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Abstract

The central sequences and inner derivations with regularity properties
in the classification program for separable amenable C*-algebras are shown. We
obtain the automorphisms of C* —algebras and all Calkin algebras, similarly the
unitary equivalence, and Rohlin property of automorphisms of separable C* -
algebras and Jiang—Su algebra. We determine the countable saturation and chain
condition of Corona algebras and certain C*-algebras and Banach algebras. We
classify the strongly self- absorbing and descriptive set theory of C*-algebra with
model theory of operator algebras and Borel complexity.
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Introduction

We show that a separable C*-algebra Ahas continuous trace if and only if
each central sequence in A is trivial. This is used to show that the condition, that
every derivation of A is determined by a multiplier of A, is equivalent to the
condition that every summable central sequence in A is trivial. We shall extend the
theorem of Lance and Smith to C*-algebras of bundles whose fibres are C*-
algebras.

The Proper Forcing Axiom implies all automorphisms of every Calkin al-
gebra associated with an infinite-dimensional complex Hilbert space and the ideal
of compact operators are inner. Although our results were obtained by considering
C*M@algebras as models of the logic for metric structures, the reader is not required
to have any knowledge of model theory of metric structures (or model theory, or
logic in general). The proofs involve analysis of the extent of model-theoretic
saturation of corona algebras. We study commutants modulo some normed ideal of
n-tuples of operators which satisfy a certain approximate unit condition relative
to the ideal.

We include a brief history of the program's successes since 1989, a more
detailed look at the Villadsen-type algebras which have so dramatically changed
the landscape, and a collection of announcements on the structure and properties of
the Cuntz semigroup. This characterizes the Jiang—Su algebra Z as the uniquely
determined initial object in the category of strongly self-absorbing C*-algebras.

We establish the Borel computability of various C*-algebra invariants,
including the Elliott invariant and the Cuntz semigroup. This implies a
dichotomy for the Borel complexity of the relation of unitary equivalence of
automorphisms of a separable unital C*-algebra: Such relation is either smooth or
not even classifiable by countable structures.

We introduce a version of logic for metric structures suitable for applications
to C*-algebras and tracial von Neumann algebras. We introduce the countable
chain condition for C*- algebras and study its fundamental properties. We study the
saturation properties of several classes of C*-algebras. Saturation has been shown
by Farah and Hart to unify the proofs of several properties of coronas of o-unital
C*-algebras; we extend their results by showing that some coronas of non-o-unital
C*-algebras are countably degree-1saturated. We then relate saturation of the
abelian C*-algebra C(X), where X is 0-dimensional, to topological properties of X,
particularly the saturation of CL(X).

For projectionless C*-algebras absorbing the Jiang—Su algebra tensorially,
we study a kind of the Rohlin property for automorphisms. We show that the
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crossed products obtained by automorphisms with this Rohlin property also absorb
the Jiang—Su algebra tensorially under amild technical condition on the C*-
algebras. We show that if Ais Z, 0,, O, a UHF algebra of infinite type, or the
tensor product of a UHF algebra of infinite type and O.,, then the conjugation
action Aut(A) ~ Aut(A) is generically turbulent for the point-norm topology.
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Chapter 1
Central Sequences and Automorphisms of C*-Algebras

We show that an equivalent to a representation A = A, @A, , where A; has
continuous trace and A, is the restricted direct sum of simple C*-algebras.
Section (1.1): Inner Derivations of Separable C*-Algebras

In 1968 S. Sakai [19] showed that every derivation of a simple C*- algebra with unit
is inner. Since then a fair amount of work, notably by G. A. Elliott [11]-[13], has been
invested to find C*- algebra with only inner derivations. It was soon apparent that in the
case of a C*- algebra A without unit the correct problem is: are there any derivations of A
not of the form ad(h), where h is a multiplier of A ? (If A is separable and has only inner
derivations, then by [3] A = B@C , where B has a unit and C is commutative.) Since there
IS a bijective correspondence between derivations of A and derivations of its multiplier
algebra M (A), the problem can be for mulated as finding those C* - algebras A for which
M (A) has only inner derivations. S. Sakai showed in [20] that such was the case for all
simple C*- algebras, and in [3] it was established for separable C* - algebras with continuous
trace.

With W. B. Arveson's theory of spectral subspaces a new set of ideas was introduced in
operator algebra theory. It was used in [15] to show that each *_derivation of a algebra A
has the form ad(ih), where h € A" (the enveloping von Neumann algebra of A; see [9]),
and is the strong limit of an increasing net of positive operators in A. For example, in
conjunction with Lemma(1.1.1) it gives the lifting theorem for derivations [18], and, as we
shall see, it also provides the missing tool for solving the separable case of the above
mentioned problem (see [3]).

The next lemma is straightforward and cannot be attributed to anybody. We prove it here
because we shall use it repeatedly. It is used in the proof of the lifting theorem for
derivations. Furthermore, taking the element x in the lemma to be an open central projection
in A" supporting a closed ideal Tin A(i.e.I xA"" nA), it shows the existence of
approximate units for I which are quasi-central for A. Such approximate units have turned
out to be rather useful; see [5] and [7]. Finally, it has been used recently by G. A. Elliott to
give a partial solution of our problem of classifying those separable C*- algebras A for
which M (A) has only inner derivations (see [13]).

Lemma (1.1.1)[1]: Let Abe a C*- algebra and A"”its enveloping von Neumann algebra. If
x € A" and x derives A (i.e.,xa —ax € A for all a in A), then there is a net {x;} in A
converging strongly to x such that lim||(x — x;)a — a(x — x;)|| = 0 for each a in A.
Moreover, {x;}can be chosen in the convex hull of any bounded net in A converging
strongly to x.

Proof: Let{y; |i € 1} be a bounded net in A converging strongly to x. (By Kaplansky's
density theorem such a net exists.) Denote by A the net (with the obvious ordering) of
triplesA = {i, u, €}, where i € I, u, is a finite subset of A, say u = {a,4,a,,...,a,}, and € >
0. It suffices to show that for each A there is a convex combination x; = . €;y;, such that
i <jforalljand ||(x —x)ar —ar(x — x|l < efor1 < k < n. Replacing A4 by its n-
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fold direct sum and setting a = (a4,...,a,), we may assume n = 1 and thus reduce the
problem to finding x; = X &y;, with i < j such that ||(x — x3)a; — a;(x — x)|| < e.

The set

E={yja,—a,yli<j}cA

Contains xa,; — a,x as a o-weake limit point, and xa, — a,x € A, since x derives A. Since
A" Is isomorphic (as a Banach space) to the second dual A** of A and the a-weak topology
on A is the o(A, A*) - topology, it follows from the Hahn- Banach theorem that Conv E
contains xa, — a,x as a limit point in norm, which we need.

We use Dixmier [9]. A will denote a separable C*- algebra, 4 its spectrum and A its
primitive (or prime) spectrum , both equipped with the Jacobson topology. We denote by
A" the enveloping von Neumann algebra of A4, and by M (A) the C*- algebra of multipliers
of Ain A". Note that if x € A" and xa, € A, ayx € A for some strictly positive elements ao
of A (see [2]), then x E M(A). Recall from [6] that the strict topology (R. C. Busby's
invention) on M (A) is determined by the semi-norms x — ||x,|| + ||a,ll, a € A, and that for
a bounded sequence (x,,) in M(A) to converge strictly to zero it suffices that ||x,a,| +
llapx,, || = 0 for some strictly positive element a, in A. Finally we shall always denote the
center of M(A) by Z(A), and we note that by the Dauns-Hofmann theorem (see [10] or [14])
we may identify Z(A) with the algebra of bounded continuous functions on 4 (or on A).

A will denote a separable C* -algebra. A bounded sequence (x,) in A is central if
Lim ||ax,, — x,a|| = 0 foreachain A. Clearly (x;) is a central sequence if (x;,,) is, so that
each central sequence in A is a combination of central sequences in Ag, . From the Stone-
Weierstrass theorem it follows that if (x,,) is a central sequence in As,, then (f(x,)) is a
central sequence for each bounded continuous function f: R — C. In particular, each central
sequence in A, is the difference of central sequences in A.. We can therefore concentrate
our attention on central sequences in A.,.

A central sequence (x,,) in A, is summable if there is an element x in A" such that ), x,, =
x (strongly convergent sum).

A central sequence (x,,) in A is trivial if there is a sequence (z,) in Z(A4) such that
(x,, — z,,) converges strictly to zero. Note that a central sequence (x,) in M (A)converges
strictly to zero provided that||x,,a|| — 0 for each a in A.

Lemma (1.1.2)[1]: Acentral sequence (x,,) in A is trivial if and only if there is a sequence
(z,,) in Z(A) with ||z, || < ||x,,|| for all n such that (x,, — z,,) tends strictly to zero.

Proof: Assume that (x,,) is trivial, and choose (y,) in Z(A) such that (x,, —y,) —

Ostrictly. Define fnin C2(C) by £,(&) = Eif |1&] < |lx,ll, £,(8) = lIx,,[I1€]1€] otherwise.
Put z,, = £, (y,), and note that z,, € Z(A) with ||z, ]| < ||x,]|-

If (x,, — z,) does not converge to zero strictly, there is an element a in A with |la || = 1
and € > 0 such that, passing if necessary to a subsequence, we have ||(x,, — z,)al| > ¢ for



all n. Since (x,, — z,) — 0 strictly, we may further assume that ||(x,, — z,)al|l < & / 2for
all n.

Choose for each n an irreducible representation 7,, of 4 such that ||, ((x,, — zp)a) || > e.
This implies that ||, (@)|| > (£/2)]|x,,]|"1. Furthermore

”T[n(yn - Zn)” = ”T[n((:Vn - Zn)a)” = ”nn((xn - Zn) a)” - ”ﬂn((xn - yn)a)”
> ¢g/2.

From the definition of z, it follows that m, (y,,) = 1,1 , where |A,,| > |[x,|l + €/2.
Consequently

1720 (Gen = y)@)|| = N7 (@)l = lIn Cen@dll = (2nl = lImn Ce) DI, (@)1ICe /
2)%llxnll

Since ||x,,|| < a for some a and all n, we have shown that||(x,, — v,)a|l > (¢ / 2)?a™!
for all n, contradicting the assumption that x,, — y,, = 0 strictly.W e must therefore have
X, — Zn — 0 strictly, as desired.

Lemma (1.1.3)[1]: Assume that A is a Hausdorff space. If every summable central sequence
in A, s trivial, then every derivation of M(A) is inner.

Proof: Let 6 be a *-derivation of A and let 6 also denote the unique extension to a derivation
of M(A)By [15] there is a lower semi-continuous element h, in A/such that § = i adh,.
Take any &, > 0, and note from [4] that if h = hy + &,1, then h € (A,)™, since hy €
(((Agg)™) 7)), -Further, § =i ad h . There is thereforea n increasing sequence (h,) in A,
such that h, 2 h; and by Lemma (1.1.1) we may assume that |[(h — h,)a, — a;,(h —
h,)|| < 27" for each n and every k < n, where (a;) is a dense sequence in A.

Fix a in A. There are two cases:

(i)  Some For € > 0 and all n there are integers i, jwith i > j > nsuch that||(h; — h; —
z)al|| > e for all zin Z(A)with ||z|| < ||h; — ;.

(i)  Forevery € > 0 there exists an n such that for all integers i,j withi > j > n, there
is somez in Z(A) such that ||z|| < ||r; — h;|[and [I(h; — h; — Z)a |l < e.

In case (i) we can by induction find a subsequence
hiy <hy < hy <hg<...

such that with x,, = h; — h;_, we have [[(x, — z)a|| > ¢ for all z in Z(A) with ||z || <
|lx,,||. 1t follows from Lemma (1.1.2) that (x;,,) is a non-trivials ummable centrals equence(
with ), x,, < h). The lemmaw ill be establishedw hen we have shown that if case (ii) occurs
for all ain A, then &is inner in M (A). Thus suppose case (ii) holds for all a in A.

Let a,be a strictly positive element in A, and denote by f the function on A given by
f(m) = ||m (ay)|]. Since 4 is a locally compact Hausdorff space, it follows from [9] (cf.
[9]) that f is continuous, whence f € Co(A) by [9]. Since ay is strictly positive in 4, f is
strictly positive in Co(4).Applying spectral theory to f and identifying C?(A4) and Z(A),
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we can therefore find a sequence (e,,) in Z(A), with ) e,,, = 1, such that the support of
each e,, is contained in the open set {m € A|1/(m+ 1) < f(r) < 1/(m+1).} In
particular, ||[T(ag)|| > 1 /(m + 1) whenever (e,,) # O.

Fix m and take a = e,,a,. Since case (ii) holds, we can then, by induction with &, =
2 "(m + 1)71, find a subsequence [again denoted by (h,,)] and a sequence (z,) in Z(4)
such that

”Zn” < ”hn+1 - hn” and ”(hn+1 - hn - Zn)emaoll < En- (1)

Puty, = Y"_1z, Zkand b, = (h, — y)emae. Then (1) shows that I ||b, ;1 — byl , <
&,, SO that (bn) is norm convergent to an element in A. Since (h,,) is strongly convergent
to (h), it follows that (y,e,,a,) is strongly convergent to some element b and that
he,a,+ b € A.

Without loss of generality we may assume that ||[6]| < 1 and therefore that ||h|| < 1.
Consequently ||k, || < 1 for all n, and by (1) also ||z,|| < 1. Since

n-—1

b, — byl < Z 27 (m + 1)~ < (m + 1)1,
k=1

we obtain for each 7 in A

T (yemae)ll < (m+1)"1 + || i ((hn —hj + Zl)emao)” <(m+1D 1+
Il (ap)l|. If =(e,,) # O, this implies that

Il e i (ap)ll = Nl (rnemao)ll <l (ao)ll.

From this we conclude that the sequence ( y,.e,,)in Z(A) is bounded by 4 and therefore has
a g-weak limit point fm in A" n A". From the preceding it follows that b = f,,a,, so that
(he,, + fm)ay € A. Moreover,

(hen, + f)aoll = Lim|lb,|l < (m+ D)7+ [Iby]l < (m+ D7 + 2[epa,ll
<(m+1D1+2(m-1"L

Since e, e, = 0 when |[n —m| > 1, the same is true for fnm. Therefore the two
sequences ((heym + fam)ao) and ((hegm — + fam - 1)a0) cOnsist of pairwise orthogonal
elements in A. Since their elements tend to zero, their sums belong to A; i.e., with f =) f,,,
we have

(h+ flag = Y (heym + fam)ag + (heym—1 + fom—1)ao € A.

Since a, is strictly positive, it follows that h + f € M(4). Asf € A'n A" we have § =
ad(i(h + f)), so that & is inner in M (4), completing the proof.

Lemma(1.1.4)[1]: (cf. [17]). Let A denote the spectrum of A equipped with the Jacobson
topology, and use the open continuous surjection A - A to embed Z(A) in the von



Neumann algebra F(A) of all bounded functions on A. Then Z(4)™" = F(A) (™" denoting
weak closure) if and only if 4 is of type 1 and A is a Hausdorff space.

Proof: If A is of type |, then A = A. If furthermore A is Hausdorff, we know from the
Dauns-Hofmann theorem (see [10] or [14]) that Z(A) separates the points in A, whence
Z(A)™ =F(4).

Conversely, if Z(4A)™ = F(A), then Z(A) separates the points in A. It follows that 4 =
A, so that A is of type | by [9]. Furthermore 4 is a Hausdorff space, since Z(4) = C?(4).

Theorem (1.1.5)[1]: A separable C*-algebra A has continuous trace if and only if each
central sequence in A is trivial.

Proof: Suppose first that A has continuous trace, and let (x,,) be a central sequence in A.
Let B denote the C*-algebra consisting of all convergent sequences from A4, i.e.

B = C(NU{0})®A.

Define a derivation §of B by § = ad(x), where x = (x,,). Note that if b = (b,,) € B, then
b, x,, — x,b, — 0sothat §(b) € B. Since B has continuous trace, there is by [3] an element
hin M(B) suchthat § = ad(h). By [6] h hasthe form (h,))(1 < n < ), where {h,,} C
M(A) and h,, — h,, strictly. Let Z,, = x,, — h,,. Then z,, € Z(A), since ad(x — h) = 0.
Moreover, if x,,. denotes any a-weak limit point of (x,,), then x,, € A" N A", since (x,,),is
central. Further, since z, € C Z(A) and (x,, — hy) IS a o-weak limit point of (z,)
(because the strict topology is stronger than the o-weak topology), then (x,, — hs) € A' N
A",s0 h,, € Z(A). Thus the sequence with elements

Xp—Zp—he = hy_hg
Converges strictly to zero, proving that(x,,)is a trivial central sepuence.

For the converse assume first that A is a Hausdorff space (so that A is of type I). If 4
does not have continuous trace, there is an outer derivation of M(A) by [3]. But then by
Lemma(1.1.3) there is also a non-trivial central sequence in A, (even a summable one).

If A is not a Hausdorff space, there is by Lemma(1.1.4) a characteristic function p on 4
which cannot be weakly approximated by elements in Z(4). Since F(A4) is the center of
the weak closure of A in its atomic representation, we may regard p as a central projection
in A". Let U be a o-weak neighbor-hood of 0 in A" with the o-weak closure of U — U
disjoint from Z(A) + p. Choose a net (x;) in the unit ball of An (U + p) which is o-
wealdy convergent to p. By Lemma (1.1.1) and the separability of A we may choose a
sequence (x;,,) in the convex hull of (x;)such that ||x,a — ax,|| — 0 for each ain A, i.e.,
(x,)is a central sequence. If it was trivial, then x,,, — z,,, = 0 strictly for some sequence
(z,,) inthe unit ball of Z(A) by Lemma (1.1.2) Since the strict topology is stronger than the
o-weak topology and (x,,) € U + p, it follows that z,, + p € U — U eventually. This
contradicts our choice of p and shows that (x;,) is non-trivial.

The following two conditions on a separable C*-algebra A will occur repeatedly.
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(A) Every summable central sequence in A, is trivial.
(B) Every derivation of M(A) is inner.
Lemma (1.1.6)[1]: If A satisfies condition (A) and Z(A) = C, then A is simple.

Proof: Assume, to obtain a contradiction, that I is a non-trivial closed ideal of A, and let p
denote the open central projection in A" supporting I, i.e. I = pA" N A. If byis a strictly
positive element in I, then p is the range projection of byin A". By spectral theory we can
therefore find an increasing sequence (h,,) in the C*-algebra generated by b,such that 0 <
h, < 1,h,,1h, = h,forall n,and h,, 7 p. Using Lemma (1.1.1) we can further assume
that (h,, ) is a central sequence. In particular we may assume that ||h,ay — agh,|| < 27"
for all n, where a,is a strictly positive element in A. Put

Xn = han — hapyand y, = hyp g — hyn_p (With by = 0).

Then (x,) is a summable central sequence in A, with ||x,||=1 for all n .
Furthermorex,, x,, = 0if n # m. The same statements hold for the sequence (y,,).

By assumption (x,,) is trivial so that for some sequence 4,, in C [= Z(A4)] we have x,, —
A, — O strictly. However, this implies that

1Anl = l[Anxsll = [ICer = ) x4l — 0,

so that x,, — 0 strictly. In particular, x,a, —» 0. Consider the partial sum S, =
m  xgay > where n < m. Then

2 _
ISnmll* = Z X QoX1

n<k,l<m

= Z XpAoXg|| + z (Z xk> (agx1 — x10,)
n<k s<m n<i<m k=l

< supllxapxell + ) llagx; = xao
n<k

n<l
. ] . . 1/2
which tends to zero as n — co. Since A is complete, it follows that ., ao/ € A. The exact

same reasoning on (,,) shows that ,3.,, aé/ % € A. But then

1/2 1/2 1/2
pa, = (Z xnaO/ +yna0/ )ao/ €A,

and, since a, is strictly positive, this implies that p € M(A). But p is central, so p €
Z(A)(= C). This contradicts the non-triviality of I.

Lemma(1.1.7)[1]:1f A is primitive and satisfies condition (B), then A is simple.

Proof: If A is non-simple, we construct the orthogonal central sequences (x,,) and (y,,)
as in the proof of Lemma (1.1.6) If a, is a strictly positive element in A and both x,,a, —
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0and y,a, — 0, we conclude as in the proof of Lemma(1.1.6)that p € Z(A). However,
Z(A) = C1, since A is primitive, a contradiction. Thus we may assume, passing if
necessary to a subsequence of (x,,)(or (y,)) that for some & > 0 we have ||x,a,|| > & for
all n. Furthermore, we may assume that ||x,,a, — a,x,|| < 27" for eachn and all k < n,
where (a;) is a dense sequence in A.

Let A = (4,) be a sequence of zeros and ones. The element }; 1,,x,,derives A, and thus
by (B) there issome zin A” N A’ such thatz + Y A,x,, € M(A). Since A is primitive, it
has a faithful irreducible representation r,i.e.m(4" NA") =C1 = n(Z(A)). It follows
thatmz + O A,,x,) € n(M(A)).

Putay = m(Q A xna0) € m(A). IFA + A, say A,, # A;,,then

lan = anll = |0 ) G = 2dxac || = lixdaoll = llagriaoll > &2
Since there are uncountablymany A's,this contradicts the separability of A.
Lemma (1.1.8)[1]: If A is simple, then it satisfies condition (A).
Proof: Assume to obtain a contradiction that (x,) is a non-trivial summa-ble central
sequence in A, . Passing to a subsequence, we may assume that for some € > 0 and all n

we have xrl,/za()” > ¢, where a, is strictly positive in A, and that ||x,a; — a;x,|| <

27™for each n and all k < n, where (a;) is a dense sequence in A. If A= (4,)is any
sequence of zeros and ones, then the element }; 1,,x,, belongs to A" and derives A. Since A
is simple, it follows from Sakai's theorem (see [19], [20] or [3]) that )} A,,x,, € M(A). Thus
a, = ). A,apx,a, € A.

