A Simulation Study Of Ridge regression Method With

Autocorrelated Errors

Hussein Yousif Abdallah*

Abstract

The objective of this paper is to discuss the case of the general linear model that
suffered from both problems autocorrelation ( AR(1) and AR(2) ) and multicollinearity,
we used simulation technique to create data containing these problems at the same time ,
and we used the two stages least squares procedure (2SLS) to deal with problem of
autocorrelation , and ridge regression (RR) to deal with the problem of multicollinearity
of the data that had originally treated in consideration of autocorrelation. Moreover we
used the evaluation methods as a base for the process of evaluation and comparison.

Throughout the simulation experiment results domain we concluded that dealing
with autocorrelation from data that suffered from multicollinearity, multicollinearity in-
creases when the error term follows first or second order autoregressive scheme.
Whereas, multicollinearity decreases if the model has a few explanatory vari-
ables .Among the types of ridge regression method , if we take the MSE as a criteria of
comparison we find that ordinary ridge regression is the best when the sample size is too

large, otherwise , generalized ridge regression is the best one.
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Introduction

The ordinary least squares method is considered as one of the most important
ways of estimating the parameters of the general linear model because of its ease
and simplicity and rationality of the results that obtained when the specific as-
sumptions are achieved regarding the general linear model about error term and
explanatory variables which are supposed to be orthogonal.

Yet if these assumptions are not verified , the ordinary least squares method will
give undesirable results , and there appears the problem of inaccurate estimation ,
one of which is associated with the autocorrelation of errors which occurs when
the value of the error term in any particular period is correlated with its own pre-
ceding value or values [ E(U; U) =0 s #0 ]| multicollinearity is another sig-
nificant problem , this occurs when the explanatory variables are correlated with
each other.

Suppose there is a linear relation between dependent variable Y; and ex-
planatory variables X, X,,. . . . X, and error term U;, we can write this relation as
follows [Draper & Smith1981:23 | :

Yi= By +B; X ;;i+B, X3t ....... +B, X, + Ui ....... (1)
Where:
Y; : 1s the i"th observation of response variable .

X : 1s the i"th observation of explanatory variable j .
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By,B,B>,, ....... ,B,, : are the parameters or regression coefficients .
U, : 1s a random error term or disturbance term .

In matrix form the general linear model GLM (1) is :

Where :

Y : (nx1) vector observations of the dependent variable .
X : (nx(p+1)) matrix of explanatory variables .

B : ((p+1)x1) vector of regression coefficients.

U : (nx1) vector of errors .

The estimation of B using OLS is as follows [Younis & Others ,2002:156]

Autocorrelation Problem

This problem occurs when the assumption of the classical linear model about the

independence of the disturbances from observation to others (

BUU)=0 V¥ 5%

) is not verified ,therefore the errors in one time period are
correlated with their own values in other periods[Ronald ,2002] .

The model with first-order autoregressive process AR(1) has the form

[John Nester & others ,1985:448] :

Where
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r is autocorrelation parameter(coefficient) (I17.(1 > |

Vi 1s a random disturbance , where

Vz ~ (0’05)
EVV, _)=0c v s=0
=0 \Y s#0

The model with second — order autoregressive process AR(2) has form
U=rU.; +rUs+ V. (5)

To estimate the Autocorrelation Coefficient we used Durbin Two — Step
Method ,This method proposed by Durbin (1960) [Durbin,1970].The steps in the
estimation procedure are as follows :

For AR(1) :- Consider the transformation model :

Yt = B()(]- I") +FY;_1+BJXH-B]I’XH_1+ ....... + BpX;,t- er;;t_]-i-I/t

.......................... (6)
Let
ap=By(l-r) , a;=B; a;=Bir ... , a,= Byr
Therefore, we can rewrite equation (6) as
Yt = Cl()+l/‘Yt_1+Cle1t+Cng1t_1+ ....... + aer};t_]'i'I/t .............. (7)

Estimate the regression equation (7) by OLS and obtain estimated coefficient of
the lagged variable Y;.; (")
For AR(2): Consider the transformation model

