductor components, a semiconductor material 
whose conductivity is largely unaffected by temperature and greatly in 
excess of their intrinsic conductivity is needed. To obtain these qualities, 
impurity atoms possessing either three or five outer shell electrons are 
introduced into crystal lattice of a semiconductor, in a process known as 
doping.   The following figure shows the lattice structures of two doped 
silicon crystals .Doping disturbs the regular crystal structure, creating 
what is so called impurities, but the crystal remains electrically neutral.  

 

                        Figure (2-2): figure shows the lattice structures of tow 
doped                         silicon  crystal.                                                        

Doping with Pentavalent impurity atoms increases electrical conductivity 
by releasing free electrons and it is referred to as n-type semiconductor 
.Thus the current is conducted via the electrons. In contrast, silicon is 
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doped with trivalent impurity atoms some electrons of the outer shells are 
not induced in the crystal structure, because there is no partner electron 
available on the outer shell of impurity atom. This type of doping also 
creates impurity in the crystal lattice structure, and can pick up electrons, 
holes are then produced which increases electrical conductivity via holes. 
Semiconductor doped in this way is termed a p-type semiconductor. 

In practice semiconductors are doped in such away their intrinsic 
conduction is negligible by comparison with their extrinsic conduction 
.Since extrinsic conduction is not temperature dependant, the conductivity 
of doped semiconductors is largely unaffected by temperature .  

2-2 Semiconductor  diode: 

Semiconductors components are generally made in such a way that p-type 
material is in close contact with n-type material. The interface between 
the two is termed p-n junction. As indicated by the following figure  

 

                                    Figure (2-3): p-n junction 

Holes and electrons in a narrow layer on either side of the contact surface 
attempt to migrate to crystal structure on opposite sides as indicated by 
the arrows .This type of migration referred to as diffusion .Electrons 
diffuse to the p-type part of the crystal encounter holes and recombine 
with them. The same occurs with the holes which diffuse to the n-type 
part of the crystal and encounter electrons. A layer free of mobile charge 
carriers is created due recombination of holes and electrons.  
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                               Figure (2-4): shows p-n junction and diffusion voltage 

Current cannot normally flow though this zone, which is known as the 
barrier; blocking or depletion layer .Diffusion transfers negative charge 
carriers to the p-doped part and positive charges to the n-doped part of 
the crystal .Thus diffusion causes the p-type material in depletion layer to 
become negatively charged and the n-type positively charged .A potential 
known as the diffusion voltage is created. As a result, holes and electrons 
are repelled and can no longer diffuse. The depletion layer does not 
attempt to extend itself further into the crystal. The diffusion voltage is 
approximately 0.2 …0.4 volts in germanium and 0.5 …0.8 in silicon.   

This semiconductor component (diode) transmit current in one direction, 
so it has the valve effect, in this case it is known as passive diode, 
because it needs to be biased by an external potentials .in addition to the 
semiconductor components already described there are another 
components whose function depend upon light radiation, magnetic fields 
or any other variable .these are known as active diodes .but our aim is 
interested in light radiation ones to build our solar cells. 

2-3 Solar  cells: 

Solar cells convert light energy into electrical energy. They are referred to 
as photoelectric cells or photovoltaic cells. The light falling on the ultra 
thin n-doped layers destroys individual bonds producing holes and 
electrons. See fig. below; 

 

Figure (2-5): Solar cell component 

Holes and electrons moves in different directions under the influence of 
diffusion potential. In consequence the n-layer is charged negatively and 
the p-layer is charged positively inducing voltage between the contacts of 
the solar cell. The voltage and currents in the cell depends on the intensity 
of illumination. 
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Figure (2-6): the Photovoltaic Effect in a Solar Cell 

 

In practice, solar cells are linked in the same way as voltaic cells to 
produce higher powers .typical values for a solar cell are;  

Shot circuit current I k = 138mA 

No load voltage V0/c = 600mV 

Maximum power P max = 63mW 

Efficiency η =11 

2-4 Electr icity generation 

The basic idea of a solar cell is to convert light energy into 

electrical energy. The energy of light is transmitted by photons, small 

packets or quanta of light. Electrical energy is stored in electromagnetic 

fields, which in turn can make a current of electrons flow.  

When photons are absorbed by matter in the solar cell, their 

energy excites electrons higher energy states where the electrons can 

move more freely. Perhaps most well-known example of this is the 

photoelectric effect, where photons give electrons in a metal enough 



energy to escape the surface. In an ordinary material, if the electrons are 

not given enough energy to escape, they would so

ground states. In a solar cell however, the way it is put together prevents 

this from happening. The electrons are instead forced to one side of the 

solar cell, where the build

through an external circuit. The current ends up at the other side 

(or terminal) of the solar cell, where the electrons once again enter the 

ground state, as they have lost energy in the external circuit.

Two important quantities to characterize a solar cell are

• Open circuit voltage (V

when no current is drawn (infinite load resistance)

• Short circuit current (I

connected to each other (zero load resistance)

The short circuit current increases w

intensity mean more photons, which in turn mean more electrons. Since 

the short circuit current I

solar cell, the short circuit current density,

 

Current density used often to compare solar cells. [9]

 

 Figure (2-7): The equivalent circuit of a solar cell

energy to escape the surface. In an ordinary material, if the electrons are 

not given enough energy to escape, they would soon relax back to their 

ground states. In a solar cell however, the way it is put together prevents 

this from happening. The electrons are instead forced to one side of the 

solar cell, where the build-up of negative charge makes a current flow 

ternal circuit. The current ends up at the other side 

) of the solar cell, where the electrons once again enter the 

ground state, as they have lost energy in the external circuit. 

Two important quantities to characterize a solar cell are 

ircuit voltage (Voc): The voltage between the terminals 

when no current is drawn (infinite load resistance) 

Short circuit current (Isc): The current when the terminals are 

connected to each other (zero load resistance) 

The short circuit current increases with light intensity, as higher 

intensity mean more photons, which in turn mean more electrons. Since 

the short circuit current Isc is roughly proportional to the area of the 

solar cell, the short circuit current density, 

Jsc = Isc/A, (2-1) 

used often to compare solar cells. [9] 
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To understand the electronic behavior of a solar cell, it is useful to 

create a model which is electrically equivalent, and is based on discrete 

electrical components whose behavior is well known. An ideal solar cell 

may be modeled by a current source in p

no solar cell is ideal, so a shunt resistance and a series resistance 

component are added to the model.

  

 

 

2-5 Characteristic equation

From the equivalent circuit it is evident that the current produced 

by the solar cell is equal to that produced by the current source, minus 

that which flows through the diode(inte

flows through the shunt resistor(leakage) :

Where: 

• I = output current (

• IL = photo generated current (ampere)

• ID = diode current (ampere)

• ISH = shunt current (ampere).

The current through these elements is 

them: 

 

Where: 

• Vj = voltage across both diode and resistor

To understand the electronic behavior of a solar cell, it is useful to 

which is electrically equivalent, and is based on discrete 

electrical components whose behavior is well known. An ideal solar cell 

may be modeled by a current source in parallel with a diode; in practice 

no solar cell is ideal, so a shunt resistance and a series resistance 

component are added to the model.
[8]

 (seefig.11above) 

5 Characteristic equation 

From the equivalent circuit it is evident that the current produced 

by the solar cell is equal to that produced by the current source, minus 

that which flows through the diode(internal resistance, minus that which 

flows through the shunt resistor(leakage) :
[7][5]

  

           (2-2) 

= output current (ampere) 

= photo generated current (ampere) 

= diode current (ampere) 

= shunt current (ampere). 

The current through these elements is governed by the voltage across 

                (2-3) 

= voltage across both diode and resistor RSH (volt) 

To understand the electronic behavior of a solar cell, it is useful to 

which is electrically equivalent, and is based on discrete 

electrical components whose behavior is well known. An ideal solar cell 

; in practice 

no solar cell is ideal, so a shunt resistance and a series resistance 

From the equivalent circuit it is evident that the current produced 

by the solar cell is equal to that produced by the current source, minus 

rnal resistance, minus that which 

governed by the voltage across 



• V = voltage across the output terminals (volt)

• I = output current (ampere)

• RS = series resistance (

By the Shockley diode equation

is: 

Where: 

• I0 = reverse saturation current

• n = diode ideality factor (1 

• q = elementary charge

• k = Boltzmann's constant

• T = absolute temperature

• At 25°C, 

By Ohm's law, the current diverted through the shunt resisto

Where: 

• RSH = shunt resistance (Ω).

Substituting these into the first equation produces the characteristic 

equation of a solar cell, which relates solar cell parameters to the output 

current and voltage: 

 

= voltage across the output terminals (volt) 

= output current (ampere) 

= series resistance (Ω). 

Shockley diode equation, the current diverted through the diode 

[6]
        (2-4) 

saturation current (ampere) 

= diode ideality factor (1 for an ideal diode) 

elementary charge 

Boltzmann's constant 

absolute temperature 

 volt. 

, the current diverted through the shunt resistor is: 

                   (2-5) 

= shunt resistance (Ω). 

Substituting these into the first equation produces the characteristic 

equation of a solar cell, which relates solar cell parameters to the output 

           

, the current diverted through the diode 

 

Substituting these into the first equation produces the characteristic 

equation of a solar cell, which relates solar cell parameters to the output 

           (2-6) 



An alternative derivation produces an equation similar in appearance 

.The two alternatives are

results. 

In principle, given a particular operating voltage

solved to determine the operating current

Since the parameters I0, n, R

most common application of the characteristic equation i

extract the values of these parameters on the basis of their combined 

effect on solar cell behavior.

2-6 Open-circuit voltage and short

When the cell is operated at open circuit,

across the output termin

Assuming the shunt resistance is high enough to neglect the final term of 

the characteristic equation, the open

 

Similarly, when the cell is operated at

current through the terminals is defined as the

can be shown that for a high

high RSH). The short circuit current

 

It should be noted that it is not possible to extract any power from the 

device when operating at either open circuit or short circuit conditions.

Solar cell efficiency 

Solar cell efficiency

cell to the incident energy in the form of sunlight. The

alternative derivation produces an equation similar in appearance 

.The two alternatives are identities; that is, they yield precisely the same 

ple, given a particular operating voltage V the equation may be 

solved to determine the operating current I at that voltage.   

, n, RS, and RSH cannot be measured directly, the 

most common application of the characteristic equation is nonlinear

extract the values of these parameters on the basis of their combined 

effect on solar cell behavior. 

circuit voltage and short-circuit current 

When the cell is operated at open circuit, I = 0 and the voltage 

across the output terminals is defined as the open-circuit voltage

Assuming the shunt resistance is high enough to neglect the final term of 

the characteristic equation, the open-circuit voltage VOC is: 

           (2-7) 

Similarly, when the cell is operated at short circuit, V = 0 and the 

through the terminals is defined as the short-circuit current

can be shown that for a high-quality solar cell (low RS and

circuit current ISC is: 

                  (2-8) 

It should be noted that it is not possible to extract any power from the 

device when operating at either open circuit or short circuit conditions.

Solar cell efficiency is the ratio of the electrical output of a solar 

cell to the incident energy in the form of sunlight. The energy conversion 

alternative derivation produces an equation similar in appearance 

; that is, they yield precisely the same 

the equation may be 

cannot be measured directly, the 

s nonlinear to 

extract the values of these parameters on the basis of their combined 

and the voltage 

circuit voltage. 

Assuming the shunt resistance is high enough to neglect the final term of 

and the 

circuit current. It 

and I0, and 

It should be noted that it is not possible to extract any power from the 

device when operating at either open circuit or short circuit conditions. 

the electrical output of a solar 

energy conversion 



efficiency (η) of a solar cell

which the cell is exposed that is converted into

 

2-7 Maximum power point

A solar cell may 

and currents (I). By increasing the resistive load on an i

continuously from zero (a

circuit) one can determine the

maximizes V×I; that is, the load for which the cell can deliver maximum 

electrical power at that level of irradiation. (The output power is zero in 

both the short circuit and open circuit ext

 

2-8 Fill factor 

Another defining term in the overall behavior of a solar cell is 

the fill factor (FF). This is the available

point (Pm) divided by the

current (ISC): 

 

 

 

The fill factor is directly affected by the values of the cell's series 

and shunt resistances. Increasing the shunt resistance (R

decreasing the series resist

resulting in greater efficiency, and bringing the cell's output power 

closer to its theoretical maximum.

solar cell is the percentage of the solar energy

which the cell is exposed that is converted into electrical energy.
[10]

                 (2-9)     

7 Maximum power point 

A solar cell may operate over a wide range of voltages

(I). By increasing the resistive load on an irradiated cell 

continuously from zero (a short circuit) to a very high value (an

) one can determine the maximum power point, the point that 

maximizes V×I; that is, the load for which the cell can deliver maximum 

electrical power at that level of irradiation. (The output power is zero in 

both the short circuit and open circuit extremes). [11] 

Another defining term in the overall behavior of a solar cell is 

). This is the available power at the maximum power 

by the open circuit voltage (VOC) and the short circuit 

        (2-10) 

The fill factor is directly affected by the values of the cell's series 

and shunt resistances. Increasing the shunt resistance (R

decreasing the series resistance (Rs) lead to a higher fill factor, thus 

resulting in greater efficiency, and bringing the cell's output power 

closer to its theoretical maximum.
[12]

 

solar energy to 
[10]

 

voltages (V) 

rradiated cell 

) to a very high value (an open 

point, the point that 

maximizes V×I; that is, the load for which the cell can deliver maximum 

electrical power at that level of irradiation. (The output power is zero in 

Another defining term in the overall behavior of a solar cell is 

maximum power 

short circuit 

The fill factor is directly affected by the values of the cell's series 

and shunt resistances. Increasing the shunt resistance (Rsh) and 

) lead to a higher fill factor, thus 

resulting in greater efficiency, and bringing the cell's output power 
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Chapter  three 

 

3-1 Introduction: 

The sun light spectrum consists of a wide range of law frequency, visible 
light and high frequency radiation. To increase solar cell efficiency it is 
important to see how can one gets the utmost penfit of this wide 
frequency range. All these topic are exhibited in this chapter.    