Put b, = Yr>n aoXnag. Then (b,) c A, and b,, — O strongly. We can there-fore assume,
passing if necessary to a subsequence of (x,,), that for each n there is a state ¢,, of A with

172 |12 < 2
@n(aoxna0) = llagxyaoll (= |xn ao|| >¢2)

such that ¢, (b)) < %ez. If A+ A', let n be the first number with A,, # 1;,. Then
lay — aprll = [@aas —ap)l

1
= (pn(aoxnao) - <pn(bn) > 582

This contradicts the separability of A.

Lemma(1.1.9)[1]: Let =: A — B be a surjectice morphism between separable C*-algebras
A and B. If (y,) is a central sequence in B, there is a central sequence (x,) in A with
m(x,) = y,. If (y,) is summable, (x,,) can be chosen to be summable. If (y,,) is non-
trivial, (x;,,) is automatically non-trivial.



Proof: (cf. the proof of [18]). Given a central sequence (y,,) in B, choose by [6] a sequence
(b,) in Awith m(b,,) = y, and ||b,|| = ||ly,|If or all n. Let (a;) be a dense sequence in
A, and choose by [5] or [7] a quasi-central approximate unit {u,} for kerm. For each ain A
we have, by (1) in [9],

li/{n I(1—uy)b,a—a(l—uy)b, lI= li/_{n I (1 —wuy)(b,a—ab,) |

= ||Ynn(a) - ﬂ(a)yn”-
We can therefore choose A such that with x,, = (1 — u;)b,, we have

Ixnar — arxnll < llynm(ar) — nladynll + 27"
forall k < n. It follows that (x;,,) is a central sequence for A.

If (y,,) € B, is summable, say >y, < 1, we use [16] and induction to find (b,) C
A,, with ¥7_ . b, < 1for every n. Then we define x,, = b/*(1 — u;)b./? for asuitable 2
and obtain as before a central sequence (x,,), which is now also summable, since x,, < b,
for all n.

If (y,,) is non-trivial, then (x;,,)is non-trivial, since m(Z(A) ) € Z(B).

Proposition (1.1.10)[1]:If a separable C*-algebra A satisfies condition (4) or (B), then 4
Is a Tj-space (i.e., points are closed).

Proof: Let w be an irreducible representation of A. By Lemma (1.1.9), m(A) satisfies
condition (A) if A does, and, by the lifting theorem for derivations [18], m(A) satisfies
condition (B) if A does. Thus either Lemma (1.1.6) or Lemma (1.1.7) applies to show that
m(A)is simple. Consequently every primitive ideal of 4 is maximal, i.e. 4 is a T;-space.
Recall from [8] that a point g in a Tj-space X is separated if for each 'in X, w’ # m, there
are disjoint neighborhoods of  and 7. Thus X is a Hausdorff (= separated) space precisely
when every point is separated. If A is a separable C*-algebra (and 4 is a Ty-space), then the
separated points in A form a dense set by [8].

Lemma(1.1.11)[1]: Assume that 4 is a T;-space. Let (mr,,) be a convergent sequence of
distinct, separated points in 4, and denote by F the closed set of limit points for (r,,). Let
B be the quotient of A corresponding to F (i.e.,é = F). If B, contains a non-trivial
central sequence, then A satisfies neither condition (A)nor (B).

Proof: If B, contains a non-trivial central sequence, there is by Lemma (1.1.9) a non-trivial
central sequence (x,,) in B,.. Let a, be astrictly positive element in A, and denote by p the
quotient map p: A — B. Passing to a subsequence, we find an € > 0 such that for every z
in Z(A) and all n we have ||p((x,, — 2)ay)|| > €.

We claim that for each n and each k, there is a k > k, such that ||, ((x, — AD)ay)|| >
g/2 for all 1 in C.Otherwise we have (4,) < C such that for all k > ky, ||, ((x,, —

Aagll < €/2. Ifr € F, thenm (ay) # 0, and so eventually ||, (ay)|| > % l(ag)ll. It



follows that (1) is bounded, and, passing to a sub-sequence, we may assume that A, —
A € C. But then the closed set

{m € A|||n((xn — ) ao)|| < 2 e }contains(m,,) and therefore also F, and
lo(Ctn — 2 o)l = Suplle(Cen - D )] <2,
s

a contradiction. Passing to a subsequence of (m,), we may therefore assume that
|72 (Cen — Dao)|| > ~eforall 1in Cand all n.

Take min F. Since m, is a separated point, there are disjoint open neighborhoods G, and
G;of ,, and «. Since m,, —» m, we have eventually r,,, € G;. Continuing by induction and
passing to a subsequence of (m,), we find a sequence (G,,) of pairwise disjoint open sets
in 4 such that (after relabeling) ,, € G,,.

Let I,, be the non-zero closed ideal of A corresponding to Gn(i.e.fn = n). Since G,, N
G, =@, we have I, n I, ={0} for n +#m. Choose a quasi-central approximate unit
{u,} for I,, and let{a,} be a dense sequence in A. Assuming, as we may, that
lxpar — apx,|| < 27" for k <n, we put y, =uyx;n,; for 1 so large that ||y,a; —
apYall < 27for k < nand ||m, ((x, — yu) ao)|| < 2e.

The central sequence (y,,) in A, is summable, since y,y,, = 0 for n # m, and non-trivial,
since for each z in Z(A).

1O = Dol = || (00 = 2)a0 ) || = Il (Cen = Do)l = 70 = xa)a0) |
1

> —g,
4

where A1 = ,,(z). Thus condition (A4) is violated. Suppose that for each sequence A =
(A, of zeros and ones, the deriver ), 4,,y,, of A [and hence of M(A)] gives an inner
derivation of M(A). Then z, + Y A,y,, € M(A) for some z,in A" N A’, and we define
ap = (zy + XA y)a, inAIfA# A say 4, > A;,, we have

llay — aprll = ||7Tn((aA — ap + (A — A)ydag )”

1
> ||m (A + y) ao) || > e

where A1 = m,(a, — a,r). This contradicts the separability of A, and proves that M (A4)
has outer derivations, in violation of condition (B).

Lemma(1.1.12): As in Lemma (1.1.11), let (1r,,) be given and define Fand B. If Z(B) #
C, then A satisfies neither condition (A4) nor (B).

Proof: (cf. the proof of [3]). Let p denote the quotient map p: A — B. Since A is separable,
we have p(M(4)) = M(B) by [6]; thus by assumption there exists x in M(4),0 < x <
1, such that p(x) € Z(B) with py(x) = 0, p,(x) = Ifor py, py, INF. Let a, be a
strictly positive element in A, and assume that ||a,|| < 1 and ||py(a)ll = llp1(ay)ll =
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1.We claim that eventually||,, ((x — Dao)|| = glfor all 1 in C. Otherwise there would exist
a bounded sequence (1,,) such that ||, ((x — A,)a0)|| = glfor all n > n,. Passing to a
subsequence, we may assume that 1, — A and that ||, ((x — Dao ) || < %for all n. But then
the same is true for the limit points; in particular ||po((x — Dayo)|| S%,”po((x—
Nag)|| < %

With our choice of x this implies that |A] < %and 11 -] < § a contradiction.

Let (a,) be a dense sequence in A.For each m the set

K, = kU {ne Allm(xa, — apx)|| = Z‘m}
=m

Is compact by [9] and disjoint from F. Since (1,,) consists of separated points, each set
E, = {mlk=n}UF

is closed in 4; and n, K,,, N F, = @. Consequently K,, N F, = @. for some n, and
passing to a subsequence of (,,), we may assume that ||m,, (xa;, — aix)|| < 27 "*for all k <
n. As in the proof of Lemma(1.1.11), choose a sequence (G, ) of pairwise disjoint open
subsets of A with ,, € G,,, and let I, denote the closed ideal of A corresponding to G,,.

1
x2(1 —

Fix n, and let {u,;} be a quasi-central approximate unit for ker m,,. Then li/{n|

1
x3(1 = up) (xay — @[ = I 2 — a0l

1 1 1
upxza, — apxz(1 —uy)xz|| = li/{n|
by [9]. For sufficiently large 2 we define x,, = x¥/2(1 — u;)x'/? and have ||x,a; —
aix,|| < 27" for all k < n. Let {v,} be a quasi-central approximate unit for I,,, and, for
sufficiently large A, define y,, = v,x, v, to obtain

”ynak - akyn” < Z_n)k < n, (2)

and ||, (Cxn, — ydao) || < % This last inequality implies that for each A in C we have

(G = Dao) || 2 [lma(Gen = Dao) || = [l (Cen = yu)a0) |
= [ln (G = Mao) | -5 2 ¢ (3)

Given (2) and (3) we can now show, exactly as in the proof of Lemma (1.1.11), that A has
a non-trivial summable central sequence [viz. (y,,)] and that M (A) has an outer derivation
[of the form ad (X} 1,,y,,) 1]

Proposition(1.1.13)[1]: If a separable C*-algebra A satisfies condition (4) or (B), then 4
Is a Hausdorff space.

Proof: From Proposition (1.1.10) we know that A is a T;-space. Assume, to obtain a

contradiction, that 4 is not a Hausdorff space. There are then at least two points py, p; in A

that cannot be separated. Since p, is not an isolated point and since the separated points are
10



dense in 4 by [8], we can find a sequence (the Jacobson topology is second countable when
A is separable) of distinct separated points m,, in A such that (7r,,) converges to p,. The set
F of limit points of (1r,,) contains at least two points (viz. (rr,,)and p,), so the quotient B of
A corresponding to F is not simple.

If B satisfies condition (A4), then Z(B) # C by Lemma (1.1.6), and thus A will satisfy
neither condition (A) nor (B) by Lemma(1.1.12) If, on the other hand, B does not satisfy
condition (A), then A will satisfy neither condition (4) nor (B) by Lemma (1.1.11) We
have found the desired contradiction.

Theorem(1.1.14)[1]:The following three conditions on a separable C*-algebra A are
equivalent:

(i) Every summable central sequence in A, is trivial.
(i1) Every derivation of M(A) is inner.

(i) A=A, @ A,, where A; has continuous trace and A, is discrete (i.e., 4, is the
restricted direct sum of simple C*-algebras).

Proof: (A) = (B): Combine Proposition (1.1.13) with Lemma (1.1.3)

(B) = (A): If wis an irreducible representation of A corresponding to a non-isolated point
in 4, then, since A is a Hausdorff space by Proposition (1.1.13), it follows from
Lemma(1.1.11) that m(A) has no non-trivial central sequences. Since m(A) is primitive, it
follows from Theorem (1.1.5) that m(A)is isomorphic to the compact operators on a
separable Hilbert space. Let G,denote the open set in 4 corresponding to the largest CCR
ideal in A (cf. [9]), and let Go denote the set of isolated points in A.

From the first part of the proof we see that G, U G, = A.Set G, = A\G,. Then G, is
closed, but, since it consists of isolated points, it is also open. Thus 4 = G, U G, (disjoint
union). Let A; and A, be the direct summands of A corresponding to G, and G, ,
respectively. Then A, is a CCR algebra with Hausdorff spectrum and satisfies condition
(B). It follows from [3] that A, has continuous trace. Since 4, (= G,) is discrete, A, is the
restricted direct sum (cf. [9]) of simple C*-algebras.

(C)=> (A):If A=A, © A, whereA, has continuous trace and A, = @, By , where (By)
is a sequence of simple C*-algebras, then each summable central sequence (x,) in A,
breaks into a sequence (x¥),0 < k < oo, of summable central sequences, where (x2) c
A; and (x¥) ¢ B;. From Theorem (1.1.5) we know that (x2) is trivial, and by Lemma
(1.1.8) each (xX) is also trivial. Since M(A) = M(A)® @ M(B,) (full direct sum), it
follows that (x;,) is trivial, as desired.

Corollary (1.1.15)[1]: Let A be a separable C*-algebra with unit, and assume that A has
only inner derivations. Then A is the direct sum of a finite number of C*sub-algebras which
are either homogeneous of finite degree or simple. As pointed out in [13], the implications
(A) = (B)and (B) = (C€) do not generally hold when A is allowed to be non-separable.
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Corollary(1.1.16)[370]: Let m: A - A + € be a surjectice morphism between separable
C*-algebras A and A + €. If (y/*) isacentral sequence in A + €, there is a central sequence
() in Awith )., w(x*) = 3., vt If (p) is summable, (x;7*) can be chosen to be
summable. If () is non-trivial, (x)'*) is automatically non-trivial.

Proof: (cf. the proof of [18]). Given a central sequence (y;*) in B, choose by [6] a
sequence (bY) in A with ),,,, w(b7*) =X, vt and Y., || = X0 lHIf or all n.
Let (a;) be a dense sequence in A, and choose by [5] or [7] a quasi-central approximate
unit {u;"} for kerrr. For each a in A we have, by (1) in [9],

> lim (1 - Wb a - a(t —ufb = ) lim |l (1 - uf)(bfa - abf) |
m m

= @ - n(@yl
m
We can therefore choose A such that with x;* = (1 — uj")b;;* we have
> Iy — atll < ) llyit(a) - w(ayll + 27
m m

forall kK < n. It follows that (x;)*) is a central sequence for A.

If (yJ*) € A, + e issummable, say Y., > y7* < 1, we use [16] and induction to find
(b)) c A, , with YXP_ ¥, b* <1 for every n . Then we define Y, x7' =
Yom b,’l"/ 2 (1- u}”)b,’l"/ % for a suitable A and obtain as before a central sequence (xJ'),
which is now also summable, since x* < b]™* for all n.

Section (1.2): Second Cech Cohomology

Let A be a C*— algebra with identity, and let Aut A be the group of all
*-automorphisms of A endowed with the norm topology. In their systematic investigation
[42] of Aut A, Kadison and Ringrose considered the subgroups Inn A, y(4),n(A) of Aut A
consisting of, respectively, inner automorphisms, those path-connected to the identity, and
n-inner automorphisms. As well as proving some general theorems about the relationships
between these subgroups, they investigated in detail some particular cases, including the
algebra C (X, M,,(C)) of continuous functions from a compact space into the matrix algebra
M, (C).Subsequently Lance [45] and Smith [52] considered the algebra A = C(X, B(H)),
where X is compact and separable, and B(H) is the algebra of all operators on a Hilbert
space H of dimension »,. They proved the striking result that t(A) /y(A) = H?(X,Z), the
second Cech cohomology group of X with integral coefficients. It follows from their results
that in this case n(A) coincides with the group Aut.x)A of automorphisms which preserve
the C (X)-module structure of A, and that y(A) = Inn A; hence their theorem identifies the
group Aut¢(x)A /Inn A of outer € (X)-auto-morphisms of A = C(X, B(H)) with H*(X, Z).

We shall extend the theorem of Lance and Smith to C*-algebras of bundles whose
fibres are C*-algebras. We consider two distinct types of bundles: the first have as fibre the
algebra K(H) of compact operators on a Hilbert space H, and as structure group Aut K(H)
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equipped with the topology of pointwise convergence; the algebra A = T,(E) of such a
bundle E over a locally compact space X is called a stable continuous trace C*-algebra with
spectrum X. We show that if Inn A now denotes the group of automorphisms which are
implemented by multipliers, then there is a short exact sequence

0 > InnA - Autcb(X)AlHZ(x,Z) > 0.

In fact, if A is any separable continuous trace C*-algebra then we can construct the
homomorphism 7, but it is not necessarily surjective. The second type of bundle we consider
has as fibre a C*-algebra B with identity and structure group Inn B in its norm topology. If
E is such a bundle over a separable compact space X, with fibre B a von Neumann algebra
factor, and if A = I'(E), then we obtain an exact sequence

0 > InnA - m(A) > H%(X, 2);

if in addition the unitary group of B is contractible, then 7 is surjective. In case of the trivial
bundle E = X x B(H) we recover the theorem of Lance and Smith. The construction of n
in both cases is a modification for non-trivial bundles of Lance's proof of [45, Theorem 4.3].

If E is a bundle of matrix algebras over a compact space X, the algebra A = T'(E) is
called (by algebraists) an Azumaya algebra over C(X). The exact sequence

0 — InnA - AutgyA — Pic C(X) = H?*(X,Z)

Is due to Rosenberg and Zelinsky [50], and a theorem of Knus [44] says that the range of &
is contained in the torsion subgroup of H2(X,Z). A standard construction (cf. [39])
associates to each Azumaya algebra A over C(X) an element §(A) of the torsion subgroup
of H3(X,Z), and in fact a theorem of Serre [39] asserts that every element of H3(X, Z) of
finite order arises this way. Now Dixmier and Douady [34] have proved that stable
continuous trace C*-algebras with spectrum X are classified up to isomorphism by H3(X, Z);
our result on stable continuous trace C* —algebras shows that H?(X, Z) classifies the outer
C (X)-automorphisms of such C*-algebras. Thus analogies of the Serre-Knus results are
valid for stable continuous trace C*-algebras with the torsion subgroups replaced by the
whole of the cohomology groups.

We show some technical results. The second part contains our results on
automorphisms and derivations of a separable continuous trace C*-algebra A. As well as the
main theorem which we described above, we investigate the group of all outer
automorphisms of A and discuss the relationship of the work with that of Kadison and
Ringrose [42] and Brown, Green and Rieffel [28]. We concerned with bundles of C*-
algebras where the structure group has the norm topology. In addition to the theorem
mentioned above, we look at what happens when the fibre has non-trivial centre, and show
that the Dixmier-Douady classification of stable continuous trace C*-algebras works also
for these bundles.

We shall denote by B(H) the C*-algebra of all bounded linear operators on a
separable Hilbert space H, by K(H) the C*-algebra of all compact operators on H, and by
U(H) the group of unitary operators on H. Unless we specifically say otherwise, all
homomorphisms between C*-algebras will be*-homomorphisms; this applies in particular
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to automorphisms and representations. If A is a C*-algebra with identity, we shall denote
the identity of A by 1 and the identity mapping: A — A by id. The group of all
automorphisms of a C*-algebra A will be denoted by Aut A, the centre of A by Z(A), and
the group of unitary elements of A by U(A). We shall write A for the spectrum of A
equipped with the Jacobson topology (see [32, Chapter 3]).

Let A be a C*-algebra and let M(A) be its multiplier algebra—the collection of all
pairsm = (m’,m’") of maps from A to A satisfying

am’{b) = m’"(a)b fora,b € A;

intuitively, m" and m'’ represent left and right multiplication by the element m, and we
usually write ma for m’(a) and am for m’’(a). The collection M(A) is a C*-algebra with
identity containing A as a closed two-sided ideal, and has the following universal property:
if B isa C*-algebra containing A as a closed two-sided ideal such that bA = 0 impliesb =
0, then there is an embedding of B into M(A) (see [30, Sections 2 and 3] for details). If a €
Aut A has the form a(a) = uau® for some u € U(M(A)) then we call « an inner
automorphism, and we write « = Adu these form a subgroup of Aut A which we denote
by Inn A. If the algebra A has an identity, then M(A) = A and this coincides with the usual
notion of inner.

Following Kadison and Ringrose [42] we denote by 11(A) the group of automorphisms of

A which are weakly inner in every faithful representation, and we call these ir-inner
automorphisms. If B is a commutative subalgebra of M(A), then AutgA will denote the
collection of automorphisms of A which commute with the multipliers in B.

Let E be a continuous field of C*-algebras over a locally compact(Hausdorff) space;

that is, E is a parametrised family {E,: x € X of C*-algebras together with a family I'(E)
satisfying

(1) T'(E) is a *galgebra;

(i) {a(x):a € T(E)} = E,foreachx € X;

(iii) foreacha € I'(E),x — |la(x)]| is continuous;

(iv) [ (E) is closed under local uniform convergence.
The space A = T,(E) of continuous which vanish at infinity is a C*-algebra in the uniform
norm, and is also a module over the ring C,(X) of bounded continuous functions on X. An
isomorphism ¢: E — F of fields over X is a collection of isomorphism ¢,: E, — F,
which carries T'(E) onto I'(E); we denote the induced isomorphism of I, (E) onto I, (F) by
¢.., and note that the correspondence ¢ — ¢, is functorial. See [32, Chapter 10].
Lemma(1.2.1)[21]: Let E be a continuous field of C*-algebras over a locally compact space
X, letA=T,(FE)andleta € AUth(X)A-

(i)ifa;,a, € A satisfy a;(x) = a,(x) for some x € X, then a(a;)(x) = a(a,)(x).
(i) IfY is a compact subset of X, then o induces an automorphism ay of I'(E|y)
such that ay(aly ) = a(a)|y for a € A.

Proof: For suppose a;(x) = a,(x)buta(a;)(x) #a(ay)(x), and let &=
la(a;)(x) — aay)(®)|]| > 0 . Choose a neighbourhood N of x such that
lla;(y) — a,(y)|| < efory € N, and let p: X = [0,1] be a continuous function such that
p(x) =1 andp = 0 outsi p de N; then ||pa; —pa, || < € and, since « is isometric,
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lla(pa;) (x) — a(paz)ll <& Now a(pa))(x) = (pa(a))(®) = px)a(a)(x) =
a(a;)(x), so that

ellaa)(x) — a(az)) X = llalpa;)(x) — alpa)ll <e,
which is nonsense, and we have proved (i). The second part now follows if we define ay (b)
for b € I'(E|y) to be a(a)|y for any a € I,(E) which extends b.

Lemma(l.2.2)[21]: Let E be a continuous field of C*-algebras over a locally
compact space X, let A=T,(E) and let m € M(A).

(1) Ifa;,a, € Asatisfy a;(x) = a,(x), then ma; (x) = ma,(x).

(i) IfY € X is compact, then m induces a multiplier my of I'(Ely).

This can be proved along the lines of the preceding lemma, or deduced from the results of
[22].

A special case of a continuous field of C*-algebras is the trivial field E = X X B,
where we take for I'(E) the set of all continuous functions from X to B.