(Y, -r1 Y -r2Y5) = Bo(l-r; -12) +B (X1 1 X - ¥2Xpe2)* ... + B,

(AX;”' I’])(},t_J- FZAX;)t-Z)-i-m ................................ (8)
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Where W,=rU. +rU.,
We rewritten equation (8) as follows
Y, =Bo(l-r;-ry) -r1 Y +r Y0+ Bi X - BiriXi - BiroXies... ... +
B, X~ Bor 1 Xpi- 1= Bpr 2Xpr 2t W,
Estimate the regression equations (9) by OLS and obtain estimated coefficients of
the lagged variables Y, ;, Y, (r;,72).
In order to deal with this problem we used The Two Stages least squares

procedure (2SLS) ,we can summarize this method as follows [Kadiyala,1968]:

Pre multiply equation (2) by T we obtain:

TY=TXBHTU ooioeieiieeeiieeeeeeei (10)
where :
If U, follows AR
- p 1 0 - - 0 0 0
0 - p 1 0 0 0
- - - - - 0 0 0
T =
0 0 - p 1
6/ 0 0 0 0 0
Oy
—P1 2 2
1- 1- 0o . . 0 0 0
And - p, NEVERRVEVS If U, follows AR(2)
-p, - P 0 0 0
T= 0 -p, 0 0 0
0 0 —P2 — P 1 0
0 0 -py —pp 1




A Simulation Study Of Ridge regression Method With Autocorrelated Errors

multicollinearity Problem :
Originally multicollinearity meant the existence of a (perfect) or exact linear rela-
tion among some or all explanatory variables of regression model . For the p vari-
able regression involving explanatory variables X, X, ....... ,Xp , an exact linear
relationship is said to exist if the following condition is satisfied
[Gujarati ,1995:323]:

CXi+CXot o 7CpXp = 0

Where:
C;,C,,....,Cp are constants thus that not all of them are zero simultaneously.

Multicollinearity is also the name we give to the problem of nearly perfect linear
relationships among explanatory variables , this is the more common problem ,
and 1t said to exist if the following condition is satisfied :

C]X1+C2X2+... .....+CPXP +Vi=0

Where :  V; is stochastic error term.

Note that the perfect collinearity does not usually happen except in the case
of the dummy variable trap
Use of Eigenvalues and Eigenvectors:

Suppose we consider the XX matrix (correlation form) we know that there

= B |
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exist an orthogonal matrix [Myres,1986:86] .
V=[Vi,Vayeiooece ol Vp]
Suchthat: V(X' X)V = diag(l; 2s........ AB) e, (11)

The A; is the i-th eigenvalue of the correlation matrix , the column of V' are
normalized eigenvectors associated with eigenvalues of (X X).

For our purpose here, we need to denote the i element of the vector ¥; by
Vi . Now if multicollinearity is present at least one 4; @ 0 thus , we write , for at
least one value of j , V(X' X)V; @ 0 .Which mmplies that for at least one eigen-
vector V;,

Thus the number of small eigenvalues of the correlation matrix relate to the
number of multicollinearities according to the definition in (11) and the
“weights” C; are the individual elements in the associated eigenvectors.

There are several methods that have been proposed to remedy multicollin-
earity problem by modification the method of OLS to allow biased estimators of
regression coefficients , these methods are ridge regression , principal components
regression and latent roots regression in this study we used ridge regression.

Ridge Regression:

This method first suggested by Hoerl in 1962 , it discussed at length by Ho-

erl and Kenard in (1970) [Hoerl & Kennard ,1970] .The ridge regression estima-

tors are obtain by introducing into the least squares estimator b a biasing constant