3-2 Sunlight: 

Sunlight is a portion of the Electromagnetic radiation given off by the 
Sun, in particular infrared visible and ultraviolet light. On Earth, sunlight 
is filtered through the Earth’s atmosphere, and is obvious as daylight 
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when the Sun is above the horizon. When the direct solar radiation is not 
blocked by clouds, it is experienced as sunshine, a combination of bright 
light and radiant heat. When it is blocked by the clouds or reflected off 
other objects it is experienced as diffused light. The World Metrological 
Organization uses the term "sunshine duration" to mean the cumulative 
time during which an area receives direct irradiance from the Sun of at 
least 120 watts per square.[1] 

 

                   Figure (3-1): Spectrum of the solar radiation  

Our eyes are sensitive to light which lies in a very small region of the 
electromagnetic spectrum labeled "visible light". This "visible light" 
corresponds to a wavelength range of 400 - 700 nanometers (nm) and a 
color range of violet through red. The human eye is not capable of 
"seeing" radiation with wavelengths outside the visible spectrum. The 
visible colors from shortest to longest wavelength are: violet, blue, green, 
yellow, orange, and red. Ultraviolet radiation has a shorter wavelength 
than the visible violet light. Infrared radiation has a longer wavelength 
than visible red light. The white light is a mixture of the colors of the 
visible spectrum. Black is a total absence of light. 

Earth's most important energy source is the Sun. Sunlight consists of the 
entire electromagnetic spectrum. 
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               Figure (3-2): Sunlight consists of the entire electromagnetic 
spectrum. 

 

3-3 Solar  cell concepts 

In a conventional solar cell, light is absorbed by a semiconductor, 
producing an electron-hole (e-h) pair; the pair may be bound and is 
referred to as an Exciton. This pair is separated by an internal electric 
field (present in p-n junctions or Schottky diodes) and the resulting flow 
of electrons and holes creates electric current. The internal electric field is 
created by doping one part of semiconductor interface with atoms that act 
as electron donors (n-type doping) and another with electron acceptors (p-
type doping) that results in a p-n junction. Generation of an e-h pair 
requires that the photons have energy exceeding the band gap of the 
material. Effectively, photons with energies lower than the band gap do 
not get absorbed, while those that are higher can quickly (within about 
10−13 s) thermalize to the band edges, reducing output. The unabsorbed 
limitation reduces the current, while the higher energy photons 
thermalization reduces the voltage. As a result, semiconductor cells suffer 
a trade-off between voltage and current (which can be in part alleviated 
by using multiple junction implementations). The detailed balance 
calculations show that this efficiency can not exceed 31% if one uses a 
single material for a solar cell.[3] 

3-4 Loss mechanisms 

The theoretical performance of a solar cell was first studied in depth in 
the 1960s, and is today known as the Shckley-queisser Limit. The limit 
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describes several loss mechanisms that are inherent to any solar cell 
design. 

The first are the losses due to blackbody radiation, a loss mechanism that 
affects any material object above absolute Zero. In the case of solar cells 
at standard temperature and pressure, this loss accounts for about 7% of 
the power. The second is an effect known as "recombination", where the 
electrons created by the photoelectric effect meet the electron holes left 
behind by previous excitations. In silicon, this accounts for another 10% 
of the power. 

However, the dominant loss mechanism is the inability of a solar cell to 
extract all of the power in the photon, and the associated problem that it 
cannot extract any power at all from certain photons. This is due to the 
fact that the electrons must have enough energy to overcome the band gap 
of the material. 

If the photon has less energy than the band gap, it is not collected at all. 
This is a major consideration for conventional solar cells, which are not 
sensitive to most of the infrared spectrum, although that represents almost 
half of the power coming from the sun. Conversely, photons with more 
energy than the band gap, say blue light, initially eject an electron to a 
state high above the band gap, but this extra energy is lost through 
collisions in a process known as "relaxation". This lost energy turns into 
heat in the cell, which has the side-effect of further increasing blackbody 
losses.[13] 

Combining all of these factors, the maximum efficiency for a single-band 
gap material, like conventional silicon cells, is about 34%. That is, 66% 
of the energy in the sunlight hitting the cell will be lost. Practical 
concerns further reduce this, notably reflection off the front surface or the 
metal terminals, with modern high-quality cells at about 22%. 

The efficiency of a single-junction solar  cell, it is essentially 
impossible for  a single-junction solar  cell, under  un-concentrated 
sunlight, to have more than 34% efficiency according to The 
Shockley – Queissar  L imit. A multi-junction cell, however, can 
exceed that limit 
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have one layer tuned to 1.64 eV and the other to 0.94 eV, providing a 
theoretical performance of 44%. A three-layer cell should be tuned to 
1.83, 1.16 and 0.71 eV, with an efficiency of 48%. An "infinity-layer" 
cell would have a theoretical efficiency of 86%, with other 
thermodynamic loss mechanisms accounting for the rest.[4] 

Most tandem-cell structures are based on higher performance 
semiconductors, notably indium gallium arsenide (InGaAs). Three-layer 
InGaAs/GaAs/InGaP cells (band gaps 1.89/1.42/0.94 eV) hold the 
efficiency record of 42.3% for experimental examples.[14] 

Traditional (crystalline) silicon preparation methods do not lend 
themselves to this approach due to lack of band gap tunability. Thin-films 
of amorphous silicon, which due to a relaxed requirement in crystal 
momentum preservation can achieve direct band gaps and intermixing of 
carbon, can tune the band gap, but other issues have prevented these from 
matching the performance of traditional cells.[2] 

The solution to this is by reducing the size of the crystal to few atoms to 
the size of a dot then to quantum dot .Behavior is different when low 
energy photon falls, an electron will be excited, the void of the electron 
acts like positive charge, and hops across the lattice and the hole gets 
attracted and unite like an atom lowering the energy, and the energy is not 
wasted. The smaller the quantum dot gets, changing the size which leads 
to changing the band gap. The smaller the quantum dots the larger the 
band gap, by tuning the band gap the whole solar spectrum produce 
electron in the conduction band. 

3-5 Quantum dots 

Quantum dots are semiconductor particles that have been reduced below 
the size of the Exciton Bohr radius and due to quantization 
considerations, the electron energies that can exist within them become 
finite, much alike energies in an atom. Quantum dots have been referred 
to as "artificial atoms". These energy levels can be tuned by changing 
their size, which in turn defines the band gap. The dots can be grown over 
a range of sizes, allowing them to express a variety of band gaps without 
changing the underlying material or construction techniques.[15] 

 In typical wet chemistry preparations, the tuning is accomplished by 
varying the synthesis duration or temperature. The ability to tune the band 
gap makes quantum dots desirable for solar cells. Single junction 
implementations using lead sulfide (PbS) QDs have band gaps that can be 
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tuned into the far infrared, frequencies that are typically difficult to 
achieve with traditional. 

     Half of the solar energy reaching the Earth is in the infrared, most in 
the near infrared region. A quantum dot solar cell makes infrared energy 
as accessible as any other.[16] 

Moreover, QDs offer easy synthesis and preparation. While suspended in 
a colloidal liquid form they can be easily handled throughout production, 
with fume hood as the most complex equipment needed. QDs are 
typically synthesized in small batches, but can be mass-produced. The 
dots can be distributed on a substrate by spin coating, either by hand or in 
an automated process. Large-scale production could use spray-on or roll-
printing systems, dramatically reducing module construction costs. 

It is quite important the next chapter will be devoted to quantum dots to 
talk about what are the quantum dots, how they can be used to impact the 
energy band scale, how the quantum dots can be used in solar energy 
conversion of solar cells to electricity, and how this technology can be 
used in solar energy conversion hope to take away what is required from 
these information to build a mathematical model of quantum dots solar 
cells. 
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Chapter  four 

Quantum dots 

4-1 Introduction: 

Quantum dots were discovered in solids (glass crystals) in 1980 by 
Russian physicist Alexei Ekimov, while working at the Vavilov State 
Optical Institute. In late 1982, American chemist Louis E.Brus, then 
working at Bell Laboratories (and now a professor at Columbia 
University), discovered the same phenomenon in colloidal solutions, 
colloidal is small particle in liquid (where small particles of one 
substance are dispersed throughout another). He discovered that the 
wavelength of light emitted or absorbed by a quantum dot changed over a 
period of days as the crystal grew, and concluded that the confinement of 
electrons was giving the particle quantum properties, that is to say the 
band gap experimentally is a function of size 

American chemist Louis E.Brus started with a solvent to create a reaction 
that grows particles in liquids by injecting a reagent to nucleate and grow 
a solid phase, as the reaction goes on big particles germinate and fall at 
the bottom of the beaker. For the purpose to study very small quantum 
dots he stopped the reaction as quickly as he could at the point of 
nucleation where there might be hundred or thousand particles of atoms 
,then he studied it ,he observed the band gap is basically related to the 
diameter , the smaller the particle the higher the energy of the band gap. 
Very small semiconductor particles absorb light in blue, intermediate in 
green and larger ones in red. This quantum dots mechanical effect shift 
the threshold all the way across the visible light from red to the green to 
the blue to the ultra violet. 

Therefore Quantum dots are crystals a few nanometers wide, so they're 
typically a few dozen atoms across and contain anything from perhaps a 
hundred to a few thousand atoms. They're made from a semiconductor 
such as silicon, but can be chemically treated so it behaves like either). 
And although they're crystals, they behave more like individual atoms, 
hence the nickname artificial atoms.   

 Quantum dots are precise crystals, so you make them in much the same 
way you'd make any other precise semiconductors crystals. Typical 
methods include molecular beam epitaxy (MBE, in which beams of 
atoms are fired at a "base" or substrate so a single crystal slowly builds) 
ion implementation (where ions are accelerated electrically and fired at a 
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substrate), and X-ray lithography (a kind of atomic-scale engraving 
process using x rays). (See appendix II) 

A quantum dot gets its name because it's a tiny speck of matter so small 
that it's effectively concentrated into a single point (in other words, it's 
zero-dimensional). As a result, the particles inside it that carry electricity 
(electrons and holes) are trapped ("constrained") and have well-defined 
energy levels according to the laws of quantum theory. 

So far, quantum dots have attracted most interest, because of their 
interesting optical properties; they're being used for all sorts of 
applications. In this thesis an application to photovoltaic is investigated to 
create an (electron–hole) pair, but they should be separated, the electron 
has to jump off the particle and the hole has jump off the particle to go in 
the other direction, as a result current will flow in an external circuit. 

Still quantum dots are being hailed as a breakthrough technology in the 
development of more efficient solar cells. In a traditional solar cell, 
photons of sunlight knock electrons out of a semiconductor into a circuit, 
making useful electric power, but the efficiency of the process is quite 
low. Quantum dots produce more electrons (or holes) for each photon that 
strikes them, potentially offering a boost in efficiency of perhaps 10 
percent over conventional semiconductors.  

4-2 Definition of quantum dots: 

From the above mentioned information, a quantum dot can be defined as 
a semiconductor nano particle whose diameter is than twice the Bhor 
radius of Exciton in bulk material. They are very small and they have 
special properties according to their size .Quantum dots absorb light and 
converted it into different colors after being illuminated by light, hence 
boost electrons into conduction bands to produce electricity that flows to 
the positive terminal. An addition or removal of electrons changes its 
properties in some useful way, all atoms of course are quantum dots, but 
multi molecular combinations can also have these characteristics. 

4-3 How do quantum dots work? 

Quantum dots typically measured in nanometers (10-9m), when they are 
illuminated by ultra violet light or any high frequency some electrons 
receive enough energy to break free from bonds of their atoms .This 
capability allow them to move around the nano-particles creating the 
conduction band in which electrons are free to move through the material 
and conduction of electricity will take place. 
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4-4 Quantum dots confinements: 

Quantum dot has the property to confine their excited electrons (or 
Exciton) in all three spatial dimensions .When this Exciton drop back to 
its orbit around the atom to valance band , emits light  with the same 
energy that the atom originally absorbed. The color (wavelength and 
frequency) of light an atom emits depends on what the atom is, or on the 
energy difference between conduction band and the valance band .The 
smaller the nano-particle the higher the energy difference between 
conduction band and the valance band, this resolve in deeper blue color 
.For larger particles the energy is lower which shift this glow to red part 
of the spectrum. Many semiconductors substances have been used for 
these quantum dots. Common quantum dots materials include Cdse, Cds, 
CaTe, PbSe, & PbS. Nano-particles of any semiconductor substance have 
the properties of the quantum dots. The gap between the valance band 
and the conduction band which present in semiconductors causes 
quantum dots to fill the rest. 