Lemma (1.2.3)[21]: Let X be a compact space, let B be a C*-algebra and a €
Aut.x)C(X,B); for x € X we define a,: B » Bbyay(b) = a(b)(x), where b is the
constant function; with value b. Then o, € Aut B, the map a - o, is a
homomorphism, and x — ay is a continuous map of X into Aut B when AutB has
the topology of pointwise convergence. Further, if f € C(X,B) then

a(HH(x) = au(f(x)) for x € X

Proof: The last statement follows from Lemma (1.2.1); the rest are straightforward and are
the content of [52, Lemmas 3.6-3.9].

Recall that an elementary C*-algebra is one which is isomorphic to the algebra K{H)
for some Hilbert space H. Let X be a locally compact space and E be a continuous field of
elementary C*-algebras over X.

We say that E is locally trivial if it is locally isomorphic to the field X x K(H)for some
Hilbert space H; we observe that these are the fibre bundles over X with fibre K{H) and
structure group Aut K(H) (in the topology of pointwise convergence). We say that E
satisfies Fell's condition if for each x € X there of E whose values are rank one projections
in a neighbourhood of x.

If E is a continuous field of elementary C*-algebras over a locally compact space X, and
If E satisfies Fell's condition, then A = I, (E) is called a continuous trace C*-algebra. The
spectrum of A can be identified with X, and the primitive ideals have the form Iy = {a €
[L(E): a(x) = 0}; E iscalled the field associated with A, is unique up to isomorphism, and
can be recovered from A by taking E, = A/I,see [32]. If A is a separable continuous trace
C*-algebra, then its spectrum is paracompact; frequently we shall assume that our C*-
algebras are separable. We observe that if each of the irreducible representations of a
separable continuous trace C*-algebra A has Hilbert dimension s,, and if A4 has finite
dimension, then the field associated with A is locally trivial [32, 10.8.8].

If A is a C*-algebra such that every irreducible representation of A has dimension n(<
), A is called an n-homogeneous C*-algebra. Fell (see [53, Section 2]) shows that n-
homogeneous C*-algebras all have the form Iy (E) for some (locally trivial) bundle of n x
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n matrix algebras; in particular, they are continuous trace C*-algebras. If an n-homogeneous
C*-algebra has an identity then its spectrum X is compact; algebraists refer to these either as
Azumaya algebras over C(X), or as central separable C(X)-algebras. Conversely, it is not
hard to deduce from [57] that a unital continuous trace C*-algebra is just the finite direct
sum of n-homogeneous C*-algebras, where n can vary from summand to summand.
Lemma(1.2.4)[21]: Let A be a continuous trace C*-algebra with spectrum X

and let a € AUTA. Thena is a Cy(X)-automorphism if and only if a(l) c I
for every primitive ideal | of A.

Proof: Every primitive ideal of A has the form I, = {a: a(x) = 0} for some x € X, and
Lemma (1.2.1) tells us that a(ly) < Iy for every a € Aut x)A. Conversely, suppose
a(ly) c Iyforallx (i.e.a(x) = 0 = a(a)(x) = 0)andleta € A, f € C,(X). Letx €
Xthen(f(x)a)(x) = (fa)(x)and so f(x)a(a)(x) = a(f(x)a)(x) = a(fa)(x), as required.

Corollary(1.2.5)[21]: Let A be a continuous trace C*-algebra with spectrum
X.Then Aut oA =T1(4).

Proof: Lemma(1.2.4) implies that a(I) = Ifor every closed two-sided ideal | of A, and
the result now follows from [36].

If A and B are C*-algebras, we denote by A © B their algebrai tensor product. If A is
represented faithfully on H and B is represented faithfully on K, then A ® B is represented
faithfully on H®K,, and its closure in B(H®K) is a C*-algebra A ®,B which is
independent of the representations chosen. A C*-algebra A is nuclear if there is a unique
C*-tensor product norm A® B for any C*-algebra B; in particular, continuous trace C*-
algebras are nuclear (see e.g., [55]). If A or B is nuclear then we write A @ B for the unique
C*-tensor product of A and B.

Let A and B be C*-algebras, and let m: M{A) — B(H) and p: M(B) — B(K) be faithful
representations; then n®p is a faithful representation of A B. Thus we have an
embedding of A®,.B as A©®B c M(A) ®M(B), and since A® B is an ideal in
M(A) ®.M(B) so is A®, B. The universal property of multiplier algebras implies that
there is an embedding of M(A)®., M(B) into M(A ®, B). It is straightforward that this is
the obvious map: in other words,

<21_ mj®nj> (Z @ ®b; ) zmja ®n, b,

This embedding is not in general surjective [22, Section 3]. We shall identify
M(A) ®, M(B) with its image in M(A &, B).

A C*-algebra 1A s said to be stable if A® K(H) = A, where H is a separable
infinite-dimensional Hilbert space. We recall that if E and F are continuous fields of
elementary C*-algebras satisfying Fell's condition over a space X, then we can define a field
E ® F over X whose fibre (E ®F), overx € X is E,® F, (see [33]).

Lemma (1.2.6)[21]: Let A = TI,(E) be a continuous trace C*-algebra with par compact
spectrum X. Then the map ®: A® K(H) — IL,(E ® (X x K(H)) defined by
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@ (Z ai®ki> (x) = z a;(x) ®k;

i ij
extends to an isomorphism of A ® K(H) onto I';,(E ® (X x K(H))). The induced map
"X > (AQK(H))" sends ], = {b:b(x) = 0}ontol, ® K(H), wherel, = {a €

A:ra(x) = 0}

Proof: It is obvious that @ is injective on A ® K(H). Hence, by uniqueness of the C*-
algebra norm, it is isometric. Since the range of @ is clearly dense, @ is surjective. The
assertion about @" is quite easy to check.

Proposition(1.2.7)[21]: Let A be a separable continuous trace C*-algebra with spectrum X.
Then is A stable if and only if the field associated with A is locally trivial of rank .

Proof: Suppose that A is stable, and let E be the field associated with A. Then the lemma
tells us that A = I'H(E ®(X x K(H))), and it follows from [32, Section 10.5] that E =
E® (X x K(H)). Since A is separable so is E, and Theoreme 2 of [33] implies that E is
locally trivial; clearly each fibre has rank. »,Conversely, suppose that A = T,(E) and E is
locally trivial of rank »,. Theoreme 1 of [33] implies that 6(E ®(X x K(H))) = 6(E), and
Theoreme 2 of [33] shows that E ® (X x K(H)) is locally trivial, so that we can deduce
from [32, 10.8.4] thatE = EQ® (X X K(H)). Thus[L,(E) =IL,(E® (X X K(H))), and
the result follows from Lemma (1.2.11).

A derivation of a C*-algebra A is a (bounded) linear map 6: A — A such that
6(ab) = 8(a)b + ad(b) fora,b € A; we say ¢ is inner if there exists m € M(A) such
that 5(a) = ma — am fora € A, and we write § = ad m. If every derivation of A is
inner we write H1 (A, M(A)) = 0. If § is a derivation of A then exp & is an automorphism,
and if a is an automorphism of A close to the identity then we can define a derivation

log a of A by the power series expansion for log.This correspondence between
automorphisms and derivations gives the following well-known result of Dixmier [58].

Proposition(1.2.8)[21]: Let A be a C*-algebra. Then every derivation of A is inner if
and only if every automorphism close to the identity has the form Ad u for some u €
UM(A))closeto1 € M{A).L

Lemma(l.2.9)[21]: Let A be a C*-algebra, and let « € Aut A. If isa close to the
identity then a € Aut, @A.
b

Proof: First we note that by the Dauns-Hofmann theorem, C,,(4)is the centre of the
multiplier algebra M{A) of A. If « € Aut A is close to the identity, then o = exp §for
some derivation & of A. Now & extends to a derivation §of M(A) (via §(m)a = 8§(ma) —
mé&(a) etc.), and a calculation shows that §: Z(M(A)) — Z(M(A)); thus by [51, 4.1.2]
5§ = 0onZ(M(A)). Thus@ = exp Sfixes Z(M(A)); but @ is an extension of @ and the
result follows.

We shall also need some elementary sheaf cohomology; a good reference for our
purposes is chapter 5 of [55]—particularly on Cech cohomology. Let X be a paracompact
space, and let R andY respectively denote the sheaves of germs of continuous R — and
S1 — valued functions on X. Then the covering map t — 2mit: R - S induces a short
exact sequence of sheaves
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0-Z-R->TY-0,
which in turn induces a long exact sequence of cohomology:
...» HP(X,R) » HP{X,4) » HP*1(X,Z) > HF*1 (X, R) —>....

Since R is a fine sheaf, HP(X,R) = 0 for p > 1 and so we have isomorphisms
HP(X,Y) = HP*Y(X,Z) forp = 1; this gives us a concrete realisation of H2(X,Z) and
H3(X,Z) in terms of cocycles with coefficients in S*. Finally, we recall that if G is a
topological group which acts transitively on a space F, and R i the sheaf of germs of
continuous G-valued functions on X, then H! (X, V) is in one-to-one correspondence with
the set of isomorphism classes of fibre bundles over X with fibre F and structure group G.
Combining these last two observations gives us the well-known characterisation of H? (X, Z)
as the set of isomorphism classes of complex line bundles over X.

We have the following theorem:

Theorem(1.2.10)[21]: Let A be a separable continuous trace C*-algebra with
spectrum X. Then there is an exact sequence

0 InnA - Autc_, A 3 H2(X,Z).

If A is stable, then n is surjective.

The proof of this result will be accomplished in several stages. We shall first reduce to the
case where A is stable, so that the field E associated with A is locally trivial. We then
associate to each @ € AutC, A a 1-cocycle £(a) over X with coefficients in the sheaf Y
of germs of continuous S! valued functions, and show that a — é(a) induces a
homomorphism ¢&: AutC,xA — H'(X,4); composing with the isomorphism H!(X,y) =
H2(X,Z) gives the homomorphism 1. Our next step is to identify ker &: this is easy once we
have Lemma (1.2.9) a concrete realization of M(A) of a bundle with fibre B(H). Finally we
show Theorem (1.2.10) that £ is onto using a standard Zorn ’s lemma argument.

Once we have established Theorem (1.2.10), we look briefly at its implications in the case
where A is an n-homogeneous C* -algebra. We then explore the relationship between
AutC,x A and the group Aut A of all automorphisms of A; we prove that Aut A/AutC,xA
can be identified with a group of homeomorphisms of X Theorem (1.2.20). We close by
recasting, in terms of automorphisms, the proof of the theorem of Akemann, Elliott,
Pedersen and Tomiyama [3] that all derivations of separable continuous trace C*-algebras
are implemented by multipliers.

Aut K(H) will have the topology of pointwise convergence and U(H) the strong
operator topology; we notice that both become topological groups. Further, it is easy to see
that the strong and * —strong operator topologies coincide on U(H).

Let A be a separable continuous trace C*-algebra with spectrum X.
Then A ® K(H) is a stable separable continuous trace C*-algebra with spectrum X, and any
automorphism aof A induces an automorphism a ® id of A ©K(H); since there is a
unique C*-tensor product norm on A® K(H), a ®id is isometric and so extends to an
automorphism of A ®K(H).
It follows from Lemma (1.2.4) and the last statement of Lemma (1.2.11) that if a €
AutC A then a ® id € AutC,vA ® K(H). We recall that there is an embedding of
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M(A) @ .M(K(H)) into M(A ®K(H)); itis clear that if a is implemented by a unitary U €
M(A), then a ®id is implemented by u® 1 € M(A ® K(H)). We claim that the
map a = a @ id induces an injection

AutC A /Inn A - AutC A ® K(H)/Inn AQ K(H).

Thus if we can prove Theorem (1.2.10) for stable A, then the result for general A will follow
immediately. This claim is a consequence of the following lemma:

Lemma(l.2.11)[21]: If a € AutA and a®id is an inner automorphism of
A ® K(H), then a is inner.

Proof: Suppose that o€ AutA and a®id = Ad u for a unitary u €
M(A ® K(H)) .Let e € K(H) be a minimal projection; then a >a®e induces an
isomorphism of A with A® e ¢ A ® K(H), and hence an isomorphism of M(A) with
M(A) ®e c M(A) ® . K(H) c M(A®K(H)). It is routine to check that

aQ®e— (1®e)u (a®e)(1Qe), aAQ®e—->(1Q®e)(a®e)u(l®e)

defines a multiplier of A ® e; thusthereisav ® e € M(A) ®e such that

(1®e)u(a®e)(I®e) = WQ®e)(a®e) fora € A
Then a computation shows that fora € A
a(a) ®e = (1Qe)u(a®e)u*(1Qe) = vav* Q e,
so that a(a) = vav* and «a is inner.

We now prove that if X is acompact space then C(X) —module automorphisms of
C(X,K(H)) are locally inner. Recall thatif £ € H, ||§|| = 1 and p is the rank one projection
of H onto C¢&, thenthe map kp — kp(&) is an isometric isomorphism of K(H)p onto H[32,
10.6]; further, under this map k € K(H) corresponds to left multiplication by k on K(H)p.
We shall need the following well-known lemma:

Lemma(1.2.12)[21]: If € AutK(H),p is a rank one projection and v € K(H)
satisfies vv* = ¢(p),v'v = p, then u(hp) = Pp(h)v defines a unitary operator
u: K(H)p = K(H)p such that ¢ = Adu.

Proof: Itiseasytocheck that u is well-defined,and a computation using the inner product
(hplkp) = tr(pk*hp) shows that u*(kp) = ¢~*(k)d~1(v*). It is now straightforward to
verify that u is a nitary implementing ¢.

Proposition(1.2.13)[21]: Let p € K(H) be a rank one projection. Then there
iIs a continuous map y:M = {¢ € AutK(H): || ¢(p) — p|| < 1} - U(H) such that
Adey is the identity on M. Further, if [[¢— idll < & < 1/, then[ly (¢) - 11 <
4¢ .

Proof: Suppose that d € M; then ¢ (p)p # 0, and v(d) = ¢ (p)p /lld (p)pl| defines a
continuous map of M into K(H). Then v (¢)* v(d) is a positive element of pK(H)p of
norm one, and so v (¢)* v(Pp) = p; similarly v(d)v (d)* = ¢d(P) thus by the lemma

Y(p)(hP) = ¢(h)v(¢p) (hp € K(H).P, e M)
defines a unitary operator y(¢p) € U(H)and ¢ = Ady(¢) . It is easy to verify that y is
continuous, and a computation shows that if [|[¢p— id || < € < 1/2, then||[v(d) — p |l <
3eand ||ly(d) — 1 || < 4e&, which completes the proof.
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Corollary(1.2.14)[21]: Let X be a compact space, and let a€
Autcx)C(X,K(H)). Then for each x, € X there is aneighbourhood N of x, and

a(strong operator) continuous map u: N = U{H) such that
a(f)(x) = ufx)u(x)* forx € N,fe C(X K(H)).

Let A be a separable stable continuous trace C* —algebra with spectrum X, and let
« € AutcxyA. Then there is a locally trivial field E of elementary C*-algebras of rank X,

over x such that A = I,(E).

Let {M;} be an open cover of X such that there are isomorphisms h;. M; x K(H) -
E|1\71j then, ainduces automorphisms (by Lemma (1.2.1))

o = (hjH).°am °(h). € AutC(X)C(l\_/[j,k(H))

(without loss of generality we have assumed that each M;. is compact). According to
Corollary (1.2.14) we can by shrinking the M;’s assume that there are continuous maps

uj: Mjj - U(H) such that u;. implements a;.If we start the argument of [32, 10.7.11] with
this open cover, we obtain:

Proposition(1.2.15)[21]: Let A =T,(E) be aseparable stable continuous
traceC* —algebra with spectrum X, and let a € Autgx)A. Then there is an open

cover {N;} of X and
(i) isomorphisms h;: N; x K(H) — El;;
(i) continuous maps vi]-:.Ni]- — U(H) such that
(h]_l)x(h))x = Ad Vij (X) forx € Ni]';
(iii) continuous maps u;:.N; — U(H) such that o; = Ad u;.
We now observe that for x € Ni]- (using the notation of the proposition) we have
(ai)* = (hi_l)xoax °(hi)y
_ = (hi_lhi)x ° (hi_l)x >0y ® (hyy° ((hi_lhi)_l)x'
so that on Nj;
Ad u; = Ad Vijo Ad u]' °Ad U:} = Ad (V”u]v:’)
Two unitaries in B(H) can induce the same automorphism of K(H) only if they differ by a
constant of modulus 1; hence there are continuous maps A;; Ni]- — Slsuch that

A (i (x) = (Vijx)uj(x)(vijx)*, forx € Nj;.
Further, it follows from (2) that Ad (vjvix) = Ad (vy) so that on Ni]-k we have

}\ij Aiku; = Vij [VikUg Vix | vi*j = VigUxViks
so that Aj;Ai = Ay and {Nj, A;;} defines a 1-cocycle with coefficients in the sheaf v of
germs of ST —valued functions. We shall denote by &(a) the class in H1 (X, v) defined by
{N;, A3}

Our next task is to show that £(a) depends only on a and not on any of the choices

we have made. We first note that if we replace our cover by a finer one, and the h;’S, v;'S
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and u;’S and hence also the ;S —by their restrictions, this will not change the cohomology
class (see for example [55, page 201]), so we suppose that {N;} is an open cover of X and
that we have
(i) isomorphisms h;, g;: Ni.x K(H) - E|g, ;
(ii)continuous maps v;, wy: Ny — U(H) such that (hi'h;). = Ad vy and (g7 'g)). =
Ad wj; on Nj; ;
(iii)continuous maps uy, s;: Ny = U(H) such thaton Ny, (hi').° ag, °(h). = Ady
and(gi ). ° ag, °(g).= Ads;.
The corresponding cocycles {4;;} and {u;;} are given by
Al = vyuyvyuf and  pl = wySwisy
to show these define the same class in H (X, Y) we shall construct maps v;: N; = S* such
that u;; = vi . ;V;on Ny,
By Corollary (1.2.14) we can assume (shrinking the N;’S if necessary) that there are
continuous maps z;: N; » U(H) suchthat (g; %, h;). = Ad z; Then (ii) and (iii) imply that

Ad (z; wyZy)) = Ad vy and Ads; = Ad (zjw;z;);

from this last identity we deduce that there are continuous maps v;: N; — St with s; =
viz;u;z; on N; We now compute:

— -1 — 1
pijl = Wi]-(Viju]-Z]-* )Wl-*]-(Vi ZU[Z{ ) = Vj V]-zi(zi*wi]—zj)u]- (zi*wi*]-z]-)u;‘zi*
_ -1 * *x .. —1
= Vi VjZiVijuiVijVijuiZi = Vi V])\ljl ,
which shows that {A;;} and {u;;} represent the same class in H* (X,y). We conclude that ¢ (a)

is well-defined.

Ifa, BE AUiCb(X)A , then we can proceed and construct data for and 8 satisfying the

conclusion of Proposition (1.2.15) with respect to the same cover of X; if a; = Ad u; and
B; = Ads;. then (a°B); = Ad (u;s;) and it is a straightforward calculation to check that
the resulting cocycle for a3 is the product of the cocycles for « and 8. Since € (aff) is
independent of all the choices made, it follows that &: Aut., A — H1(X,Y) is a group
homomorphism.

We next have to identify the kernel of € as the inner automorphisms; since € is
defined in terms of local coordinates we must first identify multipliers in terms of local
coordinates. We shall need the following well-known lemma; it is the trivial case of [22,
Corollary 3.5], and a simple proof can also be given using Lemma (1.2.2) and the fact that
M(K(H)) = B(H).

Lemma(l.2.16)[21]: Let Xbe acompact space. Then every multiplier of
C(X,K(H)) is given b a* —strong continuous map of Xinto B(H).

Let A = [L(E),{N;},h;and vy be as in Proposition (1.2.15). If m is a multiplier of A,
then by Lemma (1.2.2) m induces multipliers m; of C(Nj, K(H)) defined by m{ =
(hi_l)*°m%]i°(hi)*, and similarly for m;". By Lemma (1.2.16) each m;. is given by a *-
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strongly continuous function t;: N; — B(H); then for x € Njand b € C(Ni]-,K(H)) we
have

tObx) = (), (my(hx(b(x)))
= (n'n)_ |6, (maChe {(nn) v )

vij = & [0 vi(X) " (b{x)vj;(X)] vi (x)*

so that t; = vyt;V;;. Conversely, it is routine to check that any collection of *-strong
continuous maps t;: N; — B(H) satisfying t; = v;t;vj; on Ny; defines a multiplier m of
o(E) by m'(@® = (h)x[t,c)(hi Dx(@acn m” @ = (hyy (i x@(Erw). Thus we
have

Proposition(1.2.17)[21]: Let A = I,(E) be a separable stable continuous
trace C*— algebra with spectrum X , and let Njh;vy satisfy
conditions(1)and(11)of Proposition (1.2.15).Then we can identify M(A) with the
set {{t;}: t;:N; - B(H) is *-strong continuous, uniformly bounded and t; =
Vl]t]V:] on Nl]}

Let A = I,(E)be a separable stable continuous trace C* —algebra with spectrum X,
and let Nj, h;. and vy; satisfy conditions (i) and (ii) of Proposition (1.2.15). Ifa = Adu €
Inn A, then by the preceding proposition we can regard u as a family of maps u;: N; -
U(H) satisfying u; =. . vjju;v;;.

The usual sort of calculation shows that u; implements «;, and the analogous 4;;’s
areall 1sothat é(a) = 0 € HY(X,Y). Now suppose that a € Antcb(X)A and é(a) = 0,

so that there are N;, h;, v;; and u; satisfying the conclusions of Proposition (1.2.33) and
continuous maps v;: N; — S* such that on N,

*

-1 _ —
Vi Vil = )\ijui = Vi]'u]'Vi]-.

]
If we define w;: N; » U(H) by w; = vi 'u;, then a; = Ad w; and it is easy to check that
wi = vjw;vyi. Thusthe w;’s define a unitary element w of M(A) and another calculation

shows that ¢ = Ad (w), so that « € Inn A . This completes the proof that ker ¢ =
InnA.