= B |
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C30 therefore, yields the ridge regression coefficients| Ghufran ,1990]:
br= XX+ CD XY oo (12)
When all variables are transformed to the correlation form, the ridge regres-
sion coefficients become:
br= (rat CD™' 1y oo (13)
Where:
rw. (p’p) matrix containing the pairwise coefficients of simple correlation be-
tween the explanatory variables.
ry: (p'1) vector containing the coefficients of simple correlation between the de-
pendent variable and the explanatory variables.
The form (13) of b called standardized ridge regression coefficients.
The constant C reflects the amount of bias in the estimators , when C = 0
(13) reduces to OLS regression coefficients in standardized form, when C > 0 the
ridge regression coefficients are biased but tend to be more stable than OLS esti-
mators ( in application the interesting value of C usually lie in the range (0,1) )
[Draper & Smith ,1980:313] .The ridge regression estimator has two forms
[Kadiyala,1980] :
When the constant C takes a sequential values (C=CI),ridge regression estima-
tor called ordinary ridge regression estimator as in (12)

When C takes an estimated values (C;=diag(c) ) , ridge regression estimator

O
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called generalized ridge regression estimator , and written as
br= (X' X+ diag(C))' XY ..ol (14)
We can write the ridge regression estimators of equation (13) using the eigen

values and eigen vectors as follows (C=CI):

p
bp= VA+CDVry =X (L+CO)' V] ry

J
i=l

And when (Ci=diag(C) ):

p
by= 2+ C) V] ry
i=1

The Mean square error when C=CI is given as:

2
p a,‘ p /l,'
MSE (bR):szizlm +Gl¢22i:1m ............... (15)

Where
aiz = Z ;0:1 (Vi,bols )2

and when Ci=diag(c) is given as;

» 1
=4, + C)?

» A,

T S A 16
O-u Zi:l (Al + C)2 ( )

MSE (by) = C*Y. 2., (C,BV,)

Note that the first term of MSE in equations (15) and (16) presents the Bias’
(bg) which is increasing function of C , and the second one is Var(bg) which is

decreasing function of C, this means we accepted some bias in order to decrease
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the variance [El Any,1987] .
Choice of biasing C:

There are many procedures suggested to choose the optimum value of C, in
this study we used Hoerl , Kenard & Baldwin technique as one of the simulation
techniques when C is a constant ,this technique takes the following formula
[Hoerl & others,1975]

Cp = pSZ/b otsDols
Where
p: number of the estimated parameters
S?: mean square errors of OLS estimators
b,is : vector of OLS estimators
And we used the following formula for C;=diag(C) [Dwived,1980]:
Ci=8/b’ys i=12....p
Where: b, : the i-th estimator of OLS.
Simulation Experiment :

We used computer simulation to generate data contain multicollinearity
and autocorrelation both .Delphi Language (version 6.0) used to construct statisti-
cal package designed by researcher.

Stepl: Generate a random number U which follows uniform distribution U~ U
(0,1).

Step2: Generate a random variable V; which follows standard normal distribution

= B |
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Vi~ N(0,1) , we used Box — Mullar , Polar and Inverse transform methods
Step3: Compute the disturbance term U, which follows :-

AR(1) U =pU. 1+ V, -1<p<1

AR(2) Ui =piUe + p2Ut+ V; -1<pp< 1
Step4: Generate an explanatory variables :

Generate X;:

We used a random number generation to generate X;, (X;~ U(0,1)) b-

.................

.................

MethodI [Ghufran ,1990]:
Xo=g1t@X+D
X3 = XotgsXo
X=X+ g
Where
[0S 25 S ,gp are arbitrary .
D : (n’1) vector follows uniform distribution (U(0,1)) .
MethodlII [Yue Fang and Sergio,2003]
X; =D 1+X;, J=23 .p
Step5: Compute dependent variable Y :
Yi= By +B; X/ +B, Xt ....... +B, X, + U, t=12.... N

Where: By,B;,B,,, ....... ,B,, : are arbitrary.
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Step6:  Standardize Y, and Xs
Step7: Applying OLS .
Dealing with Autocorrelation:
We used the Two Stages least squares procedure (2SLS) to deal with the prob-

lem of autocorrelation as follows :

Transform the original generated data

Standardize the transformed data .

Applying OLS .
Dealing with Multicollinearity:

After we eliminated the problem of autocorrelation ,we used the ridge re-
gression method to deal with the problem of multicollinearity.

Figure (1) shows the main form of the program that use to generate data.