Because quantum dots have a tendency to stick together if they get too 
near each other and when they do this, they lose their interesting and 
useful characteristics. To stop this happening, molecules are attached to 
the surface so the dots can no longer get as close. 

 

                               Figure (4-1):Shows CdSe Quantum dots 

However, the presence of the molecules changes the energy levels of the 
quantum dot and it is hard to find out how. When quantum dots are used 
in solar cells, this may lead to the cell not working or not being very 
efficient. Gabriela Kissling at the University of Bristol is finding out 
exactly how the energy levels change when molecules are added to help 
other researchers build better solar cells.  
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4-5 Quantum dots nano crystal structure: 

In the following figure there is a Transmission Electron Microscope 
image (TEM) of a series of quantum dots, resumed by one of them 
intentionally 5nm in diameter with lattice fringes associated with this 
material , therefore quantum dots can penetrate to each other and always 
there is a distance between them  

 

      Figure (4-2): series of quantum dots, resumed by one of them 
intentionally 5nm in diameter with lattice fringes associated with this 
material.  

Quantum dots have regular structures, each one of them has roughly the 
same shape, roughly the same size .In between them there are spaces, and 
these spaces are not pure vacuum, and actually they are organic ligand 
attached to the molecules. 

These ligand allow the nano particle to be in stable suspension on the 
solution so they can be synthesized in a form of ink .ligand are almost 
carbon. 

 

              Figure (4-3): Shows quantum dot after attached to the molecules     



4-6 Creating Energy from the sun light:

When quantum dots are used in solar cells, this may lead to cells not 
working or not being very efficient, therefore we should have to find out 
exactly how the energy level changes
aim is to make solar cells more efficient by capturing the sun light and 
turn it to electricity; quantum dots are tiny particles to capture the sun 
light. If happen to be there are more than one quantum dot in the system,
as have been mentioned before they can stick together, hence they loose 
their properties, to avoid that addition of molecules to the surface will not 
allow them to sit together any more, but they can come close enough 
.Unfortunately the molecules take som
dots. It is very important to show why this happen. In the following 
energy diagram, quantum dots are represented:   

                 Figure (4-4): Energy diagram quantum dot 

Sun shine the light ,hits the quantum dot elec
electron will be excited up to the higher energy level ,it reaches the solar 
cell by following energy levels in the solar cell like stair case ,then gets 
energy to broadcast for something else. 

If the energy level tuned to th
electron doesn’ t reach the surface of the cell and gives no power. 

Molecules can move the energy band to a very high level. The electron at 
high energy band gap can have higher energy to reach the solar surfac
to reach the surface it should loose energy. 

Gabriela Kissling at the University of Bristol is trying to find out where 
exactly quantum dot molecules move the energy level in a big crystal to, 
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When quantum dots are used in solar cells, this may lead to cells not 
working or not being very efficient, therefore we should have to find out 
exactly how the energy level changes when the molecules are added. Our 
aim is to make solar cells more efficient by capturing the sun light and 
turn it to electricity; quantum dots are tiny particles to capture the sun 
light. If happen to be there are more than one quantum dot in the system,
as have been mentioned before they can stick together, hence they loose 
their properties, to avoid that addition of molecules to the surface will not 
allow them to sit together any more, but they can come close enough 
.Unfortunately the molecules take some energy levels in the quantum 
dots. It is very important to show why this happen. In the following 
energy diagram, quantum dots are represented:    

 

4): Energy diagram quantum dot  

Sun shine the light ,hits the quantum dot electrons in the valance band ,an 
electron will be excited up to the higher energy level ,it reaches the solar 
cell by following energy levels in the solar cell like stair case ,then gets 
energy to broadcast for something else.  

If the energy level tuned to the dotted line level by shrinking the gap, the 
electron doesn’ t reach the surface of the cell and gives no power.  

Molecules can move the energy band to a very high level. The electron at 
high energy band gap can have higher energy to reach the solar surfac
to reach the surface it should loose energy.  

Gabriela Kissling at the University of Bristol is trying to find out where 
exactly quantum dot molecules move the energy level in a big crystal to, 

When quantum dots are used in solar cells, this may lead to cells not 
working or not being very efficient, therefore we should have to find out 

when the molecules are added. Our 
aim is to make solar cells more efficient by capturing the sun light and 
turn it to electricity; quantum dots are tiny particles to capture the sun 
light. If happen to be there are more than one quantum dot in the system, 
as have been mentioned before they can stick together, hence they loose 
their properties, to avoid that addition of molecules to the surface will not 
allow them to sit together any more, but they can come close enough 

e energy levels in the quantum 
dots. It is very important to show why this happen. In the following 

trons in the valance band ,an 
electron will be excited up to the higher energy level ,it reaches the solar 
cell by following energy levels in the solar cell like stair case ,then gets 

e dotted line level by shrinking the gap, the 
 

Molecules can move the energy band to a very high level. The electron at 
high energy band gap can have higher energy to reach the solar surface; 

Gabriela Kissling at the University of Bristol is trying to find out where 
exactly quantum dot molecules move the energy level in a big crystal to, 
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and help as well with staircase higher or lower down. She is going to 
have the measure of energy level in a big crystal without any molecules 
to the surface present, then attach molecules to the surface & measure the 
energy level again to find out the difference, this information with other 
information will help the researchers to make the solar cell more efficient. 

One of our aims in this thesis is the study of how quantum dots absorb 
sun light, & what energy gap will be selected for this purpose. Laurie 
King at Imperial College London in her PHD research in quantum dots 
presented special nano crystals, under the title: quantum dots absorb UV 
light and emit the energy as visible light in the form of a colour. The 
colour depends on the size of the quantum dot. Smaller dots are green and 
larger dots are red. Quantum dots can be used in solar cells as they absorb 
light from the sun and can also emit the energy as electrical energy. 

In conclusion to this chapter, the efficiency of semiconductor 
photovoltaic is found to be related to the energy gap, silicon is found to 
be the most ideal to energy gap, therefore in  the next chapter energy 
bands are disused  
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Chapter  five  

Energy Bands 

5-1 Introduction: 

In last chapter, the basics of what quantum dots are described. In 
particular, the unique properties of quantum dot materials are examined, 
and how these properties can be exploited by scientists and engineers to 
yield low-cost, light-weight solar modules capable of converting sunlight 
into electricity in a direct fashion. Additionally, the basics of solar cell 
characterization and light absorption are detailed and related to the band 
gap of quantum dot materials. Finally, the potential impact of solar 
technologies on the energy landscape is being discussed. 

Regular solar cell, each photon collision generates a particle pair 
consisting of one free hole and one free electron. Quantum Dots are 
extremely small "nano crystals”  interspersed in a larger semi conducting 
material. Quantum Dots (QDs) range between 1 and 20 nanometers in 
size. Semiconductors at this size have different physical properties than 
their big brothers. When photons with energy greater than the band gap 
energy collide with a Quantum Dot several "hot" hole/electron pairs can 
be created as opposed to one pair and heat. Although silicon can be used 
as a nano crystal, lead selenide (PbSE) also a semiconductor, is being 
used more frequently as the material of choice. It is quite obvious the 
band gap in bulk material is fixed by the choice of the material, in 
quantum dots band gaps are tunable across a wide range of energy levels 
by changing the dot size .This property makes the quantum dots attractive 
for multi junction solar cells where variety of materials are used to 
improve the efficiency by harvesting multiple portion of solar spectrum 
.Therefore a quantum dot solar cell is to be designed to replace bulk 
materials. 

Another characteristic of a Quantum Dot is that different sizes capture 
different wavelengths of light. Small Dots capture small wavelengths and 
larger dots bigger wavelengths. Some researchers have figured out how to 
stack the dots from small to large to capture more photon energy similar 
to how tandem cells do. Once a hot electron is created inside a Quantum 
Dot, it stretches its lifetime 
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5-2 Formation of an energy band: 

Energy bands consisting of a large number of closely spaced energy 
levels exist in crystalline materials. The bands can be thought of as the 
collection of the individual energy levels of electrons surrounding each 
atom. The wave functions of the individual electrons, however, overlap 
with those of electrons confined to neighboring atoms. The Pauli 
Exclusion Principle does not allow the electron energy levels to be the 
same so that one obtains a set of closely spaced energy levels, forming an 
energy band. The energy band model is crucial to any detailed treatment 
of semiconductor devices. It provides the framework needed to 
understand the concept of an energy band gap and that of conduction in 
an almost filled band as described by the empty states. 

In this section, we present the free electron model and the Kronig-Penney 
model. Then we discuss the energy bands of semiconductors and present 
a simplified band diagram.   

To discuss this important phenomena , in case of , energy band diagram 
in solids lattice structures, that is, the energy bands, how the energy bands 
are formed ,it is an important concept to understand ,for this, we can take 
a hydrogen atom as our model to see in a single atom how electron can 
occupy energy levels ,then  in the  case of solids an electron of one atom 
is also in the influence of other atoms in the surrounding ,due to this 
,energy levels are modified   

5-3 The Hydrogen Atom  

The study of the hydrogen atom is more complicated than an electron 
confined to move on a line. Not only does the motion of the electron 
occur in three dimensions but there is also force acting on the electron. 
This force, the electrostatic force of attraction, is responsible for holding 
the atom together. The magnitude of this force is given by the product of 
the nuclear and electronic charges divided by the square of the distance 
between them. If an electron confined to move on a line, the total energy 
was entirely kinetic in origin since there were no forces acting on the 
electron. In the hydrogen atom however, the energy of the electron, 
because of the force exerted on it by the nucleus, will consist of a 
potential energy (one which depends on the position of the electron 
relative to the nucleus) as well as a kinetic energy. The potential energy 
arising from the force of attraction between the nucleus and the electron 
is:  
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               (5-1) 

Let us imagine for the moment that the proton and the electron behave 
classically. Then, if the nucleus is held fixed at the origin and the electron 
allowed moving relative to it, the potential energy would vary in the 
manner indicated in Fig 5-1. The potential energy is independent of the 
direction in space and depends only on the distance r between the 
electron and the nucleus. Thus Fig. 5-1 refers to any line directed from 
the nucleus to the electron. The r-axis in the figure may be taken literally 
as a line through the nucleus. Whether the electron moves to the right or 
to the left the potential energy varies in the same manner.  

 
Figure (5-1): The potential energy of interaction, as a function of the 

distance r between a nucleus (at the origin) and an electron 

The potential energy is zero when the two particles are very far apart (r 
=∞), and equals minus infinity when r equals zero. We shall take the 
energy for r = ∞ as our zero of energy. Energy at any value of r will be 
measured relative to its value. When a stable atom is formed, the electron 
is attracted to the nucleus, r is less than infinity, and the energy will be 
negative. A negative value for the energy implies that energy must be 
supplied to the system if the electron is to overcome the attractive force 
of the nucleus and escape from the atom. The electron has again "fallen 
into a potential well." However, the shape of the well is no longer a 
simple square one as previously considered for an electron confined to 
move on a line, but has the shape shown in Fig. 5-1. This shape is a 
consequence of there being a force acting on the electron and hence a 
potential energy contribution which depends on the distance between the 
two particles (An electron and a proton). This is the nature of the problem 
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5-4 Energy band diagram of two closely spaced atoms: 

 

   Figure (5-2): Energy band diagram of two closely spaced atoms 

 We would like to discuss the energy band diagram of two closely spaced 
atoms , there are two energy band diagrams for two different atoms which 
are closely spaced .in this situation the separation between the two atoms 
is so large ,that the energy of ,one electron in one atom, is not affected by 
the other. Both of these curves are rectangular hyperbola, because these 
are almost in the influence of their individual nuclei which are located at 
the centre, y-axis represents the potential. When these atoms are getting 
close together after the separation decreases below specific value, 
overlapping of orbital between the two atoms starts to take place. 

 

Figure (5-3): Energy band diagram when these atoms are getting close 
together  

 As separation decreases overlapping increases till we reach a situation 
where the 3S orbital overlap, the zones 2p ,2s remain under the influence 
of their individual nuclei 

In this situation the electron in the 3S orbital or in any orbital above , is 
free to move in the whole combined 3S orbital (called molecular orbital), 
the other electrons in 2p, 2s remains moving under the influence of their 
nuclei of their individual atoms, and they are not allowed to move in the 
atom zone. At the  point x ,potential energies of both atoms are equal and 
it lies in midway between the two, electrons above are free ,those below 
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are bounded. If we continue to bring them more closer an electron cloud 
is formed .some of them are associated with their individual atoms others 
in the outer zone start getting to overlap ie 3S and above . 