To complete the proof of Theorem (1.2.10) we have to show that £ is surjective. Our
method is a version of Lance ’s argument [45, last part of Theorem 4.3]; modified (cf. [32,
proof of 10.8.4]) to allow for transition functions and noncompact spectra. We begin with a
simple lemma.

Lemma(l.2.18)[21]: Let A be a separable stable continuous trace C* —algebra
with spectrum X, and let N;,h;. and v;; satisfy (1) and (11) of Proposition
(1.2.15). Ifu;: N; - U(H) are continuous maps such that Ad (v;ju;v;;) = Ad u;
on Nj;, then there is a unique C,(X)-module automorphism aof A such that o; =
Ad y;..

Proof: Leta € A, and let
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a(@)(x) = (h)y° Adu;(x) o (hi Dy(ax))forx € Nj;.
Then a(a) is a well-defined element of A, and it is clear that a is a a C;, (X)-algebra
homomorphism; a is an automorphism since we can write down its inverse. Using a partition

of unity we can see that a C;, (X)-automorphism is uniquely determined by its restrictions to
theN;’s , and hence « is unique.

Let A = I,(E),N;,h;. and v;; be as in (i) and (ii) of Proposition (1.2.15), and let
{N;, 4;;} be a 1-cocycle with coefficients iny. Since Ais separable, X is paracompact and so
we can assume that the cover {N;};¢; is locally finite; moreover, by refining, we can assume
that {N;};c,is a locally finite cover. We shall show that there are maps u;: N; —» U(H)
satisfying vjj ujv;; = Ajjon Ny o so that by Lemma (1.2.18) the w;’s will define an
automorphism a € Autc,x with&(a) = {N;,A;;}. Let U denote the sheaf of germs of
continuous U(H)-wahxed functions on X we shall need the fact that 2 is soft, which
follows by Lemma 4.2 of [45] from the contractibility of U(H) [32].

Let Y= {(J,B):J €1 and B = {B;}ic; consist of B; of A over N; such that
viBivi = AB;.onN;nNL If J € Kand B; = y; fori € ], then we set (J,8) < (K, v):
this is a partial order on YThe collection Y is non-empty and every chain has an upper
bound, so by Zorn's lemma Y contains a maximal element (J, 8).Suppose that there is an
i € 1\J, and letR = N;n (Uje; N;) ; note that R is closed since N; is locally finite.
Suppose that j,k € ], so that vyB,vi, = AiBj on N; N Ny. Thenon N; N N; n Ny

A viiBivii = A vij A vikBeViivii = A VikBiVik

so that B; = A{jlvijﬁjvz‘j defines a continuous S; of U over R, which satisfies the right
relations on R N Nj. for all j € J. Since U is soft, B; extends to a continuous B; over N;j,
which contradicts the maximality of (J, ) so that J must be all of I. If we restrict the S;s to

N;., then they are continuous of U over open sets and so given by continuous maps u;: N; =
U(H) which have the required properties. This completes the proof of Theorem (1.2.10).

We now investigate the special case of the above construction where A is an n-
homogeneous C*-algebra, or, in algebraic language, an Azumaya algebra. Let A be an
algebra identity over a commutative ring R, and let M be a left A ®z AT module—that is,
M is a left and a right A-module and the action of R commutes with everything. We say M
is invertible if there is another left A ®g AP-module N withM @ )N = Aand N ®, M =
A, and we denote by PicgA the group of isomorphism classes of invertible left A ®g A™P-
modules. If for @« € Aut A we define ,A; to be the A ®g AT -module with A as
underlying set, and left and right multiplication defined by a.b = a(a)b and b.a =
ba respectively, then ,A; is invertible and the mapa —, A; induces an
antihomomorphism m such that

(%) 0 — InnA — Autg A = PicgA

IS an exact sequence (cf. [26, page 73-74]). If A is an Azumaya R-algebra (that is, the centre
of A is R and A is a projective A ®g AT -module) then every A ®g AP -module M is
isomorphic to A ®g Z(M), where Z(M) = {m € M:am = ma for all a}. [24, Theorem
3.1]. The correspondence P - A @gP induces an isomorphism Pic R = PiciyA, where
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Pic R = PicgxR denotes the usual Picard group of invertible R-modules. Thus for an
Azumaya algebra A over R we have the exact sequence

0 - InnA - AutRAg Pic R,
where for a € Auty A, p(a) is represented by
Jo = {2 €A:a(b)a = ab forallb € A}.
This result is due to Rosenberg and Zelinsky ([50]; cf. also [31]); Knus [44] has shown that
the range of p is contained in the torsion subgroup of Pic R.

Let A be Azumaya algebra over C(X) for a compact space X. First of all, it follows from
[23] that modulo the inners the € (X)-automorphisms and the C (X)-algebra automorphisms
coincide, so that we can write Aut.x)A without causing any confusion. The natural
equivalence E — T'(E) between vector bundles over X and projective C(X)-modules allow
us to interpret Pic C(X) as HY(X,Y) = H?(X,Z), and it's not hard to see that under this
identification our homomorphism n of Theorem (1.2.10) and the Rosenberg-Zelinsky
homomorphism p coincide. Knus's result tells us that if H2(X, Z) is torsion free then every
C (X)-automorphism of every n-homogeneous C* —algebra with spectrum X is inner. When
Kadison and Ringrose in [42, Section 4, example (d)] were looking for a space X for which
m(C(X,M,(C))) # InnC(X,M,(C)) , they took for X the projective unitary group
U(n)/S?Y; it turns out that H2(U(n)/S%; Z) = Z, [27, Section 4]. Notice that they had to
choose different spaces X for different fibre dimensions.

Recently Brown, Green and Rieffel [28] have introduced a C*-version of the Picard
group, which we denote by Pic*:if A is a C*-algebra then Pic*A consists of equivalence
classes of A — A — imprimitivity bimodules (cf.[49, Definition 6.10]). Their Pic*A
corresponds to the algebraic Pic.A, and the appropriate generalisation of the exact sequence
(*) of the preceding is

0 - InnA - Aut A> Pic* A

this is Proposition (1.2.41) of [28]. Brown, Green and Rieffel prove that if A is stable and
has a strictly positive element (for example, if A is separable and stable) then the
antihomomorphism 7 if we surjective [28, Corollary 3.5]. denote by Piczyp,)A the
subgroup of Pic*A consisting of (classes of) A-A-imprimitivity bimodules X such that
ar.x.b = a.x.rbforallx € X,a,b € Aandr € ZM(A) then it is routine that m(a) €
Pic”zym@)A if and only if a € Autzya)A. In particular, for a separable stable continuous
trace C* — algebra we obtain an isomorphism Autzya)A/Inn = Pic’zya)A, Which
together with Theorem (1.2.10) shows that H? (X, Z) = Picc,x)A. We do not know how to
prove this result directly, although such a proof would be of interest; it would also be
interesting to find out for what class of C* —algebras we do have H?(A,Z) = Piczya)A.
Such a result together with [28, Corollary 3.5] would of course give our Theorem (1.2.10),
but we observe that this approach will not give the results of since the algebras we consider
there are not stable, so that Corollary 3.5 of [28] does not apply.

Let A be a separable continuous trace C* —algebra with spectrum X, and let §(A) be
the class in H3(X, Z) associated to A by Dixmier and Douady [34], [32, Section 10.7]; their
construction goes as follows. If {N;},h; and v;; satisfy the conditions (i) and (ii) of
Proposition (1.2.15), then Ad (v;jvjx) = Ad vy, on Ny, and so there are continuous maps
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tiji: Nijx — St such that vijVik = tijkVik- A completely routine calculation (see [32, proof
of 10.7.12]) shows that {N;, tj;c} is a 2-cocycle with coefficients in Y and so determines an
element of H2(X,Y). This cohomology class depends only on A [32,10.7.12] and is denoted
by y(A); its canonical image in H3(X,Z) = H?(X, V) is denoted by §(A). Now leta €
Aut A. Then o induces a homeomorphism & of X by sending the primitive ideal I, =
{a € Ara(x) = Ojtoa(ly) =Izx and & in turn induces an automorphism
a" of H3(X,Z). In fact @ fixes the Dixmier-Douady class §(A). We denote by Homgs) X
the set of homeomorphisms of X with this property. Observe that the homeomorphism @ is
not the natural map @:A — A induced by o; our & = (a-!) . We have adopted this
notation so that the map a — a/is a homomorphism and not an anti-homomorphism.
Theorem (1.2.19)[21]: Let A be separable continuous trace C* —algebra with spectrum X.
Then there is an exact sequence

0 - Autc, A — AutA E>Hom8(4)X.

If Ais stable, then pis surjective.

Proof: If a € AutA we set p(a) = a@: X — X; it is easy to check that p is a group
homomorphism, and Lemma (1.2.4) tells us that ker p is Autcb(x) A. It remains to verify that

p(a)” fixed 8(A) and that p is onto if A is stable. We first show that p(a)*(8(A)) = 8(A);
again we reduce to the case where A is stable by passing to a @ id € Aut A ® K(H). As
before if we identify the spectra of A and A ® K(H) via the correspondence I - [ ® K(H)
then it is routine to verify that p(a) = p(a ® id) and thata € AUth(X)A exactly when

a®id € AUtcb(X))A ® K(H). Further, by [33] and Lemma (1.2.11) we have that §(A) =
8(A ® K(H)) so that p(a) fixes p(A) if and only if p(a ® id) fixes 6(A @ K(H)).

So we suppose that A is stable and o € Aut A. Let {N .}, h; and vy; be as in (i) and (ii)
of Proposition (1.2.15), so thaty(A) is represented by {Nj;, t;;x) where v;vix = tjxVik.
Under the homeomorphism a this cocycle is carried to {&* (N;), t;j ° @} and we must show
that this also represents y(A). We observe that if A = [,(E) then the automorphism a

induces isomorphisms ay: Ey = Eg) and if Y < X is compact, then

ay(D(@(x) = ax(f(x)) (x €Y)
defines an isomorphism ay:'(Ely ) = I'(E|5(y)) (cf. the argument of Lemma 1.2.4). We
define

80 (Ni) X K(H) = Bl by (8), = (), (idagyy
the preceding observation shows that the g;’s are isomorphisms of fields. If we alsodefine
wii @ 1(Njj) - U(H) by wy; = vj; ° @ then a calculation gives
Adwy(y) = (gi'g)y fory € a*(Ny),
so that the cover {&~*(N;)} and the g; 's, w;;’s also satisfy (i) and (ii) of Proposition (1.2.15).
Thus if we set siwi, = wi;wy, then the cocycle @ (N;), siji) also represents the class

y(A) in H3(X,Y) by [32, 10.7.12 (iii)]. But another calculation shows that Sijk = tijk ° &,
so we have proved that @*(y(A)) = y(A) and hence that p(a) € Homgs)X.
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Finally, we prove that p is surjective if A is stable. Let ¢ € Homga)X, so that ¢*and
(¢~ H* : H3(X,Z) H3(X,Z) both fix §(A). If ¢ denotes the sheaf of germs of Aut K(H)-
valuied functions, then Dixmier and Douady defined a map A: H1(X, 4 ) » H?(X,¢) and
proved that it is bijective [34,Lemma 22]; if {N;, Ad v;;} as above determine c € H'(X, ),
then A(c) is represented by {Nj tjx} and so equals y(A). It is clear the maps
(¢ H*:H'(X,4) » H'X,¢and (¢ 1)*:H}(X,4) — H(X,¢)commute with A; hence
if (~1)" fixes 8(A) then {N;Ad v;;} and {@(N;)9 Ad v;; ° '} define the same class in
H*(X,4). This means that there is a common refinement {Mp},cp Of the covers {N;} and
{$(Np}, functions 7,0 : P - 1suchthat M, < Ny, and M, < ¢(Ny(p)) and continuous
maps Bp: M, — Aut K(H) such that

AdV(pyriq) = Bp ° (AdVo(p)o(@) ™) ° By onMyg.
We can regard elements of A variously as collections of maps a;: N; — K(H) satisfying
a; = Advjajon Ny; or as collections a,: M, — K(H) satisfying a, = Ad vyp)r(q)aq ON
Mpq. Fora € A we define a(a) € Aby a(a), = Bp(a(,(p)%l)‘l) the calculation

AdV(p)r(q) (@(@)q) = (AdV(p)r(q))Bq (Ao D) = Bp[AdVe(p)r(q) P [ (as(p) ™)
= Bp(ac(p)od’_l) = a(a)y

shows that a(a) is a well-defined element of A. In fact o is an automorphism of A, and it
remains to check that p(a) = ¢ To do this we need to show that a(x) = 0 implies
a(a)(d(x)) = 0; but this follows at once from the observation that a(a)(y) = 0fory €
M, ifand only if a(a),(y) = 0.

We conclude by proving the following theorem of Akemann et al. [3]. The proof is
only a minor modification of their proof; however, it will show how to prove a similar result
for other C*-algebras which arise of bundles.

Theorem(1.2.20)[21]: Let A be a separable continuous trace C* —algebra.
Then every derivation of A is inner.

Proof: Let A = I,(E) have spectrum X and let § be a self-adjoint derivation of A. Let
o, = exp t6so that for small t [|a — id|| is small. Now, by 1.15 a, is in Auic, x)A and
so a is locally inner. By taking logs one sees that & is "locally inner" i.e., there is an open
locally finite cover {N;} of X and elements {x;} in M{A) so that for a in A which is
supported on N;,8(a) = x;a — ax; If {p;} is a partition of unity subordinate to {N;}, then
X = ) piX; ISinM(A) and 6 = ad x.

We shall now generalise Lance's theorem in two directions: we shall allow locally
trivial bundles in place of the trivial bundle X x B(H), and we shall vary the fibre algebra.
Throughout this X will be a separable compact space and B will be a C*-algebra with
identity; the groups Inn B and U(B) will have their respective norm topologies. We shall be
concerned with the space A = T'(E) of a bundle E over X with fibre B and structure group
Inn B.

By Lemma (1.2.1) an automorphism a € Aut.x)A induces automorphisms of the fibres
E,; if each of these is inner we say a is pointwise inner, and we denote by Pinn A the group
of such automorphisms. We shall give conditions on the fibre B which imply that
PInn A/Inn A = H?(X,Z). The crucial step in our argument is to show that (under
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conditions on B) a pointwise inner automorphism a of C(X, B) is locally inner in the sense
that the unitaries implementing the fibre automorphisms o, can be chosen continuously
near each point. We observe that both Lance [45] and Smith [52] recognised this as a major
step in their analysis of Aut C(X, B(H)). The approach has two ingredients: a theorem of
Kallman and Elliott, and a simple selection theorem argument. As a corollary of this we see
that in many cases PInn A = 1(A), so that the result is a true generalisation of Lance's. We
also observe that these conditions on the fibre B ensure that H1(A,A) = 0. We conclude
by observing that the Dixmier-Douady classification of bundles of C* —algebras by third
Cech cohomology also works in our setting.

The following result is due in this generality to Elliott, although the first theorems
along these lines were proved by Kallman. This is from [37], but we refer to [38] for further
details.

Theorem (1.2.21). Let B be the quotient of an AW* —-algebra by a closed two-
sided ideal, and let ¢, be a sequence of automorphisms of B such that
l¢p,b — b|| » 0for each b € B. Then ||¢p, — id|| — 0.

Corollary(1.2.22)[21]: Let B be a quotient of an AW™* -algebra, X be a
separable compact space and a € Aut.)C(X,B). Then the induced map x -
a.: X = AutB of Lemma (1.2.3) is continuous when AutB has the norm
topology.

Proposition (1.2.23)[21]: Let B be a C* —algebra with identity 1 such that
H'(B,B) = 0. Then, there is a continuous mapy: {a € AutB: ||a — id || <+/3} -
U(B) such that a = Ady ().

Proof: Let D, be the closed real linear subspace of L(B) consisting of self-adjoint
derivations and let B, be the closed real linear subspace of B consisting of skew-adjoint
elements. Since HY(B,B) = 0 we have that ad: B, — D, is a surjection and so by the
Bartle-Graves selection theorem [59] there is a continuous map :g D, —* such that
ad (g(d)) = dforalld € D, and (gy,) = 0.Leta = exp ° g°log, then the argument of
[58, I11. 9.4] applies.

Theorem(1.2.24)[21]: Let Xbe a separable compact space, and let Bbe a
C* —algebra with identity satisfying

(i) H'(B,B) = 0;

(i1) Bis the quotient ofan AW* —algebra by a closed two-sided ideal.
Then every pointwise inner automorphism of C(X, B) is locally inner.

Proof: Leta € Autgi)C(X,B) be pointwise inner, so that the map x — a, of Lemma
(1.2.3). takes values in Inn B. By Corollary (1.2.22), x — a, is continuous, and the result
now follows from Proposition (1.2.23), see [48].

We now turn to the more general situation where the C*-algebras are spaces of bundles.
The first result shows that our pointwise inner automorphisms coincide in many cases with
the iT-inner automorphisms of Kadison and Ringrose.

Proposition (1.2.25)[21]: Let B be a von Neumann algebra,let E be a bundle
over X with fibre B and structure groupInnB and let A =T(E).Then the
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pointwise inner automorphisms of A are precisely the m-inner automorphisms
of A.

Proof: Suppose first that o is m -inner. Since Zd((A)) < Z((pA)) for any
representation ¢ of A (where ¢(A) denotes the weak closure of ¢A)), it follows
immediately that a is a € (X)-automorphism and so induces automorphisms o, 0f the fibres
E.. If B acts faithfully as a von Neumann algebra on the Hilbert space H, then we can use
the representationa - Y®a(x) on YPH to see that a is pointwise inner.

Conversely, suppose that a is pointwise inner and ¢: A — B(H) is a faithful
representation such that (1) = 1. We can choose an open cover {N;}i-, of X such that
E|g, is trivial, and by Theorem (1.2.24) we can assume (byshrinking the N; ’s if necessary)
that the induced automorphisms a; of C(N;,B) are inner. Consider the finite increasing
sequence 0 = I, c I; c...c I, = A of ideals of A corresponding to the open sets
¢,NjU N, U Ny, ..., N;U...U N, = X. ForeachK = 1,..., n,Ix_; and I are fixed by
a and the induced automorphism of I /I_; is inner. It follows immediately that a a is -
inner (cf. [36]).

Corollary(1.2.26)[21]: If B is a von Neumann algebra, then the m-inner
automor-phisms of C(X,B) are precisely the locally inner automorphisms.

Proof: This is a combination of Theorem (1.2.24). and Proposition (1.2.25) for the trivial
bundle X x B.

Let B be a C*-algebra with identity satisfying the hypotheses of Theorem (1.2.24),
and let E be a bundle over X with fibre B and structure group Inn B. Then the transition
functions of E form a cocycle {N;, ¢;j: 1 < 1 < n} with coefficients in the sheaf of germs of
Inn B-valued functions. Using Proposition (1.2.23) and a covering argument like that of
[32,10.7.11] we can refine the cover {N;} so that the maps ¢;;have the form Ad vy; for
continuous maps vj;: N j; = U(B). If a is a point wise inner automorphism of A, then by
Theorem (1.2.24) we can shrink the N;s again so that the automorphisms induced by « on
C(N;, B) are all inner. Provided the centre of B is trivial, the arguments of go through in
this case, and there is a homomorphism n: PInn A —» H1(X,S). We obtain the following
theorem:

Theorem(1.2.27)[21]: Let B bea C*-algebra with identity such that

(i) Z(B) =C1;

(ii) HY(B,B) = 0;

(iii) B is the quotient of an A W*-algebra by a closed two-sided ideal.

Let X be a separable compact space, let E be a bundle over X with fibre B and
structure group Inn B, and let A = I'(E). Then there is an exact sequence

0 - InnA — PInn A H2(X,Z).
If in additionU(B)iscontractible,thennis surjective.

We now consider the case where the fibres do not have trivial centre. Again let B be
a C*-algebra with identity satisfying (i) and (ii) of Theorem (1.2.24), and let E be a bundle
over X with fibre B and group Inn B; we write A = I'(E). The same construction associates
to each ¢ € PInn A a 1-cocycle with coefficients in the sheaf ¢ of U(Z(B))-valued
functions. Now Z(B)is a commutative C* — algebra, and hence isomorphic to C(Y) for the
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compact space Y = Z(B)A, under this isomorphism U(Z(B)) is carried to the group
C(Y,SY) of continuous functions from Y to the circle St. Let ¢ denote the sheaf of germs
of C(y, R)-valued functions; thenthe map f — exp 2mif induces a short exact sequence of
sheaves:

0-CY,2)»y—->IT-0.

The sheaf ¢ is fine, and so the corresponding exact sequence of cohomology implies that
HY(X,T) = H2(X,C(Y,Z)). The group C(Y,Z) is just H°(Y,Z) (it is easily seen that
C(Y,Z) isdiscrete as a subset of C( Y, R)) and our theorem becomes.
Theorem (1.2.28)[21]: Let B be a C*-algebra with identity such that
(i) H'(B,B) = 0;
(i) Bis a quotient of an AW* —algebra.

Let E be a bundle over a separable compact space X with fibre B and
structure group InnB, and let A = T'(E). There is an exact sequence

0 —Inn,A - PlnnA - H2(X,H°(Z(B) ,7));
if U(B) is contractible, then nis surjective.

As we have already noted, hypotheses (i) and (ii) are automatically satisfied if B is an
AW*-algebra. The question of contractibility of U(B) though, is an interesting one. Kuiper's
famous theorem asserts that U(H) is contractible, and Breuer [29] has extended this to show
that for any properly infinite semifinite countably decomposable von Neumann algebra B
the group U(B) is contractible (in particular, if B is a type 1., or 11, algebra acting on a
separable space H). Araki, Smith and Smith [23] and Handelman [40] have shown that this
IS not the case for von Neumann algebras of type 11, by computing 7, (U{B)). It has been
conjectured that U(B) will always be contractible if B is properly infinite.