Random Variable rDependent Variable Y
bO
MMethod Sample Size 1) f Coefficient's B
= bl 0.5
= Inverse Transform b2 _ (— E e }
— oz ] rase B
n— = e
~ Polar b3
b € ox
= Box and Mullar hS
e o D
' b7 € Close
—Autocorrelation 0 Close
b8
= AR(L) © AR(2) b9 ls |
blozs |
P=jpos ] P1= [
P2=
—Explanatory Variable
METHODS MNumber of X's f MNew Data )
 Method 1 Variables
" Nethod 2

Figure 1 : The main form use to generate data
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Models Criteria:

The package designed to appropriate, different sample sizes from 2 to infin-
ity, number of explanatory variables from 2 to 45 and it’s more flexible in choos-
ing the autocorrelation coefficients.

In order to make this study more inclusive we choose the following criteria
to the models:
Sample size:

We choose the following sizes as small samples sizes

n=5,10,20
We choose the following sizes as large samples sizes
n =30,50,100,200
Number of explanatory variables:
We choose different number of explanatory variables as follows :
p=2,5,10,20

Dependent variable Y:

According to a number of explanatory variables p we compute Y where :

Y= By +B; X/ +B, X ot ... ... +B, X, + U,
p=251020

The models are :

Yt = '2 +05 X]t+0.7X2t
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Yi=5+8X,-9X+3X3-6X4+0.7Xs5

Y=10+05X,,+03X-2X3-3Xy+1.5X5-02Xs+05X7; +23 Xg
+6 Xo +3.5 Xio

Y =243 X, +5X54-02X3-03X4-05X5,+1.2 X5 +1.3 X7y +15Xg
+0.02 X oy +0.03 X;040.05 Xp14 -2 X120 -3 X130-5 Xpye 12 Xys, +13 Xy
+15 X7 -.04 X5 -0.06 X19, +0.03 X0,

Autocorrelation Coefficients:

We choose the following values for the autocorrelation coefficients:

AR(1) : r =099, 07 , =£03
AR(2) : r,r, =099, 0.7 , £03
Conclusions:

From the results obtained in this study , we can conclude that :
Dealing with autocorrelation from data that suffered from multicollinearity :
Multicollinearity increases when the error term follows first or second order
autoregressive scheme.
Multicollinearity decreases if the model has a few explanatory variables.
When the error term follows first order autoregressive scheme :
MSE for ridge regression and ordinary least squares methods decreasing rap-
idly as sample size increase when an autocorrelation coefficient greater

than or equal to [0.99].
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MSE for ridge regression method increases as the number of explanatory
variables increase when an autocorrelation coefficient is less than or equal
to 0.3]

When the sample size is too large the OLS and ridge regression method
smallest S” and largest R? .

Ordinary least squares method has largest S* and smallest R* when an auto-
correlation coefficient is greater than or equal to |0.99|.

For small and large sample sizes the significance of the models estimated by
OLS and ridge regression becomes more strong as the sample size and the
number of explanatory variables increase .

When the error term follows second order autoregressive scheme :

MSE for ordinary least squares method decreases as sample size increases
when an autocorrelation coefficient is greater than or equal to |0.7] .

MSE for ordinary least squares method decreases as number of explanatory
variables increase when an autocorrelation coefficient less than or equal to
0.7]

Ordinary least squares models are not significant.
The $* for Ordinary least squares method decreases as sample size in-
creases.

When the sample size is too large the models estimated by OLS and ridge
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regression are not significant .
When an error term follows first or second order autoregressive scheme

Ordinary least squares method has largest MSE

When the sample size is too large the MSE for OLS and ridge regression
increases , whereas, it decreases when the explanatory variables are too
much .

The MSE for ordinary ridge regression greater than the MSE for generalize
ridge regression, whereas, the opposite occurs when the sample size is
too large .

The variance for ordinary ridge regression (generalize ridge regression)
greater than the biased > for ordinary ridge regression (generalize ridge
regression).

Among the types of ridge regression method , if we take the MSE as a criterion
of comparison we find that ordinary ridge is the best when the sample size is

too large , otherwise , generalized ridge is the best one.
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