Because of the Pauli Exclusion Pr inciple, which states that; no two 
fermions can have the exact same set of quantum numbers. For this 
reason only two electrons can occupy each electron energy level – one 
electron can have spin up and the other can have spin down, so that they 
have different spin quantum numbers, even though the electrons have the 
same energy. So intersection between two states at point X will not be 
allowed. 

 

Figure (5-4): Energy band diagram when these atoms are getting close 
together without point x  

 

In quantum statistics, Fermi–Dirac statistics describes a distribution of 
particles over energy states in systems consisting of many identical 
particles that obey the Pauli Exclusion Principle. Fermi–Dirac (F–D) 
statistics applies to identical particles with half-integer spin in a system 

 

Figure (5-5): The Energy band diagram when these atoms are getting 
close together without point x  

These constraints on the behavior of a system of many fermions can be 

treated statistically. The result is that electrons will be distributed into 

the available energy levels according to the Fermi Dirac Distribution:  



 

Where f (ε) is the occupation probability of a state 

Boltzmann's constant, 

temperature in Kelvin.  

At absolute zero the value of the chemical potential, μ, is defined as the 

Fermi energy. At room temperature the chemical potential for metals is 

virtually the same as the Fermi energy 

the order of 0.01%.  

In order to understand the behavior of electrons at finite temperature 

qualitatively in metals and pure un

sufficient to treat μ as a constant to a first approximation. With this 

approximation, the Fermi

different temperatures. In the figure below, μ was set at 5 eV. 

                 Figure (5-6): Fermi distribution for several tem

From this figure it is clear that at absolute zero the distribution is a step 
function. It has the value of 1 for energies below the Fermi energy, and a 
value of 0 for energies above. For finite temperatures the distribution gets 
smeared out, as some electrons begin to be thermally excited to energy 
levels above the chemical potential, 

                   (5-2) 

(ε) is the occupation probability of a state of energy ε, 

Boltzmann's constant, μ is the chemical potential, and T 

At absolute zero the value of the chemical potential, μ, is defined as the 

Fermi energy. At room temperature the chemical potential for metals is 

tually the same as the Fermi energy – typically the difference is only of 

In order to understand the behavior of electrons at finite temperature 

qualitatively in metals and pure un-doped semiconductors, it is clearly 

t μ as a constant to a first approximation. With this 

approximation, the Fermi-Dirac distribution can be plotted at several 

different temperatures. In the figure below, μ was set at 5 eV.  
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From this figure it is clear that at absolute zero the distribution is a step 
function. It has the value of 1 for energies below the Fermi energy, and a 
value of 0 for energies above. For finite temperatures the distribution gets 

some electrons begin to be thermally excited to energy 
levels above the chemical potential, µ. The figure shows that at room 

of energy ε, kB is 

T is the 

At absolute zero the value of the chemical potential, μ, is defined as the 

Fermi energy. At room temperature the chemical potential for metals is 

the difference is only of 
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From this figure it is clear that at absolute zero the distribution is a step 
function. It has the value of 1 for energies below the Fermi energy, and a 
value of 0 for energies above. For finite temperatures the distribution gets 

some electrons begin to be thermally excited to energy 
. The figure shows that at room 
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temperature the distribution function is still not very far from being a step 
function.  

 

In solids atoms are arranged in a fixed lattice structure, all electrons in the 
overlapping region or orbital in the lattice structure are free to move in 
the whole lattice and they are called free electrons and those below are 
called bounded electrons.  

 

 

                              Figure (5-7): Energy band diagrams 

We are trying to figure out why we get that band diagram in semi 
conductor, we have a set of energy levels which have a continuous 
density of states. Also we have a forbidden region Eg where we have no 
carriers there, called the band gap .we can use some quantum mechanics 
in particular to formalize a model to explain where the band structure 
comes from. Start from De Broglie equation for any particle that can be 
described as wave as well as a particle; 

                   (5-3) 

The equations can also be written as; 

                    (5-4) 

 

For a free particle Energy is all kinetic; 
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       (5-5) 

          (5-6) 

Therefore parabolic relationship between E & K 
 

 

                            Figure (5-8): relationship between E & K of electron  

Energy, Eh = -Ee : The electron previously in the valence band had an 
energy Ee so removing it leaves a hole with energy –Ee (energy loss of an 
atom ).So the hole has the opposite momentum and energy to the electron 
that was previously there. 

 

                                     Figure (5-9): relationship between E & K of hole       

5-5 Kronig-Penney Model 

We are interested in the potential seen in the lattice arranged in a periodic 
manner, each atom looks to have infinitely large negative potential near 
the nuclei periodic set of atoms. 
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                                           Figure (5-10): Kronig-Penney Model       

The Kronig-Penney model [1] is a simplified model for an electron in a 
one-dimensional periodic potential. He treated potential as a series of 
steps (series of potential wells)  

 

                        Figure (5-11): Kronig-Penney Model       

Then he made an approximation to treat it as a set of delta functions. This 
is an instructive tool to demonstrate how the band structure can be 
calculated for a periodic potential, and how allowed and forbidden 
energies are obtained when solving the corresponding Schrödinger 
equation. The potential assumed in the model is shown in the following 
figure; 

 

 



Figure(5-12 

 

) The periodic potential assumed in the Kronig

potential barriers (region II) with width, 

(region I), a-b, and repeated with a period, 

 

The Kronig-Penney consists of an infinite series of rectangular barriers with 
potential height, V0, and width, 
periodic potential with period, 
traveling wave solutions multiplied with a periodic function, which has the same 
periodicity as the potential. 

The solution to Schrödinger's equation for the Kronig

obtained by assuming that the solution is a Bloch function, name

wave solution of the form, e

which has the same periodicity as the periodic potential.

 The total wave function is therefore of the form:

where u(x) is the periodic function as defined by 

wave number.  

Rewrite Schrödinger equation using this wave function considering first 

region I, between the barriers where 

region where V(x) = V0: 

In region I, Schrödinger's equation becomes:

With 

While in region II, it becomes:

) The periodic potential assumed in the Kronig-Penney model. The 

potential barriers (region II) with width, b, are spaced by a distance 

, and repeated with a period, a. 

Penney consists of an infinite series of rectangular barriers with 
, and width, b, separated by a distance, a-b, resulting in a 

periodic potential with period, a. The analysis requires the use of Bloch functions, 
ve solutions multiplied with a periodic function, which has the same 

            (5-7) 

The solution to Schrödinger's equation for the Kronig-Penney potential is 

obtained by assuming that the solution is a Bloch function, namely a traveling 

wave solution of the form, e
ikx

, multiplied with a periodic solution, 

which has the same periodicity as the periodic potential. 

The total wave function is therefore of the form: 

          (5-8) 

is the periodic function as defined by u(x) = u(x + a), and 

Rewrite Schrödinger equation using this wave function considering first 

region I, between the barriers where V(x) = 0 and then region II, the barrier 

In region I, Schrödinger's equation becomes: 

        (5-9)
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A virtue of this model is that 
values and Eigen functions. It is also possible to find analytic expressions for the 
dispersion relations (E vs. k
given in appendix  ) 

The possible states that the electron can occupy  are determined by the Schrödinger 
equation, 

In the case of the Kronig-Penney model, the potential 
wave. 

From the appendix it can be seen that the Solutions for 
when the following equation is satisfied: 

Where 

This transcendental equation can be further simplified for the case 
where the barrier is a delta function

                (5

             (5-12) 

A virtue of this model is that it is possible analytically determine the Energy Eigen 
values and Eigen functions. It is also possible to find analytic expressions for the 

k) and the electron density of states. Derivations are 

states that the electron can occupy  are determined by the Schrödinger 

           (5-13) 

Penney model, the potential V(x) is a periodic square 

From the appendix it can be seen that the Solutions for k and E
when the following equation is satisfied:  

              

                                (5-15)

This transcendental equation can be further simplified for the case 
where the barrier is a delta function 

(5-11) 
 

 

it is possible analytically determine the Energy Eigen 
values and Eigen functions. It is also possible to find analytic expressions for the 

) and the electron density of states. Derivations are 

states that the electron can occupy  are determined by the Schrödinger 

 

) is a periodic square 

E are obtained 

              (5-14) 
 

15) 
 

This transcendental equation can be further simplified for the case 



 Figure (5-13):Kronig penny model, the optional barriers b very 
small, and higher V very large,  with area, 

 

F Bloch in 1928 proposed the trial wave function for the solution as 

 
The dispersion model for Kronig
barriers are assumed to be delta functions. This relation takes the form 

With  

K is the wave number of the electron, b is the width of original potential well 
of depth V0 and a spacing between potential wells. 

This is a plane wave solution with a modulating function. The modulating 
function will have the lattice periodicity. 

 

13):Kronig penny model, the optional barriers b very 
small, and higher V very large,  with area, V0b,  

F Bloch in 1928 proposed the trial wave function for the solution as 

                  (5-16) 

The dispersion model for Kronig-Penny model can be simplified if the potential 
barriers are assumed to be delta functions. This relation takes the form 

                                  (5-17) 

              (5-18) 

K is the wave number of the electron, b is the width of original potential well 
of depth V0 and a spacing between potential wells.  

This is a plane wave solution with a modulating function. The modulating 
function will have the lattice periodicity.  

            (5-19) 

13):Kronig penny model, the optional barriers b very 

F Bloch in 1928 proposed the trial wave function for the solution as  

Penny model can be simplified if the potential 
barriers are assumed to be delta functions. This relation takes the form  

K is the wave number of the electron, b is the width of original potential well 

 

This is a plane wave solution with a modulating function. The modulating 
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plotting the left-hand-side of the equation given in the question against (Ka) 
will result in this graph: 
 

 

 

Figure (5-14): The emergence of energy bands and forbidden gaps in the 

spectrum of electron energies in a periodic crystal. 

A intuitive picture of how these bands arise is clear if we note that : 

This equation can only be solved numerically. Solutions are only obtained if 
the function, F, is between -1 and 1 since it has to equal cos (ka). The 
energy, E, is plotted as function of ka/ and the function F in the following  
Figure  
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Figure(4-15) 

: 

Graphical solution to the Kronig-Penney model for a = 1nm 

and V0b = 0.2 nm-eV. Shown is the energy, E, versus ka/ and 

F, which has to equal cos (ka), from which one can identify 

the allowed energies. 

The corresponding band structure is shown below (black curve) as well as 
the energy for a free electron (gray curve). Three different forms are 
presented, namely the E(k) diagram, the E(k diagram combined with the 
reduced-zone diagram as well as the reduced-zone diagram only. 

 

Figure (5-16 

).: 

Energy versus ka/ as presented in Figure (4-16) (black 

curves) compared to that of a free electron (gray curves). 

Shown are: a) the E(k) diagram, b) the E(k) diagram combined 

with the reduced-zone diagram and c) the reduced-zone 
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diagram only. 

From Figure (5-16).a we observe the following: The E(k) relation resembles 
a parabola except that only specific ranges of energies are valid solutions to 
Schrödinger's equation and therefore are allowed, while others are not. The 
range of energies for which there is no solution is referred to as an energy 
band gap. The transitions between allowed and forbidden energies occur at 
non-zero integer multiples of ka/. These correspond to local minima and 
maxima of the E(k) relation. The reduced-zone diagram shown in Figure (5-
16).c contains the first three bands and energy band gaps. For instance the 
second energy band gap occurs between 1.5 and 2 eV, between the band 
maximum of the second band and the band minimum of the third band. 

Complete energy band diagrams of semiconductors are very complex. 
However, most have features similar to that of the diamond crystal. In this 
section, we first take a closer look at the energy band diagrams of common 
semiconductors. We then present a simple diagram containing only the most 
important features. 

5-6 Below is another solution to the problem.  

Please find here below another solution to the problem, which can be 
computerized to find analytic expressions for the dispersion relation (E vs. 
k) and the electron density of states. The program is found in in appendix 
(III)  

 

 

This form can be used to plot the dispersion relation and the density of 

states for the Kronig Penney model. 
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V(x) [eV]   

 x [nm] 
 

Initial energy E1 =  
-1

  [eV]  

Final energy E2 =  
50

  [eV]  

Number of energy points N  =  
1000

  [eV]  

Mass m =  
9.11E-31

  [kg]  

a  =  
1.5E-10

  [m]  

b  =  
1.0E-10

  [m]  

V1  =  
0

  [eV]  

V2  =  
5

  [eV]  

 

 

E [eV]    

 ka  D(E) [eV-1 nm-1] 

Data: 

E [eV] alpha ka    D(E) [1/(eV nm)] 
-1 3.7533355450490022 0 0
-0.948948948948949 3.7147935777239107 0 0
-0.8978978978978979 3.6764277248798542 0 0
-0.8468468468468469 3.638237477781223 0 0
-0.7957957957957957 3.600222328761743 0 0
-0.7447447447447447 3.5623817712227086 0 0
-0.6936936936936937 3.524715299631222 0 0
-0.6426426426426426 3.4872224095184405 0 0
-0.5915915915915916 3.4499025974778114 0 0
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Figure (5-17): And I understand that for the equation to hold true, the left-
hand-side cannot go above 1 or below -1, hence the regions shaded pink 

in the above plot are invalid solutions of the equation in the question. 