For the algebra A = C(X,B(H)) Lance proved that the group Inn A  coincides
with the connected component y (A) of the identity in Aut A. That InnA c y(A) is an
immediate consequence of Kuiper's theorem, and so this also holds for A = C(X,B)
whenever U(B) is contractible. The converse inclusion will be true for C(X, B) whenever
the hypotheses of Theorem (1.2.24) hold for B. Putting this observation together with
Proposition (1.2.25) and Theorem (1.2.28) gives the following direct generalisation of
Lance's main theorem [45,Theorem 4.3]:

Theorem(1.2.29)[21]: Let X be a separable compact space, let B be a properly
infinite semifinite countably decomposable von Neumann algebra, and let'Y
be the spectrum of the centre of B. Then

m(C(X,B)) / y(C(x,B) = H2(X,H°(Y,Z)).
We conclude by observing that the Dixmier-Douady classification of locally trivial
bundles of elementary C*-algebras also works for the bundles we have been considering.

Proposition (1.2.30)[21]: Let B be a C* —algebra with identity and suppose
that

(1)Ad:U(B) - InnB is a fibre bundle;

(i1) U(B) is contractible.
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Then for each paracompact space X there isa one-to-one correspondence
between H3(X,H°(Z(B) ,Z)) and the set of isomorphism classes of bundles over
X with fibre B and structure group Inn B.

Proof:Let g, U respectively denote the sheaves of germs of Inn B and U(B) -valued
functions. Then isomorphism classes of bundles over X with fibre B and group Inn B
correspond to the cohomology classes in H(X, g). The fibre of the bundle U(B) —» Inn B

is the set U(B)N Z(B), which can be identified with C(Z, (B) ,S?). If we denote by X the
sheaf of germs of C(Z, (B) ,S?)-valued functions, then the fact that U(B) - Inn B is a
bundle says there is a short exact sequence of sheaves

0-FT->U->g9-0
Since U(B) is contractible, is soft and there is a bijection of H1(X,¢) onto H?(X, ) [34].

H2(X,T) = H3(X,C(Z(B) ,Z)) = H3(X,H°(Z(B) ,Z)) and we're done.

Corollary (1.2.31)[370]: Let p" € K(H) be arank one projection. Then there
isa continuous map vy, M = {¢" € AutK(H): || ¢"(p") — p"|| < 1} - U(H)such that
Adcy is the identity on M. Further, if ¥, || ¢" — id.[| < & <Zthen X, Iy, (¢") —
1| < 4e.

Proof: Suppose that ¢” € M; then )., ¢ (p")p" # 0,and ). v(¢d") =X, ¢" (pH)p"/
lp™ (p")p"|| defines a continuous map of M into K(H). Thenv (¢")* v(¢") is a positive
element of p"K(H)p" of norm one, and so ), v(¢") v(ep") =, p"; similarly
Xr V(@T)V (97" = X ¢"(p") thus by the lemma

D w@Dmp) = D ¢T(vgT) (hpT KA., g E M)

defines a unitary operator y,-(¢”) € U(H) and ¢p” = ). Ad, vy, (¢") . It is easy to verify
that y is continuous, and a computation shows that if )}, ||¢” — id. || < € < 1/2, then
Yo |lv(@™) — p"ll < 3eand X, |ly,-(¢") — 1| < 4¢, which completes the proof.
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Chapter 2
Automorphisms and Countable Degree-1 Saturation

We introduce notions of metric w,-trees and coherent families of Polish spaces and
develop their theory parallel to the classical theory of trees of height w, and coherent
families indexed by a o-directed ordering. We present unified proofs of several properties
of the corona of g-unital C*-algebras such as AA-CRISP,SAW*, being sub-g-Stonean in the
sense of Kirchberg, and the conclusion of Kasparov's Technical Theorem.
We obtain results about the quotient of these Banach algebras by their ideal of compact
operators being C*@algebras which hve the countable degree -1 saturation propertyin the
model theory sense of |. We also obtain results about quasicentral approximate units,
multipliers and duality.

Section (2.1): Automorphisms of all Calkin Algebras

For an infinite-dimensional complex Hilbert space H. Let B(H) be its algebra of
bounded linear operators, K (H)its ideal of compact operators and C(H) = B(H) /¥ (H)the
Calkin algebra. Answering a question first asked by Brown-Douglas-Fillmore, in [109] and
[104] it was proved that the existence of outer automorphisms of the Calkin algebra
associated with a separable H is independent from ZFC. We consider the existence of outer
automorphisms of the Calkin algebra associated with an arbitrary complex, infinite-
dimensional Hilbert space.

PFA stands for the Proper Forcing Axiom, MA for Martin's Axiom and TA stands for
Todorcevic's Axiom (see e.g., [111] or [107] for PFA and TA and [106] for MA). It is well-
known that both MA and TA are consequences of PFA.

Theorem (2.1.1)[99]: TA implies all automorphisms of the Calkin algebra on a separable,
infinite-dimensional Hilbert space are inner.

All of these results are part of the program of finding set-theoretic rigidity results for
algebraic quotient structures. This program can be traced back to Shelah's seminal
construction of a model of ZFC in which all automorphisms of P (N)/Fin are trivial ([110]).
At present we have a non-unified collection of results and it is unclear how far-reaching this
phenomenon is (see [101], [102], [103] and [104]).

The idea of the proofs of Theorem (2.1.11) and Theorem (2.1.23) is taken from the
analogous Velickovic's results on automorphisms of the Boolean algebra P (%) /Fin in
[112].

If & is an automorphism of P (w;)/Fin then there is a closed unbounded set C <
w, such that for every a € C the restriction of ® to P(a)/Fin is an automorphism of
P(a)/Fin. Since MA and TA imply that all automorphisms of P (w)/Fin are trivial ([13]),
for each a € C we can fix a map h,: @ = a such that the map P(a) 3 A = hy[A] €
P(a) is a representation of the restriction of @to P («)/Fin.

Fora < p <y with gandy in C we have that h; T a and h, I a agree modulo finite.
Therefore

T={hg Ta: a<pB,p € C}
considered as a tree with respect to the extension ordering, has countable levels.
Automorphism ®is trivial if and only if T has a cofinal branch. For every f: w,; — 2 the tree

T[f] = {fot: t € T}
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has a cofinal branch, determined by Y such that [Y]z;, = @([X]Fin), Where f = yx. On
the other hand, if f is added by forcing with finite conditions P (i.e., if f codes a set of &,
side-by-side Cohen reals over V) then P forces that T[f] has no cofinal branches. Applying

MA to the poset for adding ffollowed by the ccc poset for specializing T [f] one obtains a
contradiction.

Velickovic's proof of triviality of automorphisms of P(k)/Fin for k > X, uses a PFA-
reflection argument, in which the above proof is preceded by a Levy collapse of k to ;.

While the structure of our proof of Theorem (2.1.11) loosely resembles the above sketch,
a number of nontrivial additions and modifications were required. For example, it is not
clear whether for every automorphism @ of C(#,(X;)) the set C of countable ordinals «
such that the restriction of @ to C (¢, (a)) is an automorphism of the latter algebra is closed
and unbounded. This follows from MA + T A by Theorem (2.1.11), but | don't know whether
this fact is true in ZFC. This problem is dealt. An another inconvenience was caused by the
fact that the natural 'quantized' analogue of the poset for adding &; Cohen reals is not ccc
(Lemma 2.1.14), as well as the expected non-commutativity complications.

Also, the appropriate analogues of Velickovic's trees T and T[f] are continuous rather
than discrete. Therefore the proof of Theorem (2.1.11) required introduction and analysis of
'metric w, -trees,’ analogous to the classical theory of w, -trees. It is 'purely set-theoretic' in
the sense that C*-algebras are not being mentioned in it.

Metric w; -trees and metric coherent families are introduced and treated using MA
and PFA, few simple and well-known general facts about inner automorphisms of
C*@algebras. We define analogues of trees T and T[f ] from Velickovic's proof, and we
analyze T [T°] for an appropriately defined generic operator proof of Theorem (2.1.23) and
brief concluding remarks can be found.

The background on C*Ralgebras and set theory are [100] and [106], respectively.
Applications of combinatorial set theory to C*Plalgebras can be found in [113] and [105].

We introduce a continuous version of Aronszajn trees. In operator algebras
‘contraction' commonly refers to a map that is distance-non-increasing. In some other areas
of mathematics such maps are referred to as 1-Lipshitz and 'contraction’ refers to a distance-
decreasing map. The latter type of a map is referred to as a strict contraction by operator
algebraists. In what follows | use the operator-algebra ic terminology, hence a contraction
f is assumed to satisfy d(X,Y) = d(f(X), f(Y)). Other than this concession, the theory
of operator algebras does not make appearance.

A metric w,-tree is afamily T = (Xy, dg, mpq, for a < f < wq), such that
(1) X, is a complete metric space with compatible metric d,.
(i) mpq : Xp — X, s @ contractive surjection,
(iii) projections 7, are commuting and 7., = idx  for all a.
If all spaces X, are separable we say T is a Polish w,-tree. If in addition the inverse limit
lci(rll X, 1s empty then we say that T is a Polish Aronszajn tree. Otherwise, the elements of
the inverse lirgl X, are considered to be branches through 7. All branches and all e-branches

are assumed to be cofinal.
When each d, is a discrete metric then the above definitions reduce to the usual
definitions of w, -trees and Aronszajn trees (see e.g., [106]). Similarly, e-branches, ¢-
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antichains and e-special trees as defined below are branches, antichains, and special trees,
respectively, when 0 < ¢ < 1.

Spaces X, are assumed to be disjoint and we shall identify T with the union U, X, of its
levels when convenient and the projections are clear. On T we have a map Lev: T — w;
defined by Lev(x) = aifandonlyifx € X,.

It will be convenient to write 7, for the map Ugsq 5, from T into T,,. Define a map p

on T2 as follows. For X, Y in T let @ = min(Lev(X), Lev(Y)) and let
p(X,Y) = da(me (X)), e (V).

Note that p is not a metric or even a quasi-metric. The triangle inequality is violated by any
triplesuchthat x # zbutY = n,(x) = n,(2).

Fore > 0asubset Aof T isan e-antichap inof T if (X,Y) > ¢ forall distinct X and Y
in A. We say that T is e-special if there are e-antichains 4,,, forn € N, such that X, n
U, A,isdensein X,, foralla < w;.

Fore > OasubsetAof T isan e-branchifA = {x,:a < w;} Lev(X,) = a forall
a, and p(xq,xp) < & for all a, 5. A subtree of T is a subset S < T that is closed under

projection maps and intersects every level X,,.

Lemma (2.1.2)[99]: The following are equivalent for every metric W;-tree T and ¢ > 0.

(i) Thas an e-branch,

(it) Thereis B < T that intersects cofinally many levels such that p(X,Y) < ¢ for all
X,YinB,

(i1i) Thas a subtree of diameter < ¢.

Proof: For B < T let its downwards closure S(B) be the subset of T such that its
intersection with X, is the metric closure of {m,(x) : x € B,a < Lev(x)}. Since each i,
us p-nonincreasing, the 'p-diameter' of S(B) is equal to the 'p-diameter' of B. This shows
that (i) implies (iit), and the other implications do not require a proof.

Lemma (2.1.3)[99]: Assume T is a metric w,-tree such that each of its subtrees has an e-
branch for every € > 0. Then T has a branch.

Proof: Choose B,, forn € N, so that B,is a 1/n-branch and B,,,; € S(B,). Then for
every a we have that B, N X,, forn € N, is a decreasing sequence of subsets of X, with
diameters converging to 0. If x, is the unique point in N, (B, N X,) thenthe fact that the
projections are commuting contractions easily implies that x,, fora < w,, is a branch of
T.

There is a Polish Aronszajn tree with an e-branch for all € > 0 but no branches. To see
this, fix any special Aronszajntree T. Let X , be the disjoint union of countably many copies
of the a-th level of T and define d, so that the the n-th copy has diameter 1/n and the
distance between two distinct copies is 1. With the natural projection maps, the n-th copy
of T includes a 1 /n-branch but T has no branches.

In the following lemma and elsewhere no attempt was made to find optimal numerical
estimates.

Lemma (2.1.4)[99]: If T is an e-special metric w,-tree then it has no £/2-branches.
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Proof: Let A,, for n € N, be e-antichains with dense union in each level. Assume x,, for
a < w4, IS an e-branch. Let n be such that d,(x,,z,) < €/4 for some z, € A,, N X, for
uncountably many a« . Since projections are contractions, for such a« < f we have
p(zq,2g) < &, acontradiction.

The proof of the following lemma is a straightforward modification of the well-known
analogous fact for w,-trees.

Lemma (2.1.5)[99]: (MA). Assume T is a Polish w;-tree with no e-branches. Then T is
& /2-special.

Proof: For each «a fix a countable dense subset Z,, of X,,. Let P, be the poset of finite £/2-
antichains included in U, Z, ordered withp > qif p € q.

We shall prove P, is ccc. Fix p,, @ < w4in P,. Since each Z, is countable, by a A-system
argument we can find @, an uncountable /] < w;, and (writing Z = Upg<aZp )P S Z
and g € Z so that the following hold for all « € J. First, p, = p U q,. Second, m
maps q, injectively onto g. Third, y(a) = min{Lev(x) : x € q,} converges to w,.

It suffices to find @ < g inJ suchthat q, U qg isan ¢/2-antichain. Letn = || and fix
an enumeration q, = {z,(i): i < n}forall @ € J. Let U be a uniform ultrafilter on .
Assuming a and £ as above cannot be found, there arei < j < n such that the set J;, =
{a € J: {B: p(z,(i),z3(j)) < &/2} € U} belongs to U. But then p(z, (i), z,(i)) <
g foralla < yin]J,;, and therefore {z,(i) : « € J;}defines an e-branch of T.

This proof that P, is ccc shows that it is powefully ccc, i.e., the finitely supported product
P5“ of countably many copies of IP is ccc. Apply MA to the ccc poset P = P5“and X,
many dense sets assuring that [P ads countably many e-antichains A,, whose union is equal
to Uy Z,, .

The material of this plays a role only in the proof of Theorem (2.1.23).

Asystem F = (X;,d,, my: A < A" in A) is a coherent family of Polish spaces if
(i) A is upwards o-directed set and a lower semi-lattice,

(i1) X, is a Polish space with compatible metric d;,
(i) my 22 X3 — X, is a contractive surjection,
(iv) projections m yare commuting and mAA = idx; for all A.
The family is trivial if l(i_n/%XA # 0. Hence if A = w, with its natural ordering then Fis a

Polish w4 -tree.

Spaces X, are assumed to be disjoint and we shall identify [F with the union U, X;of its
levels when convenient and when the choice of projections is clear from the context. On [F
we have a map Lev: F — A defined by Lev(x) = A if and only if x € X;. It will be
convenient to write 1, for the mapU s, 7y ;-

Define a map p on [FZ as follows. For x,y in Flet A = Lev(x) A Lev(y) and let

p(x,y) = d(my(x), T (¥)).
Fore > 0asubset A of T is an e-antichain of T if p(x,y) > € for all distinct x and y in
A.Aset{x, : A€ A}is an e-branch of Fifx; € X; for all A and p(x;,x;) < € for all 4
and A"
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If Y, < X is a nonempty Polish subspace for all 1 and the family ¥, ,forAe A ,A G A,
is closed under the projection maps then (with d; denoting the restriction of d; to ¥; we say
that F' = (Y3,d,, myry, for A < A" in A) is a cofinal subfamily of F.

Proof of the following is analogous to the proof of Lemma (2.1.3).

Lemma (2.1.6)[99]: Assume FF is a coherent family of Polish spaces such that each of its
cofinal subfamilies has an e-branch for every ¢ > 0. Then [ is trivial.

Assume F is a coherent family of Polish spaces. If f: w; — F is a strictly increasing
map then we say the Polish w; — tree (Xf (4, df(a) Tr (p)f(a) @ < B < wq) isaPolish sub
tree of IF.

Lemma(2.1.7)[99]: (PFA). Assume F = (X;,dy, myr, + 4 < A" in A) is a coherent family
of Polish spaces with no e-branches. Then IF has an € / 6 —special Polish subtree.

Proof: Let p denote the o-closed collapse of |A] to 8. Then p forces that there is a strictly
increasing, cofinal map f: w; — A. We first prove that p forces the Polish w,-tree Ty =

Xr() () Tr(p)f(a) @ < B < wq) has no e/3-branches.

Assume otherwise and let B be a name for an e/3-branch of T¢. Let 8 = (2/4)* and
let M be a countable elementary submodel of H, containing IF, P, and a name f for f. Let
D,, forn € N, enumerate all dense open subsets of IP that belong to M. Pick conditions
P, X, and Y, for s € 2<V, satisfying the following for all s.

(i) P, = P, if t extends s,

(i), € M N D,, wheren = |s|,

(i) P, I+ %, € B,

(iv)x, € M, and

(Vi)p(xs0, %51) = €.

These objects are chosen by recursion. If P, has been chosen, thentheset{x € F: (3q <
P,)g I+ x € B} is not an e-branch and therefore we can choose x,, and x, in this set
such that p(x4y, x51) = €. Let Pgg and P4 be (necessarily incompatible) extensions of P
forcing that x,, and x4, respectively, belong to B. Since all the relevant parameters are in,
,Pso » Psq, x5, and x4 can also be chosen to belong to M .

Since A is o-directed, let A(M) € A be an upper bound for M n A. For each g € 2N let
pg be (M, P)-generic condition extending all p,,, and deciding x; € Xy in B.Forg #
g’ let s be the longest common initial segment of g and g". We may assume g extends s0
and g’ extends s1. Let @« = min(Lev(xy),Lev(xy,)) and let Y,, Yy, x4, 2, be the
projections of x,, x, , x5 and x,q, respectively, to X,. Then

de(Yo, Y1) = da(xg,x1) — da(Yo,x%0) — da(Yy,x1) = €/3,
and therefore dy (g, x,7) = €/3. This contradicts the assumed separability of X,

Since P forces that IF has no €/3-branches, by Lemma (2.1.5) we have a IP-name for a ccc
poset that £ / 6 —specializes T¢. By applying PFA to the iteration and an appropriate
collection of dense sets we obtain the desired conclusion.

Coherent families of discrete Polish spaces and their uniformization using PFA have been
used. See e.g., [111] and [107].
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We state and show some well-known results about inner automorphisms of C* —algebras.
Recall that for a partial isometry vin algebra Ac by Ad v we denote the conjugation map
Adv(a) = vav”*.

Lemma (2.1.8)[99]: Assume that unitaries v and w ina C* — algebra A are such that
Ad v and Adw agree on A. Then vw* € Z(A).

Proof: We have vav* = waw* and therefore w*va = aw*v foralla € A.

In the following a denotes the image of a € B(H) in the Calkin algebra under the
quotient map, not a forcing name.

Lemma(2.1.9)[99]: If v and w in B(H) are such that v and w are unitaries in C(H) and
(Ad v)a — (Ad w)a is compact for all a € B(H), then thereisz € T such that v — zw
IS compact.

Proof: We first check (a well-known fact) that Z(C(H)) = C. Since itisa C* —algebra, it
suffices to see that the only self-adjoint elements of Z(C(H)) are scalar multiples of the
identity. Assume a is self-adjoint and its essential spectrum is not a singleton, say it contains
some A; < A,.Fixe < |A4; — A,|/3.In B(H) fix infinite -dimensional projections p and
q such that ||pap — A4;p|l < €and ||lgag — A,q|l < &. A noncompact partial isometry v
such that vv* < p and v*v < q clearly does not commute with a modulo the compacts.
By Lemma (2.1.8) applied to v and w and the above there is a scalar z such that zv = w,
as required.
Lemma(2.1.10)[99]: Assume H is an infinite-dimensional Hilbert space and @ and ¥ are
automorphisms of C(H) that agree on the corner pC (H)p for every projection p € B(H)
with separable range. Then & = W.

Proof: We may assume H is nonseparable. Assume the contrary and let a € B(H) be such
thath = ®d(a) — W(a) # 0. Letr be a projection with separable range such that rbr is
not compact and let p be such that ®(p) = r. By our assumption, ¥(p) = r.
Also ¥ (a)r = Y(pap) = P(pap) = rP(a)r, contradicting the choice of a.
Theorem (2.1.11)[99]: MA and TA together imply all automorphisms of the Calkin algebra
associated with Hilbert space with basis of cardinalityV; are inner.

Proof. Let H denote £,(X;). We assume @ is an automorphism of C(H) and ®,: B(H) —
B(H) is its representation, i.e., any map such that the diagram

B(H) 2= B(H)

T

C(H) —2~C(H)

commutes. Since every projection in C(H) lifts to a projection in B(H) ([113]) we may
assume &, maps projections to projections.

Lemma (2.1.12)[99]: If p is a projection in B(H) with separable range, then ®,(p) is a
projection with separable range and ®(pC(H)p) = ®(p)C(H)P(p).
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Proof: Since a nonzero projection in C(H) generates the minimal nontrivial ideal of C(H)
if and only if it is of the form ¢ for some g with a separable range, the first claim follows.
For the second part note that A = pC(H)p is a hereditary subalgebra (ie., if0 < a < b
fora € C(H)and b € A,thena € A)and therefore @ maps it to a hereditary subalgebra.

A straightfoward recursive construction produces an increasing family of projections
with separable range p, a < w; in B(H) such that
(1) Va<w, P = 1and foralimit § we have ps = Vg<s5Pa
(i) po and each p ,,1— p, are noncompact,
(iii) for some projection r,, such thatv,, = ®(p,) we havep, < 7r,,1andr, <pg41°
For convenience we write p_; = 0. For each « fix a basis of the range p,+1 — p, and
enumerate itas eg, fora.w < f < (a + 1).w. We therefore have a basis (e,)q<, for H
such that

(iv) De isthe closed linear span of {eg : f < a.w}.

For every @« < w; Lemma (2.1.12) implies that the restriction of ® to p,C(H)p, IS an
isomorphism between Calkin algebras associated with separable Hilbert spaces, p,[H] and
1o [H]. Therefore by Theorem (2.1.1) we can fix a partial isometry v, such that

(V) vavy < 1, V5V, < Do and Ad v, is a representation of ® on p,C(E)p,.
Foreacha > 1 by Lemma (2.1.9) we can find z, € T such that vy — z,v,p, IS compact.

Replace v, with z,v, and note that Ad v,, still satisfies (vi). Let us prove that in
addition (with a =% b standing for 'a — b is compact')

(viyv, =% vpp, Whenevera < B.
By Lemma (2.1.9), there is z € T such that v, — zvgp, is compact. Since pyis non-
compact and since v,p, = v, =% vgp,, we must have z = 1.
For a € B(H) define the support of a as

supp(a) = {a < w;: ||laeg|| > 0or|la*e,|| > 0}

All compact operators are countably supported and the set of finitely supported operators is

a dense subset of K (H). An easy analogue of the A-system lemma (e.g., [106]) is worth
stating explicitly (here H = £2(X,) and p, are as in (4)).

Lemma (2.1.13)[99]: Assume a,, @ < w,, belong to K (H). Then for every € > 0 there
IS a stationary X € w4, a finitely supported projection r, and an operator a such a that
rar = aand

@) |lpg(rar — ay)p, |l < € foralla € X,
(0) llpg(a— a)dp, || < € foralla € X,, and
(©) [Ipa@aba — Ppagppll < 2eforalla < BinX.

Proof: For a, find a finitely supported p, with complex rational coefficients with support
in p, such that ||p,(a, — by)p. || < €/2. By the Pressing Down Lemma ([106]) we can
find a stationary set X, such that all b, with @ € X, have the same support, S. Let r be the
projection to span{e; : i € S}. By a counting argument we can refine X, further and find
a. The third inequality is an immediate consequence of the second.
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Fora < w, let (with r,, and p, as in (3))
Xo = {Tar10pq + w € B(H),w =% Vg }-

Note the 'extra room' provided by defining X, in this way instead of the apparently more
natural {r,wp, : w € B(H),w =% wv,}. Let us prove a few properties of X,,.

(vii) X, is a norm-separable complete metric space.
(viii) If « < p then the map mg,: Xz — X, defined by
Tpa (W) = Tq41WPq

IS a surjection and a contraction.
Only the latter property requires a proof. It is clear that the range of g, is included in X,,
and that the map is contraction. Foru € X, letw = vg+ u — ry41Vgpe. Then w — vg
Is compact since u € X, and clearly r,,; wpy = TopUp 4 = U.
Consider the Polish w,-tree T with levels X, and connecting maps m,f.

Lemma (2.1.14)[99]: The following are equivalent.

(ix) @ isinner.

(X)Thereisa v € B(H) such that v is a unitary in C(H) and for all ¢ < w, we have

Ta+1VPa € Xa-
(xi) T has a branch.

Proof: Clearly (10) and (11) are equivalent, hence it suffices to prove (9) implies (10) and
that (10) implies (11). Assume @ is inner and v implements it. Then by Lemma (2.1.9) for
every a < w, there is z, € T such that z,vp, — v, IS compact. Since v, p, — v, IS
compact for each a and p, is noncompact, we have z, = p, for all «. Therefore
z,v defines a branch of T.

Now assume (11) and fix a v that defines a branch of T. Then the automorphism of C(H)
with representation Ad v agrees with @ on the ideal of all operators with separable range.
By Lemma (2.1.10), this automorphism agrees with @ on all of C(H), hence (9) follows.

A minor modification of the proof that (10) implies (11) above gives an another equivalent
reformulation of & being inner. Although we shall not need it, it deserves mention:

(xii) Every subtree of T h as a branch.
We proceed with the analysis of T and the corresponding 'local trees' T[a].
Forb € B(H)and a < wq let
Z[blg = {Pawbw’py: ®w € Xgiq})
Then for every ¢ € Z[b], we have p,®,(b)p, =% c because
PaWbw pg =% PaVa+1Pa+1PPa+1Y ¢ +1Pa =% Pa P.(Pa+1bPa+1)Pa
=% pocra+1cb*(b)ra+1 Pa =i poccb*(b)p(x-
Also, for a < f the map wga (denoted wfa when b is clear from the context) from
Z|[b]p to Z[b], defined by
wpac) = pgCpq
Is clearly a contractive surjection.

For a € B(H) let T[a] denote the Polish w, -tree with levels Z[a], and commuting
projections wpBa. By 'subtree’ we always mean a downwards closed subtree of height w; .
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Lemma(2.1.15)[99]: For every a € B(H) every subtree S of T[a] has a branch.
Proof: Letb = ®,(a).Foreverya < w, fixw, € X,,, such that

by = PaWqAWaPy
belongsto S N Z [a],. Letu, = pawq.
Fix e > 0. Recall that the fixed basis e,, for a < w4, of H spansall p,, (see (4)). Apply
'A-system’ Lemma(2.1.13)to operators p,(b — b,)p, to find uncountable /] € w, and
finitely supported c and c,, @« € J, with disjoint supports, so that

I(b— bg) = (¢ + ca)ll < eand |lpa(b— bo)ps — cll < e.
By going to a further subset of / we may assume that for ¢ < f inJ the support of c, is
included in . w (or more naturally stated, that psc,pp = c,). For eacha € J leta™ be
the minimal element of J above a and let b, = p,(b,+ )p,. FOr a in J we have ||b, —
(Pabps — ©)|| < €and therefore ||b,, — pabl’gpa || < 2e fora < BinJ. Hence b/, for

a € ], defines a 2¢ -branch in T[a]. Since S has a 2¢ -branch for an arbitrarily small ¢ it
has a branch by Lemma (2.1.3).

We apply Martin's Axiom. First, we add a generic operator T to B(H) by a poset with
finite conditions which forces that T[t] has a branch. Second, we use the properties of T to
argue that T has a branch.

For a Hilbert space K with a fixed basis e;,j € J, let p(K) be the forcing defined as

follows. A condition in p(K) is a pair (F, M) where F is a finite subset of / and M is an
F x F matrix with entries in the complex rationals, Q + iQ, such that the operator norm of
M satisfies ||[M|| < 1. We order p(K)by extension, setting (F',M") < (F,M)ifF' 2 F
andM' I FxF = M.

Lemma (2.1.16)[99]: Poset p(K) is ccc if and only if K is separable.

Proof: if K is separable then p(K) is countable, so we only need to show the other direction.
This direction will not be used in our proof, but we nevertheless include it since it shows
why Lemma (2.1.17) below does not use P( H).

We may assume 0 € J. Foreachj € J\ {0} define a condition a; = (F/,M/)by F/ =
{0, j} and the (0, j) entry of M/ is equal to 1/+/2, while the other three entries are 0. Then
the norm of any matrix including M; and M, is at least 1, hence q;, for j € J, is an
uncountable antichain.

By (2) in § (2.1.12) the projection
Sa = Pyy1— Py
has an infinite-dimensional and separable range. Let

D ={ae€eBH):a-= Z SqaSq }
a<wq
where the sum is taken in the strong operator topology. This subalgebra of B(H) is an

-

analogue of algebras D[E] that played a prominent part in the proof of Theorem (2.1.1) in
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[104]. Although much of the theory of D[E] has analogues in the nonseparable case, we
shall not develop this theory since the role of D in the proof of Theorem (2.1.11) is different.

For each @ < w, let H, = s,H, with the basis {e; : a.w < ¢ < (a + 1).w} and
let P, be P(H,). The finitely supported product P of P,, for @ < w;is ccc. Actually,
being a finitely supported product of countable posets, it is forcing-equivalent to the poset
for adding X; Cohen reals.

If G < P is a generic filter, then it defines a sesquilinear form whose norm is, by
genericity, equal to 1. This in turn defines an operator on H in the unit ball of B(H) ([108])
This operator belongs to the von Neumann algebra D and we let T denote its IP-name.

Lemma(2.1.17)[99]: Poset IP forces that every subtree of T[T] has a branch.

Proof: If not, then by Lemma (2.1.15) we fix a condition p € P deciding € > 0 such that
some subtree T[] of T [T] has no e-branch and consider P = § (below p) where § is a ccc
poset for /2-specializing T'[T]. By applying MA we can find a € B(H) and an &/2-
special subtree of T[a]. By Lemma (2.1.4) this subtree has no branches, and this
contradicts Lemma (2.1.15).

Fix e > 0.ByLemma (2.1.17), if S isasubtree of T then for « < w, we can fix w, and
a condition a, in p that forces Ad(p,w,) T belongs to a cofinal e-branch of T[1]. Here
w, € S NX,,., and w, is in the ground model. Identify a, with a finitely supported
operator in B(H) and note that it belongs to the algebra D as defined. Apply Lemma
(2.1.13) to {Ad(paWy)ag} to find a finitely supported b such that

(xiii) [|b — Ad(pawa)aqll <&
for all « in a stationary set J,. Since the coefficients of a, are complex rationals, by the A-

system lemma and a counting argument there are a stationary set J; < J,, a finitely-
supported projection q, and a such that

(Xiv) gaqg = aand pya.p, = a
foralla € J;. Notethata, = a + (I— py)a.(I — py) forall « € J;. Find & such that
Pzq = q. Applying Lemma (2.1.10) to (wg — vg)pg find a stationary / < J; such that
(xv) [[(wg — wy)pgll < €
for all B <y in]. Let g, denote the support of a,. For g € Jletug = wgpp. Then
fora +1 < Bwehavep,up =% py wp.

Preparations for the proof of Lemma(2.1.22)take up the remainder, with the main points
being Claim(2.1.20) and Lemma(2.1.21).

Claim(2.1.18)[99]: Ifa € D,a < Parein],q,aq , = a4 and qgaqp = ag, then
14d(Pawe)a — Ad(pewp)all < e.
Proof: Otherwise, there is 6 > 0 and a finitely supported projection s = g, V qg such

that for every ¢ € D satisfying scs = sas we have ||Ad(pyws)c— Ad(pgwp)c| >

e +4.
Making a small change to coefficients of sas one obtains a condition in P forcing that
|Ad(pgwo )T — Ad(pwg)r|| > &, acontradiction
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Claim(2.1.19)[99]: Assume a and b are in D,qaq = gqbq = 0,P,AP4+0 = PabPa+w,
anda + o <pB forpB € J.Then

||Ad(paa)ﬁ)(a + aﬁ) — Ad(pawp)(b + ap)|| < Z2e.
Proof: Assume otherwise and let

8 = ||Ad(powp)(a + ag) — Ad(p,wp)(b + ag)|| — 2e.

Forn < w write s, = pg,, — Pa+n- BY continuity fix n < w such that for all ¢ €
spD (= s,Ds, since s, in the commutant of D) with ||c|| < 1 we have

lAd(pewp)(a + ag) — Ad(pawp)(1 — sp)(a + ag) + )|l < 6/2
and

| Ad(pawg)(a + ag) — Ad(pawp)(1 — sp)(b + ag) + o)l < 6/2.
Letc = aq4n — a. Then Claim (2.1.18). applied to (1 — s,)(a + ag) + cand to (1 —
sp)(b + ag) + cimplies

”Ad(paa)ﬁ) ((1 — sp)(a + ag) + c) — Ad(Py®yin) ((1 — sp)(a + ag) + c)” <c¢
| <

”Ad(pawﬁ) ((1 — sn)(a + aﬁ) + c) — Ad(PeWasn) ((1 — sn)(b + a,;) + c)
leading to 2e + 6 < 2e+ 6.
Claim (2.1.20)[99]: Fora + w < B < y such that 8 and y are in J we have

A= ||Ad(paup)a — Ad(pu,)all < 5e
foralla € D with|[a|| < 1and (1 — pg)a = 0.
Proof: Fixa € D with |la|| < 1. We have thatc¢ = ag + (1 — p,) a, is a condition
in IP with support " = gz V q, extending both ag and a,,. Let

a =a—-qaq’ + c
With & as in (15) we have pza = apg since a € D. Therefore
Ad(pauﬁ )a — Ad(paugp )a’
= Ad(pauppg )(a— a') + Ad(paup (pp — Pz ))(a— a’)
= Ad(pougpa)(a — a’).
By this and an analogous computation for y we have
Ad(pauﬁ )a — Ad(pauy)a = Ad(pauﬁpa)(a —a')— Ad(pauypg)(a — a’)
+ Ad(pauﬁ )a’ — Ad(pauy)a’

Using (15) and pg ag = p, a, = a we conclude that each of the first two summands has
norm < ¢, hence A is within 2¢ of ||Ad(p,ug)a’ — Ad(p,u,)a’|l. Sincea’ € D we have
(1- pg)a’ = (1 — pg)ag and the following.

Ad(pauﬁ )a’ = Ad(paa)[; )a’ — Ad(wg (1 — pg ))ag.
By this and an analogous computation for y we have

Ad(pauﬁ )a’ — Ad(pyu, )a’ = Ad(paa)ﬁ)a’ — Ad(pyw, )a’

+ Ad (a)[; (1 — Pg )) ag — Ad(w, (1 — py))ay.

By Claim (2.1.18) the first difference has norm < ¢ and by (13) the second difference has
norm < 2¢. The conclusion follows.
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We are now within definitions and computations from completing the proof. In order
to complement Claim(2.1.20) in the proof of Lemma (2.1.22), we digress a little bit. For
a < w, define the following metrics on X,.; (only d, and d, will be needed in our
proof).

dio(u,w) = [[u— ol
dyo(u, w) = sup ||Adua — Ad wal|
a€D,|la||=1
dy o(u, w) = sup || Ad ua — Ad wal|

a€B(H),|lall=1
dya(U, ) ||pg (u— @)

We shall drop the subscript a whenever it is clear from the context.

Lemma (2.1.21)[99]: For all @, on X, ., we haved, < d, < d; < 2d;.

Proof: The inequality d, < d5 is trivial, and d; < 2d; follows from the following
computation.
|IAd ua — Ad wal| < ||luau™ — uaw*|| + |luaw™ — waw”||
< luall [lu” = wl[ + [lu — w]l . |luall
It remains to prove d, < d,.

Let v,w € X,,, be given, and putd = ||p,(v— w)||. Fixd > 0and a unit vector ¢
such that [|(v* — w*)p,&|| > d — 6. Clearly we may assume p,é = & Let { be a unit
vector colinear with v*¢ — w*¢& and let « be a unit vector orthogonal to ¢ such that v*¢ and
w*& belong to the linear span of ¢ and «. Fix scalars x, y, x'y’ such that

v€ = x{ +
wié=x"&+ vy
Since v*& — w*& is colinear with ¢, we have y = y'. Therefore ||v*é — w*é|| = |x —

x'|.

Find representations ¢ = ¥, ., x,¢, and 1 = ¥, ., ¥, SO that {, and ¢, belong to the
range of s, = p,.; — p, forall y. Since the range of s, is infinite-dimensional and since
v — w is compact, we can find a unit vector v, in this range orthogonal to both ¢, and ¢,

and such that ||vvy|| = 1 but ||vvy — wy, || < §/d. Let

V= Z.vay

y<a

Then ¢, , and v are mutually orthogonal unit vectors and the rank two operator a € B(H)
defined by a(v) = ¢ and a({) = v has norm equal to one. Moreover, a € D, since for
each y the operator as, = s,a is just the rank-two operator which transposes the

orthogonal unit vectors v, and ¢,. Note that ((Ad v)a)¢ = vav*¢ = va(x{ + yu) =
xwv and ((Adw)a)é = waw*é = wa(x'{ + y1) = x'wv. Hence,

I((Adv)a — (Adw)a)é|l = |I(x — xDwv|| = |x— x'| > d - 6.
Since § > 0 was arbitrary, we conclude that d, (v,w) = d.
Lemma(2.1.22)[99]: The set {To42UpDe+1 : @ + @ < B,B € J}is a Se-branch of T.
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Proof. In order to show {rg1,uppe+1 i @+ @ < B, € J}is a 5¢e-branch, it suffices to
show that ||pg.+3(usg — Up)Pa+2|| < 5¢ whenevera + w < B <y for B,y inJ. But the
inequality dy 441 < dy o471 from Lemma (2.1.21) implies

||Pa+3(u,8 - uy)Pa+2|| =< Sggl|Ad(pa+3uﬁpa+2)a - Ad(pa+3uypa+2) a”
a

and the right hand side is < 5¢ by Claim (2.1.20)

Since &€ was arbitrary, Lemma (2.1.22) and Lemma (2.1.3) imply that T has a cofinal
branch. By Lemma (2.1.14), @ is inner.

Theorem (2.1.23)[99]: PFA implies all automorphisms of every Calkin algebra are inner.
The only use of TA in the present is implicit via the following result from [104].

Proof. The proof of Theorem (2.1.23) is reasonably similar to the proof of the analogous
result from [112]. All we need is the analysis of coherent families of Polish spaces and a
fragment of PFA. Fix k > X,, write H = ¢%(k) and let ® be an automorphism of the
Calkin algebra C(H). Fix a basis {e, : a < k} of H and denote the projection to
span{e, : a« € A} byp,

Recall that 7, (K) denotes the family of all countable subsets of k. This setis o —directed
under the inclusion and it is a lower semilattice. For every countable subset A € k fix
projection rywith separable range such that ®(p;) = 73.For A < A1'in Awehave 1y < 7y
but not necessarily r; < 7. By [104] we can fix a partial isometry v, such that Ad v,
implements the restriction of ® to p,C(H)p,. ForA € P, (k) let

X, = {nwp, : weBH),w =% v,}.
Let us prove a few properties of Xj.
(xvi) X, is a norm-separable complete metric space.
(xvii) If A € A'thenthe map ryr; + Xyr — Ay X, defined by

(W) = nwp,
IS a contraction.

The proof is analogous to the proof of (viii). Consider the
coherent family of Polish spaces

F = (X/’]_,n/’l’/’l,n/’l’/’l,for/’l € Pwl(k))

The omitted proof of the following uses Lemma (2.1.10) and is analogous to the proof of
Lemma (2.1.14).

Lemma (2.1.24)[99]: The following are equivalent.
(xviii) @ is inner.
(xix) There is v € B(H) such that v is a unitary in C(H) and for all A € R, K(k) we

have nvp, € Xa.
(xx) The coherent family of Polish spaces [ is trivial.
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If @ is not inner, then by Lemma (2.1.24) and Lemma (2.1.6) there isan € > 0 and
a cofinal subfamiy F" of IF with no € — branches. By PFA and Lemma (2.1.7), there is a
strictly increasing map f: w; — IF such that the Polish wy-tree (Xf(q), df (@) TTr () f(a) @ <
B<w,)ise/6 —special. ThenZ = U f[w,]is an X;-sized subset of k. Let C(Z) denote
the Calkin algebra associated with B(¢%(Z)). By modifying the proof of Lemma (2.1.7) and
meeting some additional dense sets, we can assure that the restriction ®, of ® to C(Z) is an
automorphism of C(2).

Theorem (2.1.11) implies @, is inner and Lemma (2.1.14) implies &, is outer. This
contradiction concludes the proof of Theorem (2.1.23).

Corollary(2.1.25)[370]: The set {rqz2,,Ugepy24q * @® +w < B B € J}is a 5e-branch
of T.

Proof. In order to show {r,z,,up2p,2,q t @® + @ < B%,8% € J} is a 5e-branch, it
suffices to show that ||p,2,3(ugz — ug2)pa24o|| < 5¢ whenever a? + w < B2 < y? for
B% y? in]. Butthe inequality d, 424, < d; 42, from Lemma (2.1.21) implies

”Pa2+3 (uﬁz — uyz)Pa2+2||
= igg”Ad(pa2+3uﬁ’2pa2+2)a - Ad(pa2+3uy2pa2+2) a”

and the right hand side is < 5& by Claim (2.1.20).
Section (2.2): Corona Algebras

We shall investigate the degree of countable saturation of coronas (see Definition (2.2.2)
and paragraph following it). This property is shared by ultra products associated with no
principal ultra filers on N in its full form. The following summarizes the results. All ultra
filters are no principal ultra filters on N.

Theorem (2.2.1)[114]: Assume a C*-algebra M is in one of the following forms:

(i) the corona of a o-unital C*-algebra,

(i1) an ultraproduct of a sequence of C*-algebras,

(i) an ultrapower of a C*-algebra,

M [1, A,/ ®,, A, forunital C*Ralgebras A,

(v) the relative commutant of a separable subalgebra of an algebra that is in one of the
forms (i)-(iv).
Then M satisfies each of the following (see below for definitions):

(vi) It is SAW~

(vii) It has AA-CRISP (asymptotically abelian, countable Riesz separation property),

(viii) The conclusion of Kasparov's technical Theorem,

(ix) It is sub-a-Stonean in the sense of Kirchberg,

(x) Every derivation of a separable subalgebra of M is of the form §, for someb € M.

Proof. Each of these classes of C*-algebras is countably degree-1 saturated (Definition
(2.2.2). For (i) this is Theorem (1.2.4). For (ii) and (iii) this is a consequence of Los's
Theorem (see e.g., [104]). Every algebra as in (iv) is the corona of &@,, A,;so this is a special
case of (i). For (v) this is Lemma (2.2.9).
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Property (vi) now follows by Proposition (2.2.12), (vii) follows by Proposition (2.2.12),
(viii) follows by Proposition (2.2.13), (ix) follows by Proposition (2.2.16), and (x) follows
by Proposition (2.2.17).

The assertion 'every approximately inner automorphism of a separable subal-gebra of M
Is implemented by a unitary in M’ " is true for algebras as in (ii), (iii) or the corresponding
instance of (iv) Lemma (2.2.19). However this is not true in the case when M is the Calkin
algebra (see Proposition (2.2.27)).

By [121] no SAW*-algebra can be written as a tensor product of two infinite-dimensional
C*-algebras. By Theorem (2.2.1), this applies to every C*-algebra M satisfying any of (i)-

(v).
We demonstrate that the degree of saturation of the Calkin algebra is rather mild.