 

 
 

 
 
 

Figure (5-18): E & K diagram 

 



5-7Direct and indirect band gap semi

The band gap represents the minimum energy difference between the top 
of the valence band and the bottom of the conduction band, however, the 
top of the valence band and the bottom of the conduction band are not 
generally at the same value of the elec
gap semiconductor , the top of the valence band and the bottom of the 
conduction band occur at the same value of momentum, as in the 
schematic below.  

        Figure (5-19):  direct band gap semiconductor,           

In an indirect band gap semiconductor
valence band occurs at a different value of momentum to the minimum in 
the conduction band energy: 

        Figure (5-20):  Indirect band gap semiconductor

The difference between the two is most 
the photon provides the energy, to produce an electron
photon of energy E has momentum;

 Where, c is the velocity of light.

Direct and indirect band gap semi-conductors: 

The band gap represents the minimum energy difference between the top 
of the valence band and the bottom of the conduction band, however, the 
top of the valence band and the bottom of the conduction band are not 
generally at the same value of the electron momentum. In a direct band 

, the top of the valence band and the bottom of the 
conduction band occur at the same value of momentum, as in the 

 

19):  direct band gap semiconductor,            

indirect band gap semiconductor , the maximum energy of the 
valence band occurs at a different value of momentum to the minimum in 
the conduction band energy:  

 

20):  Indirect band gap semiconductor 

The difference between the two is most important in optical devices. As 
the photon provides the energy, to produce an electron-hole pair, each 

has momentum; 

                      (5-20) 

is the velocity of light. 

The band gap represents the minimum energy difference between the top 
of the valence band and the bottom of the conduction band, however, the 
top of the valence band and the bottom of the conduction band are not 

direct band 
, the top of the valence band and the bottom of the 

, the maximum energy of the 
valence band occurs at a different value of momentum to the minimum in 

important in optical devices. As 
hole pair, each 



 46

 An optical photon has energy of the order of 10–19 J and, since c =3 × 108 
ms–1. A typical photon has a very small amount of momentum.  

A photon of energy Eg, where Eg is the band gap energy, can produce an 
electron-hole pair in a direct band gap semiconductor quite easily, 
because the electron does not need to be given very much momentum. 
This is possible, because such an electron requires interacting only with 
the photon in order to either gain or lose momentum..  

   

 

           Figure (5-21): E&K diagram of  direct band gap semiconductor 

However, an electron must also undergo a significant change in its 
momentum for a photon of energy Eg to produce an electron-hole pair in 
an indirect band gap semiconductor. This is possible, but it requires such 
an electron to interact not only with the photon to gain energy, but also 
with a lattice vibration called a phonon in order to either gain or lose 
momentum.  

 The indirect process proceeds at a much slower rate, as it requires three 
entities to intersect in order to proceed: an electron, a photon and a 
phonon. This is analogous to chemical reactions, where, in a particular 
reaction step, a reaction between two molecules will proceed at a much 
greater rate than a process which involves three molecules.  
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   Figure (5-22): E&K diagram of   indirect band gap semiconductor           

The same principle applies to recombination of electrons and holes to 
produce photons. The recombination process is much more efficient for a 
direct band gap semiconductor than for an indirect band gap 
semiconductor, where the process must be mediated by a photon. 

 

5-8 Band gap of germanium (Ge) Measurement  

 

.There are no available facilities for practical work in most of Sudan 

universities, the only available experiment found at Shendi University is 

band gap measurement of germanium semiconductor .This experiment 

has been carried at Shendi University to measure the band gap of Ge. 

 

5-8-1 Aim of the experiment: 

 

 The conductivity of a germanium test piece is measured as a function of 

temperature. The energy gap is determined from the measured values. 

 

5-8-2 Tasks: 
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The current and voltage are to be measured across a germanium test 

piece as a function of temperature.  

From the measurement, the conductivity σ is to be calculated and 

plotted against the reciprocal of the temperature T. A linear plot is 

obtained, from whose slope the energy gap of germanium can be 

determined. 
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5-8-3 Equipments needed: 

 

No. Equipment 

1 Hall effect module 11801.00  

1 Intrinsic conductor, Ge, carrier board 

11807.01  

1 Power supply 0-12 V DC/ 6 V, 12 V AC 

13505.93  

1 Tripod base -PASS- 02002.55  

1 Support rod -PASS-, square, l = 250 mm 

02025.55 

1 Right angle clamp -PASS- 02040.55 

2 Digital multi meter 2010 07128.00 

2 Connecting cable, 4 mm plug, 32 A, black, l = 

50 cm 07361.05 

1 Connecting cable, 4 mm plug, 32 A, red, l = 

10 cm 07359.01  

1 Connecting cable, 4 mm plug, 32 A, blue, l = 

10 cm 07359.04 

 

What you need: Complete Equipment Set, Manual on CD-ROM included 

Band gap of germanium P2530401/11 

 

5-8-4 Theory: 
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The test piece is connected via a series resistor to the direct voltage out 

put of the power unit. The current should not exceed 30mA. The voltage 

across the test piece is measured with a multi meter. The conductivity is 

defined as following: 

 

 σ = �

�
  =

��

�	
                        (5-21) 

 

Where:   ρ = Specific resistivity  

                L=length of test specimen  

               A =cross section    

               I =current 

              U =voltage  

Dimensions of Ge plate (20*10*1  

�) 

On the back of the board is the heating coil, supplied by the alternating 

voltage output of the unit. It is recommended that the test piece be 

warmed up slowly for the measurement, applying firstly 2v, then, 4v and 

finally 6v.  

The maximum permissible temperature of 175
o
C must not be exceeded. 

It is also possible to warm up to the maximum temperature first of all, 

and then take measurement during the cooling down period.  

The test piece temperature is determined using the cu/cuNi 

thermocouple and the mV meter. 

The conductivity of semiconductor is characteristically a function of 

temperature. The temperature dependence is in this case essentially 

described by an exponential function. 

  

σ = σ. Exp - 
�


���
                              (5-22) 
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 �� = ������ ���                  

K=Boltzmann's constant  

T = Absolute temperature  

 

The logarithm of this equation  

 

Ln� = ���. − ��

��� 
                         (5-23) 

Is with y = Lnσ               and x = 
�

�
            

A linear equation on the type  

Y = a + mx                                  (5-24) 

 

Where: m = - 
�


��
  

�� = 2 
                                    (5-25) 

 

 Set up and procedure: 

 

Units of the experiment is set up as shown in the following picture  
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Figure (5-23): Band gap of germanium (Ge) Measurement    

 

5-8-5 Procedure: 

 

  Electrical circuit as in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

              Figure (5-24): Shown electrical circuit  
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Heated the test piece germanium using a heating coil, even the 

maximum permissible temperature of 175C, and then gradually cooled. 

The take measurement current and voltage during the cooling down 

period.  

 

5-8-6 Results: 

 

 L=20mm=0.02m   ,      A=(1x10)mm=0.01m 

Lnσ !�
"#

 

1
/
Ω 

!
"

1
Ω

 
1
'

   (� T/K  

 

U/m

v 

 

I/m

A 

4.0

5 

57.1

4 

28.5

7 

2.55*

10(� 
393 0.35 10 

3.7

7 

43.4

8 

21.7

4 

2.61*

10(� 

383 0.69 15 

3.5

7 

35.5

2 

16.2

6 

2.68*

10(� 

373 1.23 20 

3.1

7 

23.8

0 

11.9

0 

2.74*

10(� 

363 2.10 25 

2.8

3 

16.9

0 

8.45 2.83*

10(� 

353 3.55 30 

2.4

7 

11.8

4 

5.92 2.91*

10(� 

343 5.91 35 

2.1

2 

8.36 4.18 3*10(� 333 9.58 40 

5-8-7 Calculation 

 

5 

4.8 

X  1cm  0.2 x   

Y  1cm  0.2 x   

Ln   
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                                 Figure (5-25): Lnσ & 
�
�
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Lnσ= Lnσ. - 
�


�*�
                              (5-26) 

 

σ=1.58 
�

+Ω
  

 

�

�
=0.42*10(�K    

 

m = 
,

�
�-
                   m=

�../

0.1�∗�034      =3.8∗ 10�                 

�� = 25
 = 2 ∗ 8.625 ∗ 10(. ∗ 3.8 ∗ 10� = 65.5 ∗ 10(� = 0.66�: 

 

5-8-8Conclusion 

 

 It was found that the energy gap of test piece of germanium is (0.66.ev)        

Chapter  six 

Density of States 

6-1 Confinement: 

The reduction of carrier degree of freedom is called quantum 
confinement, and it occurs when one or more of the dimensions of 
nanoparticle are sufficiently small, typically (10 nm).By confinement an 
interesting properties can be attained. The confinement can take place in 
0D, 1D, 2D, and 3D confinement, known as a bulk, quantum well, 
quantum wire& quantum dot respectively. Although the research is 
interested in quantum dots, quantum dots are semiconductors have the 
properties to confine their excited electrons or excitons in all three spatial 
dimensions. When these excitons drop back in their orbits around the 
atom in the valance band they emit light, the color of the light depends on 
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the energy difference E between the conduction band and the valence 
band. The smaller the nanoparticle, the higher the energy difference 
between the valence band and the conduction band , which resolve into 
deeper blue color. For larger particles the energy difference between 
valance band and conduction band is lower which shift s this glow to the 
red part of the spectrum. 

For bulk material the resulting energy levels are quantized and they are 
no longer continuous, but as discrete. If the confinement can take place in 
one dimension the valance band and conduction band split into 
overlapping sub bands that get successively narrower as electron motion 
is restricted into more dimensions. However, these structures give the 
electron at least one degree of freedom (direction of propagation). 

Confinement of the electrons results in the appearance of energy states 
shown in figure below;  

 

                                   Figure (6-1): Energy level of electron 

The energy of the lowest state is given by  

                  (6-1) 

Energy of other states is; 

(6-2) 

The confinement of the nano- crystal electrons results in an increase of 

the band gap according to the equation; 
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       (6-3) 

Note that the smaller the radius of the quantum dot the larger the band 

gap, this implies the possibility of controlling the color of light emitted or 

absorbed by the quantum dot by changing their size   

Incident photon Ep excites an electron from the filled valance band and 

promotes it to the next empty band known as conduction band leaving a 

hole behind. Electron and hole relax to the bottom of the conduction 

band and top of the valance band respectively .they recombine emitting 

light photon whose energy equal to the band gap of the quantum dot . 

 

6-2 Density of states: 

Determination of density of state (DOS) has two important usages ; 

1- To derive the carrier (electron/hole) in the semiconductor. 

2- To determine the most important state close to the minimum of 

the conduction band and hence the Fermi level. 

How to do that could be seen at the end of this chapter .first to begin 

with the derivation of DOS (E) in 3D bulk material as a function of energy  

Before we can calculate the density of carriers in a semiconductor, we 

have to find the number of available states at each energy level. The 

number of electrons at each energy level is then obtained by multiplying 

the number of states with the probability that a state is occupied by an 

electron. Since the number of energy levels is very large and dependent 

on the size of the semiconductor, we will calculate the number of states 

per unit energy and per unit volume 

To calculate various optical properties such as the rate of absorption or 

emission and how electrons and holes distribute themselves within a 

solid, the number of available states per unit volume per unit energy 



should be known. We first calculate the avail

then use the energy-momentum relation in parabolic bands to give the 

density of states in terms of energy. 

                        Figure (6-2): E&K diagram of electron and hole

The density of states in a semiconductor equals 

and energy of the number of solutions to Schrödinger's equation. We will 

assume that the semiconductor can be modeled as an slab of bulk material 

the wave function can be drawn in particular direction let be x. The 

semiconductor is assumed a cube with side

affect the result since the density of states per unit volume should not 

depend on the actual size or shape of the semiconductor.

Classically, all values of energy would be allowed and there would be
restriction on the number of electrons with the same value of 
atomic scales, the effects of quantum mechanics dominate and two further 
famous principles come into play. These are the Heisenberg uncertainty 
principle and the Pauli exclusi
that the wave function for the electron must satisfy the Schrödinger equation, 
subject to boundary conditions. The solution of the Schrödinger equation 
leads to wave functions of the form: 

The solutions to the wave equation (equation

should be known. We first calculate the available states in k-space and 

momentum relation in parabolic bands to give the 

density of states in terms of energy.  

 

2): E&K diagram of electron and hole 

The density of states in a semiconductor equals the density per unit volume 

and energy of the number of solutions to Schrödinger's equation. We will 

assume that the semiconductor can be modeled as an slab of bulk material 

the wave function can be drawn in particular direction let be x. The 

is assumed a cube with side L. This assumption does not 

affect the result since the density of states per unit volume should not 

depend on the actual size or shape of the semiconductor. 