ForF CcRande > Owewrite F, = {x € R: dist(x, F) < €}. Givena C *-algebra 4, a
degree 1" -polynomial in variables x;, for j € N, with coefficients in A is a linear
combination of terms of the form ax;b, ax; b and a with a, b in A. We write M, for the
unit ball of a C*-algebra M.

Definition (2.2.2)[114]: A metric structure M is countably degree-1 saturated if for every
countable family of degree-1* -polynomials P, () with coefficients in M and variables x;,,,
forn € N, and every family of compact sets K,, € R, forn € N, the following are
equivalent.

(i) There are b, € M_,,forn € N, such that P,(b) € K, for all n.
(i) For everym € N thereare b, € M., forn € N, such that P,(b) € (Kn)1/m forall
n < m.

More generally, if @ is a class of *gpolynomials, we say that M is countably ®-saturated
if for every countable family of *polynomials B,(x) in @ with coefficients in M and
variables x,,, for n € N, and every family of compact sets K,, € R, forn € N the
assertions (i) and (ii) above are equivalent.

If @ is the class of all *zpolynomials then instead of @ -saturated we say count-ably
quantifier-free saturated.

By compactness we obtain an equivalent definition if we require each K,, to be a
singleton.
With the obvious definition of degree-n saturated' one might expect to have a proper
hierarchy of levels of saturation.

Lemma (2.2.3)[114]: An algebra that is degree@2 saturated is necessarily quantifier-free
saturated.

Proof. Assume C is degree(2 saturated and t is a consistent countable quanti-fier free type
over C. By compactness and the Stone-Weierstrass approximation Theorem we may assume
that ¢ consists of formulas of the form [|[P(x)|| = r for a polynomial P. By adding a
countable set of new variables {z;}and formulas ||xy — Z; || = 0 for distinct variables x
and y occurring in t, one can reduce the degree of all polynomials occurring in t. By
repeating this procedure countably many times one obtains a new type t in countably many
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variables such that t’ does not contain polynomials of degree higher than 2, it is consistent,
and a realization of t’ gives a realization of t.

In the following it is assumed that each B, is a *zpolynomial with coefficients in M, and
reference to the ambient algebra M is omitted whenever it is clear from the context. An
expression of the form P, (x) € K, is called a condition (over M). A set of conditions is a
type (over M). If all conditions involve only polynomials in @ then we say that the type is
a @ -type. If all coefficients of polynomials occurring in type t belong to a set X € M then
we say t is a type over X. A type satisfying (2) is approximately finitely satisfiable (in M),
or more succinctly consistent with M, and a type satisfying (1) is realized (in M) by b. In
the latter case we also say that M realizes this type. Thus M is countably ¢-saturated if and
only if every consistent @-type over a countable subset of M is realized in M.

Recall that the multiplier algebra M (A) of a C*-algebra A is defined to be the idealizer of
A in any nondegenerate representation of A (see e.g., [100]). The corona of A is the quotient
M (A) /A.

Corollary (2.2.4)[114]: If A is a o-unital C*-algebra then M,,(C(A)) is countably degree-1
saturated for every n € N.

Proof. The universality property of the multiplier algebra easily implies that M(Mn (A)) and
M, (M (A)) are isomorphic, via the natural isomorphism that fixes A. Therefore M,,(C(A))
Is isomorphic to C(Mn(A)) and we can apply Theorem (2.2.26).

The following will be proved as Theorem (2.2.23).

Theorem (2.2.5)[114]: Assume A is a o@unital C*-algebra such that for every separable
subalgebra B of M(A) there is a B -quasicentral approximate unit for A consisting of
projections. Then its corona C(A) is countably quantifier-free saturated.

We shall show that the Calkin algebra fails the conclusion of Theorem (2.2.5), and
therefore that Theorem (2.2.42) essentially gives an optimal conclusion in its case.

Most of the applications require only types with a single variable, or so-called 1-types.
We shall occasionally use shortcuts such asa = bfor|la—b|| = Oora < bforb—a
being positive (the latter assuming both a and b are positive) in order to simplify the
notation. We say that c e@realizes type t if for all conditions ||P(x)||t € K in t we have
IP(c)|l € (K).. Therefore a type is consistent if and only if each of its finite subsets is -
realized for each € > 0.

We start with a self-strengthening of the notion of approximate finite satisfiability,
stated only for 1-types.

Lemma (2.2.6)[114]: If @ includes all degreef1 *Epolynomials and C is countably & -
saturated then every countable & -type t that is approximately finitely satisfiable by self-
adjoint (positive) elements is realized by a self-adjoint (positive) element.

Moreover, if t is approximately finitely satisfiable by self-adjoint elements whose
spectrum is included in the interval [r, s], then t is realized by a self-adjoint element whose
spectrum is included in [r, s].

46



Proof. If t is approximately finitely satisfiable by a self-adjoint element, then the type t;
obtained by adding x = x* to t is still approximately finitely satisfi-able and countable,
and therefore realized. Any realization of t4is a self-adjoint realization of t.

Now assume t is approximately finitely satisfiable by positive elements. By compactness,
there isr € K such that t U {||x || = r} is approximately finitely satisfiable by a positive

element. Let t, = tU{||x]| = r,.x = x*|lx—r.1|| < r}. A simple continuous
functional calculus argument shows that for a self-adjoint b we have that b > 0 if and ony
if [|b —|| |Ib|||l-1]| |Ib]|- The proof is completed analogously to the case of a self-adjoint
operator.

Now assume t is approximately finitely satisfiable by elements whose spectrum is
included in [r, s]. Add conditions |[x —x*|| =0and ||x — (r + s)/2||< (s—r)/2tot.
The second condition is satisfied by a self-adjoint element iff its spectrum is included in the
interval [r, s]. Therefore the new type is approximately finitely satisfiable and its realization
IS as required.

The assumption of Lemma (2.2.6) is necessarily stronger than the assumption of
Lemma (2.2.6).

Lemma (2.2.7)[114]: If C is countably quantifier-free saturated then every countable
quantifier-free type that is approximately finitely satisfiable by a unitary (projection) is
realized by a unitary (projection, respectively).

Proof. This is just like the proof of Lemma (2.2.6), but adding conditions xx* = 1 and
x*x = 1 in the unitary case and x = x* and x? = x in the projection case.

In Proposition (2.2.27) and Proposition (2.2.28) we prove that there is a countable type
over the Calkin algebra that is approximately finitely satisfiable by a unitary but not realized
by a unitary. By Lemma(2.2.7), the Calkin algebra is not quantifier-free saturated.

Largeness of countably saturated C*-algebras If C is a finite-dimensional C*-algebra
then its unit ball is compact, and this easily implies that C is count-ably saturated.

Proposition (2.2.8)[114]: If C is countably degree1 saturated then it is either finite-
dimensional or nonseparable. In the latter case, C even has no separable maximal abelian
subalgebras.

Proof. Assume C is infinite-dimensional and let A be its masa. Then A is infinite-
dimensional and there is a sequence of positive operators a,,, for n G N, of norm 1 such that
la,, — a,|| =1 (cf. [126] or [120]).

Assume A is separable, and fix a countable dense subset b,,, forn € N, of its unit ball.
The type ¢t consisting of all conditions of the form ||x — b,,|| = 1/2 and xb,, = b,x, for
n € N, together with ||x || = 1, is consistent. This is because each of its finite subsets is
realized by a,, for a large enough m . Otherwise, there are n,i and j such that
|b, — a; || < 1/2 and ||b,, — a; || < 1/2. By countable saturation some ¢ € C realizes
t. Thenc € A"\ A, contradicting the assumed maximality of A.

Lemma (2.2.9)[114]: Assume C is countably ®-saturated and & includes all degreef1
polynomials. If A is a separable subalgebra of C then the relative commutant of A is
countably & -saturated.
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Moreover, if C is infinite-dimensional then A" N C is nonseparable.

Proof. Let a,, for n € N, enumerate a countable dense subset of the unit ball of A. The
relative commutant type over A4, t,.., consists of all formulas of the form

(M) llapx — xa,|l = 0, forn € N.

If t is a finitely approximately finitely satisfiable ®-type over A'n C then t U t,.is an
approximately finitely satisfiable @ -type over C. Also, an element ¢ of C realizest U ¢,
if and only ifc € A'n C and c realizes t. Since t was an arbitrary ®-type, countable ®-
saturation of A" n C follows.

Now assume C is infinite-dimensional. By enlarging A if necessary, we can assume it is
infinite-dimensional. Expand t,.. by adding all formulas of the form

(“) ”anx - an” =>1/2.

We denote the resulting type by t. We shall prove that t is approximately finitely satisfiable.
This follows from the proof of [120]. First, if A is a continuous trace, infinite-dimensional
algebra then its center Z(A) is infinite-dimensional. Therefore Z(A) includes a sequence of
contractions f,,, forn € N, such that ||f,,, — f,|| = 1 if m # n (this is a consequence of
Gelfand-Naimark Theorem, see e.g., the proof of [120]), and therefore t is approximately
finitely satisfiable by f,,s.

If A is not a continuous trace algebra, then by [1] it has a nontrivial central sequence.
Elements of such a sequence witness that ¢ is approximately finitely satistiable.

By countable saturation, t is realized in C. A realization of t in C is at a distance > 1 /2
from A, and therefore we have proved that A" n C £ A.

Now assume A is a separable, not necessarily infinite-dimensional, subalgebra of C.
Since C is infinite-dimensional, find infinite-dimensional 4, such thatA € A, € C. By
using the above, build an increasing chain of separable subalgebras of C, 4,, fory < X,
such that A}, N A, is nontrivial for all y. This shows that A" n C intersects 4, \ 4, for

all y, and it is therefore nonseparable.
In the following there is a clear analogy with the theory of gaps in P (N)/Fin.

Definition (2.2.10)[114]: Two subalgebras A, B of an algebra C are orthogonal if ab = 0
for alla € A and b € B. They are separated if there is a positive element ¢ € C such that
cac =aforallae Aandcb = 0forall b € B.

A C* -algebra C has AA-CRISP (asymptotically abelian, countable Riesz separation
property) if the following holds: Assume a,,, b,,, for n € N, are positive elements of C such
that

an = An+1 = bn+1 = bn

for all n. Furthermore assume D is a separable subset of C such that for everyd € D we
have
lim||a,,d|| = 0.
n

Then there exists a positive ¢ € C such that a,, < c < b,, for alln and [c,d] = 0 for all
d €D.
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By Theorem (2.2.26) the following is a strengthening of the result that every corona of a
oBunital C*@algebra has AA-CRISP ([127]).
Proposition (2.2.11)[114]: Every countably degree1 saturated C*Ralgebra C has AA-
CRISP.

Proof. By scaling, we may assume that ||b, || = 1. Fix a countable dense subset { d,,} of D
and let t be the type consisting of the following conditions: a,, < x,x < b, and [d,,, x] =
0, for all n € N. If to is any finite subset of t and € > 0, then for a large enough n we have
that a,, e-approximately realizes t,. By countable saturation of C, some ¢ € C realizes t.
This c satisfies the requirements of the AA-CRISP for a,,, b,, and D.

Recall that a C*-algebra C is an SAW *-algebra if any two o-unital subalgebras A and B
of C are orthogonal if and only if they are separated. By Theorem (2.2.26) the following is
a strengthening of the result that every corona of a o-unital C*-algebra is an SAW *-algebra
([127]). (By [127], CRISP implies SAW* but we include a simple direct proof below.)

Proposition (2.2.12)[114]: Every countably degree-1 saturated C*-algebra C is an SAW*-
algebra.

Proof. Assume A and B are g-unital subalgebras of C such that ab = 0 for all a = A and
all b € B. Leta,, forn € Nand a,, forn € N, be an approximate identity of A and B,
respectively. Consider type t,5z consisting of the following expressions, for all n.
(i) apx = ay,
(i) xb, = 0
(ii)x = x*.

Every finite subset of t,5 is elrealized by a,, for a large enough n. If c realizes t,p, then
ac = aforalla € Aandcb = Oforall b € B. Moreover, c is self-adjoint by (iii) and
|c| still satisfies the above.

Assume B, C and D are subalgebras of a C*-algebra M. We say that D derives B if for
every d € D the derivation §;(x) = dx — xd maps B into itself. The following is an
extension of Higson's formulation of Kasparov's Technical Theorem ([124], also [127]).

We say that a C*-algebra M has KTT if the following holds: Assume A, B, and C are
subalgebras of M such that A L B and C derives B. Furthermore assume A and B are a-
unital and C is separable. Then there is a positive element d € M suchthatd € C' n M,
the map x +— xd is the identity on B, and the map x + dx annihilates A.

Proposition (2.2.13)[114]: Every countably degree1 saturated C*-algebra has KTT.
Proof. Assume A, B and C are as above. Since B is a-unital we can fix a strictly positive
elementb € B. Then b¥/™ forn € N, is an approximate unit for B. An easy computation
demonstrates that for every ¢ € C the commutators [b1/n, c] strictly converge to 0 (see the
first paragraph of the proof of Theorem 8.1 in [127]). They therefore converge to 0 weakly.
The Hahn-Banach Theorem combined with the separability of C now shows that one can
extract an approximate unit (e,,) for B in the convex closure of {b*/" : n € N} such that
the commutators [e,,,, c] norm-converge to 0 for every ¢ € C.

49



In other words, B has an approximate unit (e,,) which is C-quasicentral. Fix a countable
approximate unit (f;,) of A and a countable dense subset {c,,} of C. Consider the type t
consisting of the following conditions, for all m and all n.

”enx - en” =0
lxfull =0
Ilcm , x]Il =0
||x @ x*|| = 0.

For every finite subset F of this type and every ¢ > 0 there exists an m large enough so that
all the conditions in F are e-satisfied with x = e,,,. Therefore the type t is consistent and by
countable degreel1 saturation it is satisfied by some d,. Thend = |d,| is as required.

A C™-algebra M is sub-Stonean if for all b and ¢ in M such that bc = 0 there are
positive contractions f and g such that bf = b,gc = cand fg = 0. By considering B =
C*(b) and C = C*(c) and noting that B and C are orthogonal, one easily sees that every
SAW™ algebra is sub-Stonean. The following strengthening was introduced by Kirchberg
[125].

Definition (2.2.14)[114]: A C*-algebra C is subBaIStonean if for every separable sub-
algebra A of C and all positive b and c in C such that bAc = { 0} there are contractions f
andginA'nCsuchthat fg =0,fb=band gc = c.

The fact that for a separable C*-algebra A the relative commutant of A in its ultrapower
associated with a nonprincipal ultrafilter on N (as well as the related algebra F(4) =
(A" n AY)/Ann(A, AY) , see [125]) is sub-a Stonean was used in [125] to deduce many
other properties of the relative commutant. Several proofs in [125], can easily be recast in
the language of logic for metric structures.

Before we strengthen Kirchberg's result by proving countably degree-1 saturated algebras
are sub-g-Stonean (Proposition (2.2.16)) we show a lemma.

Lemma (2.2.15)[114]: Assume M is countably degree-1 saturated and B is a separable
subalgebra. If I is a (closed, two-sided) ideal of B then there is a contraction fG M N B’
suchthat af = aforalla € I.

If moreover ¢ € M is such that c = { 0}, then we can choose f sothat fc = 0and fIc =
{0}.
Proof. Fix a countable dense subset a,,, for n € N, of | and a countable dense subset b,,,
for n € N,on B. Consider type t consisting of the following conditions.

(i) lapx — a,ll = Oforalln € N,
(i) [[bpx — xby|| = Oforalln € N.
(i) xc = 0, and

(iv) xa, c = 0foralln € N.

We prove that t is consistent, and moreover that it is finitely approximately
satisfiable by a contraction. By [118] | has a B-quasicentral approximate unit e,,, for n € N,
consisting of positive elements. Since Bc = {0} we have e,,c = 0, as well as e,,a,,c =0
for all m and all n. Therefore every finite fragment of t is arbitrarily well approximately
satisfiable by e,, for all large enough n. By Lemma (2.2.6) (applied with [r,s] = [0,1]) and
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saturation of M there is a contraction f € M that realizes t. Then fa = aforalla eI, f €
B'nM,f Ac = {0},and fc = 0, as required.

Proposition (2.2.16)[114]: Every countably degree-1 saturated, C*-algebra is sub-o-
Stonean.

Proof. Fix A,b and c as in Definition (2.2.14). By applying Lemma (2.2.15) find a
contraction f € MnA"such that bf = b, fc =0and fAc = {0}. Now letC = C* (4,¢)
and let J be the ideal of C generated by c. By applying Lemma (2.2.15) again (with left and
right sides switched) with c replaced by f we find a contraction g € M n A’ such that
fg=0,and gc = c.

By Theorem (2.2.26) the following is a strengthening of the result that every derivation
of a separable subalgebra of the corona of a a-unital C*-algebra is inner ([127]).
Proposition (2.2.17)[114]: Assume C is a countably degree-1 saturated C*-algebra and B
Is a separable subalgebra. Then every derivation § of B is of the form &, for some ¢ € C.

Proof. Fix a countable dense subset B, of B. Consider the type ts consisting of following
conditions, for b € B,,.

(i) ll xb — bx = &(b)II = 0.
By [28] this type is consistent and if ¢ realizes it then 6(b) = 6.(b) forall b € B.

[109] proved that the Continuum Hypothesis implies that the Calkin algebra has 2%
outer automorphisms. Since k < 2K for all cardinals k, this conclusion implies that the
Calkin algebra has outer automorphisms. A simpler proof of Phillips-Weaver's result was
given in [8]. The proof of Theorem (2.2.21) below is in the spirit of [109], but instead of
results about KK-theory it uses countable quantifier-free saturation.

Recall that the character density of a C*-algebra is the smallest cardinality of a dense
subset. The following remark refers to the full countable saturation in logic for countable
structures, not considered in (cf. [104]). The standard back-and-forth method shows that a
fully countably saturated C*-algebra of character density &, has 2¥: automorphisms.
Therefore, the Continuum Hypothesis implies that M has 2%t automorphisms whenever M
Is an ultrapower of a separable C*-algebra, a relative commutant of a separable C*-algebra
In its ultrapower, or an algebra of the form [], A,/ ®, A, for a sequence of separable unital
C*-algebras 4,,, for n € N. Since X, is always less than 2%, in this situation, the
automorphism group is strictly larger than the group of inner automorphisms. These issues
will be treated in an upcoming joint with David Sherman. In the following we show how to
construct 2% automorphisms in a situation where the algebra is only quantifier-free
saturated.

Before proceeding to prove Theorem (2.2.21) we note that every countably saturated
metric structure of character density &, has 2% automorphisms. Wedon't know whether the
Continuum Hypothesis implies that every corona of a separable C*-algebra has 2%
automorphisms (but see [118]).

By Theorem (2.2.21) and Theorem (2.2.23) we have the following:

Corollary (2.2.18)[114]: Assume the Continuum Hypothesis. Assume A is a C*- algebra
such that for every separable subalgebra B of M ( A) there is a B-quasi- central approximate
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unit for A consisting of projections and the center of C( A) is separable. Then C(A) has 2¥
outer automorphisms.

Recall that an automorphism @& of a C*-algebra C is approximately inner if for every ¢ >
0 and every finite set F, there is a unitary u such that ||®(a) — uau* || < eforalla € F.
An approximately inner 5 isomorphism from a subalgebra of C into C is defined
analogously.

Lemma (2.2.19)[114]: Assume C is a countably quantifier-free saturated C*-algebra and B
is its separable subalgebra. If ®: B — C is an approximately inner *zisomorphism then
there is a unitary u € C such that ®( b) = ubu* forall b € B.

Proof. This is essentially a consequence of Lemma (2.2.7) Fix a countable dense subset B,
of B. Consider the type tgconsisting of all conditions of the form [|xbx™ — ®(b)|| = 0 for
b € Bytogether with xx* = 1 and x*x = 1. The assumption that & is approximately inner
Is equivalent to the assertion that tg is consistent. Since B, is countable, by countable
quantifier-free saturation there exists u € C(A) that realizes tg. Such u is a unitary which
implements &.

Lemma (2.2.20)[114]: Assume C is a countably quantifier-free saturated, simple C*-
algebra whose center is separable. If @ is an automorphism of C and A is a separable
subalgebra of C then there is an automorphism ®’of C distinct from & whose restriction to
A is identical to the restriction of @ to A. Moreover, if @ is inner then @’can be chosen to
be inner.

Theorem (2.2.21)[114]: If C is a countably quantifier-free saturated C* -algebra of
character density &; whose center is separable then C has 2¥automorphisms.

Proof. By using Lemma (2.2.19) and Lemma (2.2.20) we can construct a complete binary
tree of height X; whose branches correspond to distinct automorphisms. This standard
construction is similar to the one given in [109] but much easier, since in our case the limit
stages are covered by Lemma (2.2.19), and in [109] most of the effort was made in the limit
stages.

The strict topology on M(A) is the topology induced by the family of seminorms
I|(x — y)al|, where a ranges over A. If A is separable then the strict topology on M(A) has
a compatible metric,|| (x — y)al||, where a is any strictly positive element of A.
We note that for any sequence of C*-algebras A,,, forn € N, the algebra
[1.. 4,/D. A, is fully countably saturated. This is a straightforward analogue of a well-
known result in classical model theory (cf. [104], [116]).

The proof of Theorem (2.2.5) is a warmup for the proof of Theorem (2.2.26). In
Proposition (2.2.28) we shall see that the conclusion of Theorem (2.2.23) does not follow
from the assumptions of Theorem (2.2.26) Let us start by recalling the statement of Theorem
(2.2.5)

We shall write b for an n-tuple, hence

E == (bll""b‘n)
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in order to simplify the notation. We also write

qgb = (qby,...,qb,).
In our proof of Theorem (2.2.23) we shall need the following fact.
Lemma (2.2.22)[114]: Assume P(xq, ..., x,) IS a*-polynomial with coefficients in a C*-
algebra C. Then there is constant K < oo, depending only on P, such that for all a and
by,...,b, in C we have

[, P@B)]| < K max lifa,clil llall max [ibjl

where ¢ ranges over coefficients of Pand b,,...,b.,
If in addition q is a projection then we have

laP (B) — aP (ab)q|| < K maxlilq, c]ll llall max]|b;]].