Classically, all values of energy would be allowed and there would be
restriction on the number of electrons with the same value of k. 
atomic scales, the effects of quantum mechanics dominate and two further 
famous principles come into play. These are the Heisenberg uncertainty 
principle and the Pauli exclusion principle. Together, these two rules mean 
that the wave function for the electron must satisfy the Schrödinger equation, 
subject to boundary conditions. The solution of the Schrödinger equation 
leads to wave functions of the form:  

                 (6-4) 

The solutions to the wave equation (equation Appendix IV (6-4) where

space and 

momentum relation in parabolic bands to give the 

the density per unit volume 

and energy of the number of solutions to Schrödinger's equation. We will 

assume that the semiconductor can be modeled as an slab of bulk material 

the wave function can be drawn in particular direction let be x. The 

. This assumption does not 

affect the result since the density of states per unit volume should not 

Classically, all values of energy would be allowed and there would be no 
k. However, at 

atomic scales, the effects of quantum mechanics dominate and two further 
famous principles come into play. These are the Heisenberg uncertainty 

on principle. Together, these two rules mean 
that the wave function for the electron must satisfy the Schrödinger equation, 
subject to boundary conditions. The solution of the Schrödinger equation 

) where V(x) = 



0 are sine and cosine functions:

6-3 Calculation of the density of states in 3D semiconductor:

The density of states in a semiconductor equals the density per 

volume and energy of the number of solutions to Schrödinger's equation. 

We will assume that the semiconductor can be modeled as an slab of bulk 

material the wave function can be drawn in particular direction let be x. 

The semiconductor is assumed a cu

not affect the result since the density of states per unit volume should not 

depend on the actual size or shape of the semiconductor.

The solutions to the wave equation ,where

functions: 

Where A and B are constants to be determined from the boundary 

conditions. The wave function must be zero at the infinite barriers of the 

well. At x = 0 the wave function must be zero so that only sine functions 

can be valid solutions or

must also be zero yielding the following possible values for the wave 

number, kx. 

This analysis can now be repeated in the

solution then corresponds to a cube in

on Figure Below; 

0 are sine and cosine functions: 

 

3 Calculation of the density of states in 3D semiconductor:

The density of states in a semiconductor equals the density per 

volume and energy of the number of solutions to Schrödinger's equation. 

We will assume that the semiconductor can be modeled as an slab of bulk 

material the wave function can be drawn in particular direction let be x. 

The semiconductor is assumed a cube with side L. This assumption does 

not affect the result since the density of states per unit volume should not 

depend on the actual size or shape of the semiconductor. 

The solutions to the wave equation ,where V(x) = 0 are sine and cosine 

          (6-5) 

are constants to be determined from the boundary 

conditions. The wave function must be zero at the infinite barriers of the 

= 0 the wave function must be zero so that only sine functions 

or B must equal zero. At x =L, the wave function 

must also be zero yielding the following possible values for the wave 

 

This analysis can now be repeated in the y and z direction. Each possible 

corresponds to a cube in k-space with size nπ/L as indicated 

 

3 Calculation of the density of states in 3D semiconductor:   

The density of states in a semiconductor equals the density per unit 

volume and energy of the number of solutions to Schrödinger's equation. 

We will assume that the semiconductor can be modeled as an slab of bulk 

material the wave function can be drawn in particular direction let be x. 

. This assumption does 

not affect the result since the density of states per unit volume should not 

) = 0 are sine and cosine 

 

are constants to be determined from the boundary 

conditions. The wave function must be zero at the infinite barriers of the 

= 0 the wave function must be zero so that only sine functions 

, the wave function 

must also be zero yielding the following possible values for the wave 

(6-6) 

direction. Each possible 

as indicated 



Figure(6-

3):   

Calculation of the number of states with wave number less than

The total number of solutions with a different value for

with a magnitude of the wave vector less than

the volume of one eighth of a sphere with radius

volume corresponding to a single solution,

A factor of two is added to 

solution. The density per unit energy is then obtained using the chain rule:

 

By considering the electrons in a solid as a free electron gas, that is, the 
electrons are free to wander around the crystal without being influenced by 
the potential of the atomic nuclei; we can obtain a relationship for the 
number of available states in 
momentum p = m v. Its energy consists entirely of kinetic energy (V=0) 
therefore,  

Prince Louis De-Broglie, hypothesized that if waves could exhibit particle
like properties, then might particles also exhibit wave

Calculation of the number of states with wave number less than

The total number of solutions with a different value for kx, ky and

magnitude of the wave vector less than k is obtained by calculating 

the volume of one eighth of a sphere with radius k and dividing it by the 

volume corresponding to a single solution, , yielding: 

               (6-7) 

A factor of two is added to account for the two possible spins of each 

solution. The density per unit energy is then obtained using the chain rule:

                (6-8) 

By considering the electrons in a solid as a free electron gas, that is, the 
electrons are free to wander around the crystal without being influenced by 
the potential of the atomic nuclei; we can obtain a relationship for the 
number of available states in a solid. A free electron has a velocity v and a 

Its energy consists entirely of kinetic energy (V=0) 

                      (6-9) 

Broglie, hypothesized that if waves could exhibit particle
might particles also exhibit wave-like properties? This 

 

Calculation of the number of states with wave number less than k. 

and kz and 

is obtained by calculating 

and dividing it by the 

 

account for the two possible spins of each 

solution. The density per unit energy is then obtained using the chain rule: 

 

By considering the electrons in a solid as a free electron gas, that is, the 
electrons are free to wander around the crystal without being influenced by 
the potential of the atomic nuclei; we can obtain a relationship for the 

a solid. A free electron has a velocity v and a 
Its energy consists entirely of kinetic energy (V=0) 

Broglie, hypothesized that if waves could exhibit particle-
like properties? This 



idea is expressed as particle
a wave number k.  

In this way, the electron can be represented by a vector in velocity, 
momentum or k-space. If we choose to represent the electron state as a 
vector, it points in a direction given by the components magnitude of the 
basis vectors in k-space. It should be ap
magnitude have the same energy forming spherical shells. This can be 
understood better, if we consider the equation for the energy of the electron 
in terms of k.  

The kinetic energy E of a particle with

number, k, by: 

And the density of states per unit volume and per unit energy,

The density of states is zero at the bottom of the well as well as for negative 

energies. 

        Figure (6-4): Density of states in 3D semiconductor (bulk semiconductor) 

The same analysis also applies to electrons in a semiconductor. The effective 

idea is expressed as particle-wave duality and allows us to give the electron 

                     (6-10) 

In this way, the electron can be represented by a vector in velocity, 
space. If we choose to represent the electron state as a 

vector, it points in a direction given by the components magnitude of the 
space. It should be apparent that vectors of the same 

magnitude have the same energy forming spherical shells. This can be 
understood better, if we consider the equation for the energy of the electron 

              (6-

of a particle with mass m
*
 is related to the wave 

           (6-

And the density of states per unit volume and per unit energy, g(

              (6-13) 

The density of states is zero at the bottom of the well as well as for negative 

 

4): Density of states in 3D semiconductor (bulk semiconductor) 

The same analysis also applies to electrons in a semiconductor. The effective 

wave duality and allows us to give the electron 

In this way, the electron can be represented by a vector in velocity, 
space. If we choose to represent the electron state as a 

vector, it points in a direction given by the components magnitude of the 
parent that vectors of the same 

magnitude have the same energy forming spherical shells. This can be 
understood better, if we consider the equation for the energy of the electron 

-11) 

is related to the wave 

-12) 
 

(E), becomes: 

 
 

The density of states is zero at the bottom of the well as well as for negative 

4): Density of states in 3D semiconductor (bulk semiconductor)  

The same analysis also applies to electrons in a semiconductor. The effective 
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mass takes into account the effect of the periodic potential on the electron. 

The minimum energy of the electron is the energy at the bottom of the 

conduction band, Ec, so that the density of states for electrons in the 

conduction band is given by: 

 

(6-14) 

 

6-4 2-D Density of States  

In two dimensional structures such as the quantum well, the procedure 

is much the same but this time one of the k-space components is fixed. 

Instead of a finding the number of k-states enclosed within a sphere. The 

problem is to calculate the number of k-states lying in an area of  

           (6-15) 

 

 

Figure (6-5): 2 k-space in 2D. The density of states at an energy E is the 

number of k-states per unit volume contained within an area  

               (6-16) 



Dividing the 'volume' of the k

multiply by 2 to account for the electron spin states we get: 

It is significant that the 2

Immediately, as the top of the e

significant number of available states. Taking into account the other 

energy levels in the quantum well, the density of states takes on a 

staircase like function given by: 

Where H (E-Ei) is the Heaviside 

E is less than E i and 1, when 

th energy level within the quantum well. 

Figure (6-6): Density of states in 3D and 2D semiconductor (quantum 

well) 

6-5 1-D Density of States 

In one dimension two of the k

of k-space becomes a length of a line. 

Dividing the 'volume' of the k-state by the area and remembering to 

multiply by 2 to account for the electron spin states we get:  

         (6-17) 

It is significant that the 2-d density of states does not depend on energy. 

Immediately, as the top of the energy-gap is reached, there is a 

significant number of available states. Taking into account the other 

energy levels in the quantum well, the density of states takes on a 

staircase like function given by:  

          (6-18) 

) is the Heaviside function. It takes the value of zero when 

and 1, when E is equal to or greater than E i . E i 

th energy level within the quantum well.  
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gap is reached, there is a 

significant number of available states. Taking into account the other 

energy levels in the quantum well, the density of states takes on a 

function. It takes the value of zero when 

i is the i -

Density of states in 3D and 2D semiconductor (quantum 

components are fixed, therefore the area 



Therefore the density of states per unit length in 1

2 for spin  

For a one-dimensional semiconductor such as a quantum wire in which 

particles are confined along a line.

An example of the density of states 1 dimension is shown in the figure below:

         Figure (6-7): Density of states in 1D semiconductor (quantum wire) 

For one dimension, the density of states per unit volume at energy 

given by  

              (6-19) 

           (6-20) 

Therefore the density of states per unit length in 1-d and multiplying by 

dimensional semiconductor such as a quantum wire in which 

particles are confined along a line. 

        (6-21)

An example of the density of states 1 dimension is shown in the figure below:

 

7): Density of states in 1D semiconductor (quantum wire) 

For one dimension, the density of states per unit volume at energy 

         (6-
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An example of the density of states 1 dimension is shown in the figure below: 

7): Density of states in 1D semiconductor (quantum wire)  

For one dimension, the density of states per unit volume at energy E is 

-22) 



Using more than the first energy level, the density of states function 

becomes  

Where once again, H ( 

degeneracy factor. For quantum structures with dimensions lower than 

2, it is possible for the same energy level to occur for more than one 

arrangement of confined states. To account for this, a second factor 

(E) is introduced.  

6-6 0-D Density of States 

In a 0-D structure, the values of k are quantized in all directions. All the 

available states exist only at discrete energies described and can be 

represented by a delta function. In real quantum dots, however, the size 

distribution leads to a broadening of this line function. 

 

                        Figure (6-8): Density of states in 0D (quantum dot)

The four together for comparison;

Using more than the first energy level, the density of states function 
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of States  
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represented by a delta function. In real quantum dots, however, the size 
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degeneracy factor. For quantum structures with dimensions lower than 

2, it is possible for the same energy level to occur for more than one 

arrangement of confined states. To account for this, a second factor n i 

D structure, the values of k are quantized in all directions. All the 

available states exist only at discrete energies described and can be 

represented by a delta function. In real quantum dots, however, the size 
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Figure (6-9): shows bulk & quantum well & quantum wire and quantum 

dot 

 

 

Figure (6-10): Density of states of bulk & quantum well & quantum wire 

and quantum dot 

 

 

 

6-7 Density of occupied states (Carrier density): 

 

6-7-1 Density of states: 
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Mathematical function that gives the possible energy quantum states 

per unit volume per unit energy of electrons inside a solid metal. 

 

;(�) = /√�+
4

?-    √@

A4                                                            (6-23-1) 

 

6-7-2 Fermi Dirac probability function: 

 

A function that describe the probability distribution energy quantum 

state being occupied by an electron in a metal solid of some 

temperature T 
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                                                               (6-23-2) 

 

Where: E  is the energy of electron 

            �H  ≡ ������ JK K��
L M�:�M 

 

Combine (6-23-1), (6-23-2): 
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            (6-24) 

 

This equation is known as density of occupied states. If we plot this 

equation on (xy) plane, then it gives the number of electron per unit 

volume which is the quantum states between some ranges of energy of 

some particular temperature T. 



 

 

Figure (6-11): The curve represents the density of occupied state for a 

metal solid of same temperature T.

 

The curve represents the density of states at absolute zero.

Carve (2) tell us what happen to electrons in the metal solid, so we 

measure the temperature by increasing the temperature by (1,000 K), 

we increase the energy of electrons by only (0.1 Iev). Since this a very 

small amount, only the electronics very close to Fermi level can actu

jump to higher quantum states

 

 

 

 

                                                            

6-8 Fermi Dirac probability function: 

Up to this point we discussed what happen to electrons in solid metal 

that are at absolute temperature zero. We saw at absolute zero, the 

electrons occupy all quantum states that have energies below the Fermi 

levels. But what happen when temperature is increased

 

11): The curve represents the density of occupied state for a 

metal solid of same temperature T. 

The curve represents the density of states at absolute zero. 

happen to electrons in the metal solid, so we 

measure the temperature by increasing the temperature by (1,000 K), 

we increase the energy of electrons by only (0.1 Iev). Since this a very 

small amount, only the electronics very close to Fermi level can actu

jump to higher quantum states 

                                                            Figure (6-12); Fermi level  

8 Fermi Dirac probability function:  

Up to this point we discussed what happen to electrons in solid metal 

e temperature zero. We saw at absolute zero, the 

electrons occupy all quantum states that have energies below the Fermi 

levels. But what happen when temperature is increased 

11): The curve represents the density of occupied state for a 

happen to electrons in the metal solid, so we 

measure the temperature by increasing the temperature by (1,000 K), 

we increase the energy of electrons by only (0.1 Iev). Since this a very 

small amount, only the electronics very close to Fermi level can actually 

Up to this point we discussed what happen to electrons in solid metal 

e temperature zero. We saw at absolute zero, the 

electrons occupy all quantum states that have energies below the Fermi 



We might expect that with increase in temperature, the motion of 

electrons increases; there by increasing the energy of electrons, this 

means that electrons begin filling quantum states of energies above 

Fermi level.  

But regardless of energy increase, quantum mechanism dicates that a 

minimum of electrons can be found in quantum states with equal 

energies. The mathematical function that describes the probability 

distribution of energies of electrons at some temperature T is given by: 

F(E)  = 
�

C(@3@D)/EF G�
                      (6-25) 

 

Known on Fermi- Dirac probability function 
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Figure (6-13): The graph tell us that all the quantum states below �P are 

occupied with 100% certainty [F (E) = 1]  

Now let us combine what curve look like at higher temperature. Let's 

suppose T=400k 

 

                        

 

                 Figure (6-14): Fermi distribution for several temperatures  

One interesting fact that comes from this equation (and curve) is that no 

matter what the temperature is, if E=�P  the exponential term particular 

quantum states 50% probability   

Chapter seven 
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7-1 Pinch Top Nanotechnology Guide to Quantum Dot Fabrication: 

 

Solar cell convert light energy into electricity energy, to collect a liquid 

junction solar cell step by step is going to be shown. 

  

7-1-1 Step (1): Preparing the optically transparent electrode: 

 

Cut off optically transparent electrode to appropriate size. 

Test the electrode for conductivity, the back side is an insulating surface,   

used is a multi meters. 

Wash the electrode in surfactant solution (soap, water) using an ultra 

sonic indicator. 

Rinse with deionizer water and ethanol. 

Immersion is electrode in ethanol bath for the second round of 

sonication. 

 

7-1-2 Step (2): Depositing the compact layer: 

 

The compact layer (Tio
2
 layer) is a thin back layer just on the surface of 

electrode. This layer prevents short circuiting on the liquid junction solar 

cells. 

Developed this layer an aqueous solution of (Ticl
4
 ) is used .Titanium 

tetra chloride (a-k-a Tickle
4
 ) all over the surface of the electrode. 

Heated to 70° C to titanium dioxide 

After heating rinse with deionizer water and ethanol 
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7-1-3 Step (3): Casting the active layer: 

 

This layer is called Tio
2
 active layer it a mesa pore support to provide a 

framework for depositing our quantum dots light absorbers. Active Tio
2
 

areas are marked out by using a take template and Ti o
2
is caste by 

doctor blade technique. Using this simple technique we can 

simultaneously prepare multiple active areas 

Heat electrode to 80°C - 500°C    

 

 

 

 

7-1-4 Step (4): Appling the scattering layer: 

 

The final tier in our photo anode is the scattering Tio
2
 layer. This layer 

provides back scatter photons for quantum dot light absorbers in the 

active area. 

Heat electrode to 80°C - 500°C 

 

7-1-5 Step (5): Preparing the photo anode for sensitization: 

 

Just before depositing solar cell sensitizer the photo anode is treated for 

the second time with Ticl
4
 to increase the surface and to improve the 

quantum dot deposition. 
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Cut off individual solar cells for the optically transparent electrode. 

 

7-1-6 Step (6): Sensitizing the photo anode: 

 

There two methods to do this: 

 

Method (1): Electro-phonetic deposition [E.P.D]:- 

 

Allow the deposition of free sensitized colloidal quantum dot into photo 

anode after the electrode into quantum dot solution. High voltage is 

used to drive the particles into Tio
2
 network. Looking to the front side of 

solar cell, we can see the brighter colored active area, this is because the 

majority of particles have been driven through the scattering layer, and 

now resides in the Mesa pore Tio
2
 support using EPD we can deposit 

various sizes of quantum dot to tune the visible absorption of the solar 

cell making what is called rainbow solar cell.   

 

Method (2): Successive ionic layer absorption and reaction [SILAR]: 

 

To perform (SILAR), we can submerge a Tio
2
 into action (Cd+2) solution 

followed by rinse; submerge into anion solution (S-2, Se-2). 

Used custom built instrument and software developed in the lab to 

automate the process to increase solar. 

Cell throughput. During the first cycle of (SELAR) we can see white 

unsenitized electrode and after five cycles we can see the characteristic 

yellow color of cadmium sulphide. 
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7-1-7 Step 7: Depositing blocking layer:  

 

After sensitizing Tio
2
 film deposit zinc sulphide blocking layer used 

(SELAR). Thus layer back (SELAR) transform the sensitized and Tio
2
 

particles into liquid electrolyte then we use RGO for preparing counter 

electrode.  

  

7-1-8 Step 8: Preparing the counter electrode:  

 

Use a copper (RGO) (Reduced graphene oxide) composite material cast 

on a (fluorine dote tin oxide) electrode.  

Placed the counter electrodes in oven at 110C over night. A part film 

spacer is melted on the surface of the electrode of the copper RGO 

composite material is allowed to the react with poly sulphide electrolyte 

to from copper sulphide RGO. 

 

7-1-9 Step 9: Assembling the solar cell:  

 

First several drops electrolyte are placed in the counter electrode.  
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7-2 Conclusion: 

Nanotechnology is a field of applied science and technology covering a 

broad range of topics. Nanotechnology is extremely diverse ranging from 

novel extensions of conventional device physics, to completely new 

approaches based upon molecular self assembly, to develop new materials 

in nan scale dimensions, even to the speculation on whether we can 

directly control matter on the atomic scale.    The main unifying theme is 

the control of matter on a scale smaller than one micrometer, as well as 
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the fabrication of devices on this same length scale and the development of 

new materials.  

Quantum dot solar cells, on the other hand, are cheaper to produce than 

conventional ones, and can be processed at relatively low temperatures. 

Furthermore, quantum dot solar cells can be fabricated on surfaces of 

arbitrary shape and flexibility, paving the way to a range of novel 

applications. Therefore, quantum dot solar cells are likely to play an 

important role in addressing, at least in some small part, man’s future 

energy needs. Here, the physics of quantum dot photovoltaic are reviewed, 

with particular emphasis on the computational tools which can be used to 

investigate these systems. In particular, the authors discuss the application 

of nanotechnology in self-assembling complex nan scale structures which 

can be tailored to optimize photovoltaic performance. 

 Although the role of computer simulations, in correlating these intricate 

structures, with their performance, can not only reveal interesting new 

insights into current devices, but also elucidate potentially new systems 

with more optimized nanostructures, but unfortunately it is not included in 

this thesis and it can be left for future work. 

Hope for nanotechnology even encompass four years of development, 

researchers still need to determine why these films are so stable but we 

have to go along way before they are commercially reliable 

 

 

 

 

 

7-3 Future work: 

With the urgent need to harvest and store solar energy, especially with the 
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dramatic unexpected changes in oil prices, the design of new generation of 

solar energy storage systems has grown in importance. Besides diminishing 

the role of the oil, these systems provide green energy which would help 

reducing air pollution. Solar energy would be stored in different forms of 

energy; thermal, electric, hybrid thermal/electric, thermo chemical, 

photochemical, and photo capacitors. The nature of solar energy, radiant 

thermal energy, magnifies the role and usage of thermal energy storage 

(TES) techniques. The future work can be carried to study different 

techniques/technologies for solar thermal energy storage can be introduced 

for both terrestrial and space applications. Enhancing the performance of 

these techniques using nanotechnology could be introduced as well as using 

of advanced materials and structures. The study should also introduce the 

main features of the other techniques for solar energy storage along with 

recent conducted research work. Economic and environment feasibility 

studies can be also introduced. 

At last and not the least it has been mentioned that nanotechnology is 

extremely diverse, so it could be extended to include the photo electronics 

as well. 
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However, the dominant loss mechanism is the inability of a solar cell to extract all of 
the power in the photon, and the associated problem that it cannot extract any power 
at all from certain photons. This is due to the fact that the electrons must have enough 
energy to overcome the bandgap of the material.

If the photon has less energy than the bandgap, it is not collected at all. This is a major 
consideration for conventional solar cells, whic
infrared spectrum, although that represents almost half of the power coming from the 
sun. Conversely, photons with more energy than the bandgap, say blue l
eject an electron to a state high above the bandgap, but this extra energy is lost 
through collisions in a process known as "relaxation". This lost energy turns into heat 
in the cell, which has the side

Combining all of these factors, the maximum efficiency for a single
material, like conventional silicon cells, is about 34%. That is, 66% of 
the sunlight hitting the cell will be lost. Practical concerns further reduce this, notably 
reflection off the front surface or the metal terminals, with modern high
at about 22%. 

Lower, also called narrower, bandgap materials will convert longer wavelength, lower 
energy photons. Higher, or wider bandgap materials will convert shorter wavelength, 
higher energy light An analysis of the 
reached at about 1.1 eV, in the near infrared, which happens to be very close to the 
natural bandgap in silicon and a number of other useful semiconductors.

• AM2~3 

AM2 ( =60°) to AM3 ( =70°) is a useful 
performance of solar cells installed at high latitudes such as in northern Europe. 

Similarly AM2 to AM3 is useful to estimate wintertime performance in temperate 
latitudes, e.g. airmass coefficient is greater than 2

latitudes as low as 37°. 

• AM38 

• AM38 is generally regarded as being the airmass in the horizontal 

The spectrum outside the atmosphere, approximated by the 5,800
referred to as "AM0", meaning "zero at

applications, like those on communications satellites

AM0. 

Appendix 1 

 

However, the dominant loss mechanism is the inability of a solar cell to extract all of 
, and the associated problem that it cannot extract any power 

hotons. This is due to the fact that the electrons must have enough 
energy to overcome the bandgap of the material. 

If the photon has less energy than the bandgap, it is not collected at all. This is a major 
consideration for conventional solar cells, which are not sensitive to most of the 

spectrum, although that represents almost half of the power coming from the 
sun. Conversely, photons with more energy than the bandgap, say blue light, initially 
eject an electron to a state high above the bandgap, but this extra energy is lost 
through collisions in a process known as "relaxation". This lost energy turns into heat 
in the cell, which has the side-effect of further increasing blackbody losses.[13]

Combining all of these factors, the maximum efficiency for a single
material, like conventional silicon cells, is about 34%. That is, 66% of the energy in 
the sunlight hitting the cell will be lost. Practical concerns further reduce this, notably 
reflection off the front surface or the metal terminals, with modern high-quality cells 

Lower, also called narrower, bandgap materials will convert longer wavelength, lower 
energy photons. Higher, or wider bandgap materials will convert shorter wavelength, 
higher energy light An analysis of the AM1.5 spectrum, shows the best balance is 

eV, in the near infrared, which happens to be very close to the 
natural bandgap in silicon and a number of other useful semiconductors. 

=70°) is a useful range for estimating the overall average 
performance of solar cells installed at high latitudes such as in northern Europe. 

Similarly AM2 to AM3 is useful to estimate wintertime performance in temperate 
latitudes, e.g. airmass coefficient is greater than 2 at all hours of the day in winter at 

AM38 is generally regarded as being the airmass in the horizontal AM0 

The spectrum outside the atmosphere, approximated by the 5,800 K black body, is 
referred to as "AM0", meaning "zero atmospheres". Solar cells used for space power 

communications satellites are generally characterized using 

However, the dominant loss mechanism is the inability of a solar cell to extract all of 
, and the associated problem that it cannot extract any power 

hotons. This is due to the fact that the electrons must have enough 

If the photon has less energy than the bandgap, it is not collected at all. This is a major 
h are not sensitive to most of the 

spectrum, although that represents almost half of the power coming from the 
ight, initially 

eject an electron to a state high above the bandgap, but this extra energy is lost 
through collisions in a process known as "relaxation". This lost energy turns into heat 

[13] 

Combining all of these factors, the maximum efficiency for a single-bandgap 
the energy in 

the sunlight hitting the cell will be lost. Practical concerns further reduce this, notably 
quality cells 

Lower, also called narrower, bandgap materials will convert longer wavelength, lower 
energy photons. Higher, or wider bandgap materials will convert shorter wavelength, 

spectrum, shows the best balance is 
eV, in the near infrared, which happens to be very close to the 

range for estimating the overall average 
performance of solar cells installed at high latitudes such as in northern Europe. 

Similarly AM2 to AM3 is useful to estimate wintertime performance in temperate 
at all hours of the day in winter at 

K black body, is 
mospheres". Solar cells used for space power 

are generally characterized using 



• AM1 

The spectrum after travelling through the atmosphere to sea level with the sun directly 

overhead is referred to, by definition, as "AM1". This means "one atmosphere". AM1 

( =0°) to AM1.1 ( =25°) is a useful range for estimating performance of solar cells 
in equatorial and tropical regions.

• AM1.5 

Solar panels do not generally operate under exactly one atmosphere's 

sun is at an angle to the Earth's surface the effective thickness will be greater. Many 
of the world's major population centres, and hence solar installations and industry, 

across Europe, China, Japan, the United States of America and els

northern India, southern Africa and Australia) lie in
number representing the spectrum at mid

"AM1.5", 1.5 atmosphere thickness, corresponds to a solar zenith angle of
While the summertime AM number for mid

day is less than 1.5, higher figures apply in the morning and evening and at other 

times of the year. Therefore AM1.5 is useful to represent the overall yearly average 
for mid-latitudes. The specific value of 1.5 has been selected in the 1970s for 

standardization purposes, based on an analysis of solar irradiance data in the 
conterminous United States.

for all standardized testing or rating of terrestrial solar cells or modules, including 

those used in concentrating systems. The latest AM1.5 standards pertaining to 
photovoltaic applications are the ASTM G

simulations obtained with the

direction ( =90°) at sea level.

variability in the solar intensity received at angles close to the horizon as described in 
the next section Solar intensity

• At higher altitudes 

The relative air mass is only a function of the 
not change with local elevation. Conversely, the

relative air mass multiplied by the local atmospheric pressure and divided by the 
standard (sea-level) pressure, decreases with elevatio

panels installed at high altitudes, e.g. in an
lower absolute AM numbers than for the corresponding latitude at sea l

numbers less than 1 towards the equator, and correspondingly lower numbers than 

listed above for other latitudes. However, this approach is approximate and not 
recommended. It is best to simulate the actual spectrum based on the relative air mass 

ter travelling through the atmosphere to sea level with the sun directly 

overhead is referred to, by definition, as "AM1". This means "one atmosphere". AM1 

=25°) is a useful range for estimating performance of solar cells 
regions. 

Solar panels do not generally operate under exactly one atmosphere's thickness: if the 

sun is at an angle to the Earth's surface the effective thickness will be greater. Many 
of the world's major population centres, and hence solar installations and industry, 

across Europe, China, Japan, the United States of America and elsewhere (including 

northern India, southern Africa and Australia) lie in temperate latitudes. An AM 
number representing the spectrum at mid-latitudes is therefore much more common.

1.5 atmosphere thickness, corresponds to a solar zenith angle of
While the summertime AM number for mid-latitudes during the middle parts of the 

day is less than 1.5, higher figures apply in the morning and evening and at other 

Therefore AM1.5 is useful to represent the overall yearly average 
latitudes. The specific value of 1.5 has been selected in the 1970s for 

standardization purposes, based on an analysis of solar irradiance data in the 
conterminous United States.[9] Since then, the solar industry has been using AM1.5 

for all standardized testing or rating of terrestrial solar cells or modules, including 

entrating systems. The latest AM1.5 standards pertaining to 
photovoltaic applications are the ASTM G-173[10][11] and IEC 60904, all derived from 

simulations obtained with the SMARTScode 

=90°) at sea level.[6] However, in practice there is a high degree of 

intensity received at angles close to the horizon as described in 
Solar intensity. 

air mass is only a function of the sun's zenith angle, and therefore does 
not change with local elevation. Conversely, the absolute air mass, equal to the 

relative air mass multiplied by the local atmospheric pressure and divided by the 
level) pressure, decreases with elevation above sea level. For solar 

panels installed at high altitudes, e.g. in an Altiplano region, it is possible to use a 
lower absolute AM numbers than for the corresponding latitude at sea l

numbers less than 1 towards the equator, and correspondingly lower numbers than 

listed above for other latitudes. However, this approach is approximate and not 
recommended. It is best to simulate the actual spectrum based on the relative air mass 

ter travelling through the atmosphere to sea level with the sun directly 

overhead is referred to, by definition, as "AM1". This means "one atmosphere". AM1 

=25°) is a useful range for estimating performance of solar cells 

thickness: if the 

sun is at an angle to the Earth's surface the effective thickness will be greater. Many 
of the world's major population centres, and hence solar installations and industry, 

ewhere (including 

latitudes. An AM 
latitudes is therefore much more common. 

1.5 atmosphere thickness, corresponds to a solar zenith angle of =48.2°. 
latitudes during the middle parts of the 

day is less than 1.5, higher figures apply in the morning and evening and at other 

Therefore AM1.5 is useful to represent the overall yearly average 
latitudes. The specific value of 1.5 has been selected in the 1970s for 

standardization purposes, based on an analysis of solar irradiance data in the 
Since then, the solar industry has been using AM1.5 

for all standardized testing or rating of terrestrial solar cells or modules, including 

entrating systems. The latest AM1.5 standards pertaining to 
and IEC 60904, all derived from 

However, in practice there is a high degree of 

intensity received at angles close to the horizon as described in 

sun's zenith angle, and therefore does 
air mass, equal to the 

relative air mass multiplied by the local atmospheric pressure and divided by the 
n above sea level. For solar 

region, it is possible to use a 
lower absolute AM numbers than for the corresponding latitude at sea level: AM 

numbers less than 1 towards the equator, and correspondingly lower numbers than 

listed above for other latitudes. However, this approach is approximate and not 
recommended. It is best to simulate the actual spectrum based on the relative air mass 
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(e.g., 1.5) and the actual atmospheric conditions for the specific elevation of the site 

under scrutiny. 

 

Multi-junction cells 

Cells made from multiple materials have multiple bandgaps. So, it will respond to 
multiple light wavelengths and some of the energy that would otherwise be lost to 
relaxation as described above, can be captured and converted. 

For instance, if one had a cell with two bandgaps in it, one tuned to red light and the 
other to green, then the extra energy in green, cyan and blue light would be lost only 
to the bandgap of the green-sensitive material, while the energy of the red, yellow and 
orange would be lost only to the bandgap of the red-sensitive material. Following 
analysis similar to those performed for single-bandgap devices, it can be demonstrated 
that the perfect bandgaps for a two-gap device are at 1.1 eV and 1.8 eV.[14] 

Conveniently, light of a particular wavelength does not interact strongly with 
materials that are not a multiple of that wavelength. This means that you can make a 
multijunction cell by layering the different materials on top of each other, shortest 
wavelengths on the "top" and increasing through the body of the cell. As the photons 
have to pass through the cell to reach the proper layer to be absorbed, transparent 
conductors need to be used to collect the electrons being generated at each layer. 
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Appendix II 

 

 What is molecular beam epitaxy? 

 

To make an interesting new crystal using MBE, you start off with a base material 

called a substrate, which could be a familiar semiconductor material such as silicon, 
germanium, or gallium arsenide. Then you fire relatively precise beams of  molecules 

(heated up so they're in gas form) at the substrate from "guns" called effusion cells. 
You need one "gun" for each different beam, shooting a different kind of molecule at 
the substrate, depending on the nature of the crystal you're trying to create. The 

molecules land on the surface of the substrate, condense, and build up very slowly and 
systematically in ultra-thin layers, so the complex, single crystal you're after grows 

one atomic layer at a time. That's why MBE is an example of what's called thin-film 
deposition. Since it involves building up materials by manipulating atoms and 
molecules, it's also a perfect example of what we mean by nanotechnology . 

Photo: Molecular beam epitaxy (MBE) in action. MBE takes place in ultrahigh 

vacuum chambers like this, at temperatures of around 500°C (932°F), to ensure a 

totally clean, dust-free environment; the slightest contamination could ruin the 

crystal. Photo by Jim Yost courtesy of US DOE/NREL (U.S. Department of 

Energy/National Renewable Energy Laboratory). 

That's pretty much MBE in a nutshell. If you want a really simply analogy, it's a little 

bit like the way an inkjet printer makes layers of colored print on a page by firing jets 
of ink from hot guns. In an inkjet printer, you have four separate guns firing different 

colored inks (one for cyan ink, one for magenta, one for yellow, and one for black), 
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which slowly build up a complex colored image on the paper. In MBE, separate 

beams fire different molecules and they build up on the surface of the substrate, albeit 
more slowly than in inkjet printing—MBE can take hours! Epitaxially simply means 

"arranged on top of," so all molecular beam epitaxy really means is using beams of 
molecules to build up layers on top of a substrate. 

 

Photo: Molecular beam epitaxy (MBE) means creating a single crystal by building up orderly 

layers of molecules on top of a substrate (base layer). 

Quantum dots are extremely small semiconductor structures, usually ranging from 2- 

10 nanometers (10-50 atoms) in diameter. At these small sizes materials behave 

differently, giving quantum dots unprecedented tunability and enabling never before 

seen applications to science and technology. 
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Appendix III 

 

Kronig-Penney model 

Dept. of Math and Physics, Alfred State Coll. SUNY, Alfred NY 14802 

 

[Problem 13] Kronig-Penney model:  Plot the energy vs. wave vector for repulsive 
delta-function potentials. V(x) =h2/ (8p2a) lSd(x-na) where a is the distance between 
adjacent delta functions. Using boundary conditions, one obtains the equation:  

Cos (qa) = cos (ka) +λ/2 sin (ka)/(ka). We use 3π for λ. Obtain k2 as a function of q.  

See "Physics and Mathematics", Patrick Tam, Computers in physics, p.342, 
May/June, 1991. The solution 1 below is based on his article. He used Mathematica. 

[Solution] solution 1 (ver . 6.01)  

Reset parameters  

> restar t:  

> with(plots):  

band: number of bands (you can change the number of bands here),  

div: number of mesh points in a band  

q: wave vector  

a: distance between adjacent repulsive delta functions  

> div:=30:band:=3:  

> div1:=div+1:  

Dimensioning of q, k, and energy  

> q:=ar ray(1..band,1..div1):  

> k:=ar ray(1..band,1..div1):  

> energy:=ar ray(1..band,1..div1):  



 85

The eigenvalue equation to be solved (See p.344, Computers in Physics, May/June 
1991)  

> eq:=cos(qa)=cos(ka)+3*Pi/2*sin(ka)/ka:  

Solve the equation for each q in each band  

> for  n from 1 to band do  

> for  i from 1 to div1 do  

> q[n,i]:=(i-1)*Pi/div+(n-1)*Pi:  

> # q value  

> qa:=q[n,i]:  

> # solution k  

> k[n,i]:=fsolve(eq,ka,(n-1)*Pi..n*Pi):  

> # energy=k^2  

> energy[n,i]:=k[n,i]^2:  

> od:  

> od:  

> listqp:=ar ray(1..2*(div+1)):  

(q,energy) of the right branches  

> for  n from 1 to band do  

> for  i from 1 to div1 do  

> listqp[2* i-1]:=q[n,i]:  

> listqp[2* i]:=energy[n,i]:  

> od:  

> # plotlist[n] contains (q1,E1,q2,E2,...) for  n-th band on the r ight branches  

> plotlist[n]:=conver t(listqp,list):  

> od:  
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>  

> # (-q, energy) of the left branches  

> for  n from band+1 to 2*band do  

> for  i from 1 to div1 do  

> listqp[2* i-1]:=-q[n-band,i]:  

> listqp[2* i]:=energy[n-band,i]:  

> od:  

> plotlist[n]:=conver t(listqp,list):  

> od:  

qelist contains the list of (q,energy) for all bands  

> qelist:=[seq(op(plotlist[i]),i=1..2*band)]:  

Plot the qelist.  

> pointplot(qelist,title=" Energy 
(h^2/(8Pi^2ma^2)" ,style=point,symbol=circle,symbolsize=4,color=blue,labels=["
q (1/a)" ," Energy" ]);  

 

Below is another solution to the problem.  

> # Kronig-Penney model solution 2  

Reset parameters  
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restar t:  

Number of bands  

> band:=3:  

> y:=proc(qa)  

> local i,n,ka,eq;  

Loop to determine to which band q belongs  

> for  i to band+1 do  

> if abs(qa)-(i-1)*evalf(Pi)>=0 \  

> and abs(qa)-i*evalf(Pi)<0  

> then  

> n:=i;  

> break;  

> fi;  

> od:  

>  

The eigenvalue equation  

> eq:=cos(qa)=cos(yy)+3*Pi/2*sin(yy)/yy;  

Solution k  

> ka:=fsolve(eq,yy,(n-1)*Pi..n*Pi);  

Energy = k2  

> ka^2;  

> end:  

0.99 below is used to avoid fictitious vertical line at the two extreme discontinuous 
boudaries.  
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> plot(y,-band*Pi*0.99..band*Pi*0.99,title=`Energy 
(h^2/(8Pi^2ma^2)`,labels=[`q 
(1/a)`,`Energy`],color=green,discont=true,thickness=2);  

>  
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