Proof. The existence of constant K satisfying the first inequality can be

proved by a straightforward induction on the complexity of P. For the second inequality
use the first one and the fact that ¢ = g%+, where d is the degree of P in order to find a
large enough K.

Theorem (2.2.23)[114]: Assume A is a o-unital C*-algebra such that for every separable
subalgebra B of M(A) there is a B-quasicentral approximate unit for A consisting of
projections. Then its corona C(A) is countably quantifier-free saturated.

Proof. Fix a countable quantifier-free type t over C(A) and enumerate all polynomials
occurring in it as P,(x), forn € N. By re-enumerating and adding redundancies we may
assume that all variables of P,are among x4, ..., x,,. Let PY(x) be a polynomial over M(A)
corresponding to P,(x). Let K, be a constant corresponding toP? as given by Lemma
(2.2.22) Let B be a separable subalgebra of M(A) such that all coefficients of all
polynomials P? (i) belong to B.

Letr,, forn € N be such that t is the set of conditions ||P,(X)|| = 7, forn € N.Forall
n fix by, ..., byt such that

||= (P2, ... b)) || = 7| < 27
for allj <nand||b} || < 2. The latter is possible by our assumption that the condition
lx,, || < 1 belongs to ¢ for all k.

Let g,,, forn € N, be a B-quasicentral approximate unit for A consisting of projections.
By going to a subsequence we may assume the following apply for all j < n (with g, = 0):

(i) g alll < 27"K,;* when a ranges over coefficients of Pj0 and all b{, e bjj,
(“) |||(Qn+1 - Qn)PjO(bjt---fb'j)(CIn+1 - qn)” - Tnl < 1/n,
Let
Py = Qny1 — n
For every k the series Y, B,b; B, is convergent with respect to the strict topology. Let b, be

equal to the sum of this series. By the second inequality of Lemma (2.2.22) and (i) we have
thatforallk < n
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(i) ||lpn P2(by, ..., bi)|| = o P° (PubyiBy, ..., Bibi BB < 27
Since p,bbn = PnbjpPn, We conclude that

P (=(8))|| = || (°(B))]|| = lim sup || B,BY (BybT B -, Pabf P || =
Therefore m(b,,), forn € N, realizest in C(A)
We shall use [127] which states that if 0 < a < 1 and ||b|| = 1, then ||[a, b]|| <
e < 1/4implies ||[a'/?,b]|| < 5&'/2/4. Weshall also need the following lemma.

Lemma (2.2.24)[114]: Assume a and b are positive operators. Then |la + b| =
max(|lall, [[blD).

Proof. We may assume 1 = |la || = ||b]|. Fixe > 0and let & be a unit vector such that
n=§&— a&é satisfies ||n|l <& .Then Re(aé|bé) = Re(&|bé) + Re(n|bé) =
Re(n|b&) > — e since b = 0. We therefore have

(@ + b)¢1I* = ((a + b)é|(a + b)E)
= llagll* + Ib¢lI* + 2Re(a$|b§) > 1 + [Ib§]|* — 2¢
and since ¢ > 0 was arbitrary the conclusion follows.

Lemma (2.2.25)[114]: Assume M is a C*-algebra and a o-unital C*-algebra A is an
essential ideal of M. Furthermore assume E,, for n € N, is an increasing sequence of finite
subsets of the unit ball of M and ¢,, for n € N, is a decreasing sequence of positive
numbers converging to 0. Then A has an approximate unit e,,, forn € N such that with
(setting e_; = 0)

fao = (en+1 - en)l\z
forall nand all a € F, we have the following:
(iv) la, fulll < &n,
W) Ifhafull = lim(@)l — €, (Where m: M — M /A is the quotient map),
Vi) Ifinfull =0iflm—n| = 2,
(Vi) [fw frsalll < en.
Proof. In order to take care of the condition(vi)we do the following. Let h be a strictly
positive element of A. By continuous functional calculus we choose an approximate unit
(e, 1) of A satisfying (vi).
Let 5, = (4¢,/25)2. By [118] inside the convex closure this approximate unit we can find
another approximate unit(e2)of A such that

(viii) |leda — ael|| < §,foralla€e E, U {e2: i < n}.

We can moreover assure that there is an increasing sequence of natural numbers m(n), for
n € N, suchthat e? isinthe convex closure of {e;! : m(n) <k <m(n + 1)}. Thiswill
assure every subsequence (e,,) of (e?) satisfies (vi).

For such a subsequence (e,,)and f;,defined as above we will have (iv) and (vii) by the
choice of §,, and [127]. Since A is an essential ideal of M, there is a faithful representation
a: M — B(H)such that a [A] is an essential ideal of B(H) (this is essentially by [100]). In
particular a(e;,) strongly converges to 1. Therefore for everya e M, m € N, and € > 0
there is n large enough so that||a(a(e, — e,))|| = lla(a)|l — &. Using this observation we
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can recursively find a subsequence (e,,) of (e2) such that |[(e,+1 — ey)all = || (a)|| —
0, for all a € E,.Therefore ||f,af,|| = ||z (a)|| — &, forall a € F, and (v) holds.

Fix a o -unital C* -algebra A; let M = M(A), and &, = 27" Now by applying
Lemma(2.2.25) we get A,M, F,, (e,) and (f,)), for n € N. We shall show that in this
situation these objects have the additional properties in formulas (ix)-(xvi) below.

(ix) The series Y, f;? strictly converges to 1.

Since A is c-unital, we can pick a strictly positive a € A. Therefore the strict topology is

given by compatible metric d(b,c) = |la(b — ¢)||. Fixe > 0. Letn be large enough so

that ||ae,,.; —all < €.Sincel — e, ; = Zj‘;nﬂsz, (ix) follows.

(x) For every sequence (b;) in the unit ball of M the series Y.; f; b; f; is strictly
convergent.

We first note that 0 < ¢ < d implies ||cb|| < ||db]|for all b. This is because ||cb ||? =

Ib*c?b || < lIb*d?b || = lldbl|.

Since every element b of a C*-algebra is a linear combination of four positive elements
b= ¢y —cy +ic, —icz, we may assume b; = 0 for all j. Fix e > 0 and find n large
enough so that (with a €A strictly positive) ||X52,(f?)al| < e Then 0 <
Y jsnfi b fj < Xjsn fi. Therefore by the above inequality applied with ¢ =Y. ;> f; b; f;
and d = Y5, f we have |[cal| < |ldall < e.

xi) || fixif; || < sup; ||fix;f;|| for every norm-bounded sequence (x;).
(xii) If in addition sup||f;x; ;|| = sup||x;|| then we moreover have the equality in (xi).
j j

In order to prove (xi) consider the C*-algebra N = [y M. Each map

NB(xk)keN Hf}x]f} EM

for j € N is completely positive on N, and therefore for each n € N the map (xy)xen
Yij<n fjx;fjis completely positive as well. The supremum of these maps is also a completely
positive map. By the assumption that }’; sz = 1 this map is also unital, and therefore of
norm 1. The inequality (xi) follows.

In order to prove (xii) let @ = sup; ||x;||. We may assume @ = 1. Fixe > 0, unit vector
€, and n such that||(f,x,f,)E|l > 1 —¢. Then ||f, ]| = 1 — ¢ and therefore |(f2E[€)| =
If,&]l = 1 — e and this implies that || — f2&|| < e. Since ijjz = 1, this shows that
1Z,(6%6)E]| = l(faxnf)Ell and the conclusion follows.

Recall that m: M(A4) — C(A) is the quotient map. In the following the norm on the left-

hand side of the equality is computed in the corona and the norm on the right-hand side is
computed in the multiplier algebra.

(xiii) ||n(Z;6%6)|| = limsup;||f;x;f|| for every bounded sequence (x;) such
that sup; [|fx;fj]| = sup|]].
Since Y52, fixif; — X5 fixifj isin A forall m € N, the inequality < follows from (xi)

and ||(a) || < ||all. Similarly, > follows from (xii).
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The converse inequality follows by Lemma (2.2.24)
(Xiv) Xy = {a € M: Y, |l[a, f]ll < oo}is a subalgebra of M including
C*(Un ).

Since b € F; implies ||[b, f]ll < 27" foralln = j, we have U; F; € X ).
Foraandb inM we have [a + b, f,,] = [a f,] + [b, /] ll[a" ]l = ll[a, f,]ll and
I[ab, fulll < llall. I[b, L]l + 1Bl . ll[a, f]1l. Therefore X £ 4 is a *psubalgebra of M.

X(r,) Is not necessarily norm-closed but this will be of no consequence.

(xv) Themap A = Ay from M into M defined by

A@ = ) faaty

is completely positive and it satisfies b — A(b) € Aforall b € X ).

Note that [[A(b)|| < [|b]| by (xi), and the map is clearly completely positive. Fix b € X
and e > 0.Since b € Xy, theseries §; = ||f;b — bf;|| is convergent, and we can pick n
large enough to have ¥ s, ||fib — bfi|| < e. We writec ~,dforc—d € Aandc~.d
for [lc — d|| < e (clearly the latter is not an equivalence relation). We have };., fibf; €
A. Also, with § = .5, 8; we have

(1—ey)b = Einszb ~5Z:O=nfjbfj

and the conclusion follows.
(xvi) If sup; ||x;|| < ooand §; = sup;s; ||[x;, fi]|| are such that };8; < oo , then
x = X;fjx;f; belongs to X ,.

We havef, (X fixif;) = fo a1 fixif)- Since |l fi, firall < & we have

n+1
I, £ ]| < Z 1||fjxjfj,fn|| < 4supj||xj||6n_1 + 6,1+ 0, + 6,41
j=n-

and the conclusion follows.

Theorem (2.2.26)[114]: If A is a oB@unital C*-algebra then its corona C(4) is countably
degree-1 saturated.

Proof. Fix a o-unital algebra A and let =: M(4A) — C(A) be the quotient map.
Fix degree-1 xzpolynomials B, (x) with coefficients in C(A) and compact subsets K,, <
R such that for every n the system

(xvii) ||P;(®)| € (Kj)l/n forallj <n

has a solution in C( A). Without a loss of generality all the inequalities of the form ||x, || <
1, forn € N, are in the system. By compactness, we can assume each K,, is a singleton
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{r,}. Therefore we may assume (xvii) consists of conditions of the form |||B,(X)|| — r, | <
1/m, for all m and n. By re-enumerating P,’s and adding redundancies, we may also
assume that only the variables x;, for j < n, occur in P, for every n. For each m fix an

approximate solution x; (m) = n(xj(m)), for j < m, as in (xvii). Therefore
(xviii) || P (m(2(m))) || = el < 1/mforallk <m.
We choose all x;, (m) to have norm < 1.
Let P2(x) be a polynomial with coefficients in M(A) that lift to the corresponding

coefficients of P,(x). Let E, be a finite subset of M(A) such that m(F,) includes the
following:

(i) all coefficients of every PjO forj < n,
(i)  {xx (m): k < m} satisfying (xviii) forallm < n, and

(i) (P (xo(r oy (D)t j <}
With &, = 27" let (e,,) and (f,,) be as guaranteed by Lemma (2.2.25).Since ||x;()|| <

1, by (X) we have that
yi = ijxi(j)fi
i

belongs to M (A)for all i, and (xvi) implies y; € X, forall i.

We shall prove ||(B,z(¥))|| = r, forall n.

By (xi) we have ||y; || < 2. Fix n and a monomial ax, b of P?(x). Thenforall j > nwe
have

lafixi(Dfib — fiaxi(Dbfill < & (lal + |b])

and therefore the sum of these differences is a convergent series in A and we have

(xix) a(Z; fixk (Dfi)b~a X;(fiaxe (DbS):

Since the polynomial P (x) has degree 1, all of its nonconstant monomials are either of the
form ax;b or of the form ax; b for some k, a and b, and by (xix) (writing X.; f;yf; for the

n + 1-tuple (X; fivofi, - Xj fivnf:)
PO\ ) fivfi | ~a ) FRRGOf:.
j J

By (xv) we have ¥ ; f;v:fi ~a X fiyifi Tor all i and therefore
PO) ~a P2\ D ffi |~a ) SRS
j j
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Using this, by (xii) we have that
1B = IrBEODI = limswp||iP? OS] = 1
J

Therefore m(¥) is a solution to the system. Since the inequality was in the system for all k
we also have ||y, |l < 1 forall k and this concludes||x,|| < 1 was proof.

We prove that the Calkin algebra is not countably saturated (cf. [104]). In Proposition
(2.2.27) we construct a consistent type consisting of universal formulas that is not realized
in the Calkin algebra. In Proposition (2.2.28) we go a step further and present a proof, due
to N. Christopher Phillips, that some consistent quantifier-free type is not realized in the
Calkin algebra.

For a unitary u in a C*Ralgebra A let

¢(w) = {j € N|uhasa jAthroot}.

By Atkinson's Theorem, every invertible operator in the Calkin algebra is the image of a
Fredholm operator in B(H) and therefore &(u) is either N or {j | j divides m} for some
m € N, depending on whether the Fredholm index of w is 0 or +m.

Recall that a supernatural number is a formal expression of the form []; p;;ii , Where{p; }|

s the enumeration of primes and each k; is a natural number (possibly zero) or c. The
divisibility relation on supernatural numbers is defined in the natural way.

Proposition (2.2.27)[114]: For any supernatural number n the type t(n) consisting of
following conditions is approximately finitely satisfiable, but not realizable, in the Calkin
algebra.

(1) xox5 = 1,x5x, = 1,
(i) xf = x,, whenever k is a natural number that divides n,
(iii) infj) =1 ||yk — x0| > 1, whenever k is a natural number that does not divide n.

In particular, the Calkin algebra is not countably saturated.

Proof. We have n = []; pf", where (pj)is the increasing enumeration of primes and k; €
N U {oo}.

Let s denote the unilateral shift on the underlying Hilbert space H and let s be its image
in the Calkin algebra. Forl € N let n; = ]'[5-:1 P;. We claim that

§(s™) = [m € N | m divides n}.

The inclusion is trivial. In order to prove the converse inclusion fix k € N that does not
divide n,. Assume for a moment that $s™ has a k-th root v in C(H)%.Let u and w be
elements of B(H) mapped to $™ and ©* by the quotient map.Then they are Fredholm
operators with different Fredholm indices and ||m(w)|| = |lm(w)|| = 1. Essentially by
[108] we have [|m(u —w)|| = 1 ,and therefore v = n(w) is not k-th root of s™.
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Proposition (2.2.28) below was communicated to us by N. Christopher Phillips in [128].
While the proof in [128] relied entirely on known results about Pext and a topology on Ext
(more precisely, [129], [118], [130], and [131]).

Proposition (2.2.28)[114]: There is a countable degree-1 type over the Calkin algebra that
is approximately finitely realizable by unitaries but not realizable by a unitary. In particular,
the Calkin algebra is not countably quantifier-free saturated.

Proof. We include more details than a C*@algebraist may want to see. Recall that for a
C*@ algebra A the abelian semigroup Ext(A) is defined as follows: On the set of
xghomomorphisms m: A — C(H) consider the conjugacy relation by unitaries in C(H). On
the set of conjugacy classes define addition by letting m; @m, be the direct sum, where
C(H) is identified with C(H@®H). The only fact about Ext that we shall need is that there
exists a simple separable C*Ralgebra A such that A is a direct limit of algebras whose Ext
is trivial, but Ext(A) is not trivial. For example, the CAR algebra has this property and we
shall sketch a proof of this well-known fact below.

Now fix A as above and let m;:A - C(H) and m, : A — C(H) be inequivalent
xzhomomorphisms. Since A is simple both 7r; and m, are injective and F(nl(a)) = m,(a)
defines amap F from m; [A] to m,[A]. This map is not implemented by a unitary, butif A =
lim, A,, so that Ext (4,,) is trivial for every n, then the restriction of F to m,[A,] is
implemented by a unitary. Fix a countable dense subset D of ;[A4,,]. Then the countable
degree-1 type t consisting of all conditions of the form xa = F(a)x, for x €D, is
approximately finitely realizable by a unitary, but not realizable by a unitary.

We now sketch a proof that Ext of the CAR algebra A = ®,, M, (C) is nontrivial. Write
A as a direct limit of M,~» (C) for n € N. While Ext(MZn ((C)) is trivial, the so-called
strong Ext of M,» (C) is not. Two *z homomorphisms of M,~» (C)into C(H) are
strongly equivalent if they are conjugate by u, for aunitary u € B(H). Every unital
*p homomorphism & of M,~» (C) into C(H) is lifted by a *zhomomorphism &, into
B(H)and the strong equivalence class of @ is uniquely determined by the codimension of
@, (1) modulo 2™. Any unitary u in C(H) that witnesses such @ is conjugate to the trivial
representation of M~ (C)which necessarily has Fredholm index equal to the codimension
of d,(1) modulo 2™. Now write M,~ as @y A, where 4,, = M, (C) for all n. Recursively
find *-homomorphisms n{* and 77 from ® <, A4; into the Calkin algebra so that (i)n}i+1
extends rr;* forallnand j = 1,2, (ii) each 77" has trivial strong Ext class, and (iii) each ;'
has strong Ext class 2"~ (modulo 2™). The construction is straightforward. The limits 7,
and m, are xghomomorphisms of the CAR algebra into the Calkin algebra such that the first
one lifts to a homomorphism of the CAR algebra into B(H) and the other one does not.

Corollary (2.2.29)[370]: Assume M is countably degree-1 saturated and B is a separable
subalgebra. If I is a (closed, two-sided) ideal of B then there is a contraction f; G M N B’
such that a’f; = a’ forall a’ € I.

If moreover ¢ € M is such that ¢ = { 0} , then we can choose f; so that fjc = 0 and
filc = {0}.
Proof. Fix a countable dense subset a,’;, for n € N, of | and a countable dense subset b,{,
for n € N,on B. Consider type t consisting of the following conditions.
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()Y, |lalx— dl|| = oforalln € N,
@Y, ||bix — xb]|| = oforalln € N.
(iii) xc = 0, and

(iv) X, xa)c=0forallneN.

We prove that t is consistent, and moreover that it is finitely approximately
satisfiable by a contraction. By [118] I has a B-quasicentral approximate unit e,,, for n € N,

consisting of positive elements. Since Bc = {0} we have e,,c = 0, as well as ena,’;1c =0
for all m and all n. Therefore every finite fragment of t is arbitrarily well approximately
satisfiable by e,, for all large enough n. By Lemma (2.2.6) (applied with [r,s] = [0,1]) and
saturation of M there is a contraction f; € M that realizes ¢. Then fja’ = a/ for all a’ €
LfieB' NnM,}; fjAc ={0},and }; fic =0, asrequired.

Corollary (2.2.30)[370]: Assume a and a + € are positive operators. Then |la + b|| =
max([lall, lla + €]]).

Proof. We may assume 1 = ||la|| = |la + €]|. Fixe > 0and let & be a unit vector such
that n = &— a& satisfies |[n|| <& .Then Re(aé|(a+ €)&) = Re(é|(a+ €)é) +
Re(n|(a+€)&) = Re(m|(a+€)&) > —esince a + € = 0. We therefore have

I(2a+ )¢ 117 = ((2a + €)§l(2a + €)§)

= [la$l*> + li(a + )¢lI* + 2Re(aél(a+€)§) > 1 + |[(a+e)§lI* — 2¢
and since € > 0 was arbitrary the conclusion follows.
Section (2.3): Certain C** Algebras Which are Coronas of Banach Algebras

The study of the commutant modulo the Hilbert—Schmidt class of a normal operator
with rich spectrum ([140], [133]) has shown that this Banach algebra together with its ideal
of compact operators resembles in many ways the pair consisting of the algebra B(H') of
all operators on a Hilbert space H and the ideal K (H )of compact operators and that the
analog of the Calkin algebra is also a C*[ algebra. The purpose is to develop this analogy.
We go beyond the case of a normal operator [140] or of a commuting n-tuple of hermitian
operators [133] and deal with a general non-commuting n-tuple of operators and its
commutant modulo a normed ideal which satisfies a certain quasicentral approximate unit
condition relative to the n-tuple. The main result we obtain is that countable degree-1
saturation, in the model theory of ([114]), holds for the analog of the Calkin algebra, which
is still a C*@algebra. We will refer to countable degree-1 saturation simply as “degree-1
saturation”, for the sake of brevity. This adds to the list of nice properties of these analogs
of the Calkin algebra and also adds to the list of C*Rlalgebras satisfying degree -1 saturation
([114]). We also obtain a few other results. The existence of quasicentral approximate units
for the ideal of compact operators in the Banach algebra we consider, as well as
generalizations of some of the multiplier and duality results in [140].

The Calkin algebra which we obtain, Give hope that these algebras may be a good
place to apply extensions of bi-Variant K-theory beyond KC* —algebras ([136]) and cyclic
cohomology ([135]).

We recall certain basic facts about normed ideals of compact operators ([137], [139])
and about the invariant K (J) where J is a normed ideal and t an n-tuple of operators,

which we used in the work on normed ideal perturbations of Hilbert space operators
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([142],[14], [144]).

The main result is the existence of quasicentral approximate units for the compact
ideal of the Banach algebras we study.

The construction we use has some of the flavor of the tridiagonal con-struction we
used in the original proof of the non-commutative Weyl-von Neumann theorem [143],
before the concept of quasicentral approximate units was abstracted ([7], [83]).
The fact that the analogue of the Calkin algebra is a C*Plalgebra.

We give the countable degree -1 saturation for the analogue of the Calkin algebra.
The proof'is along similar lines to those of the proof for coronas of € *-algebras of Farah and
Hart ([114]) with the added technical dil Iculties arising from Banach algebra norms which
don’t allow continuous functional calculus. We were helped by the fact that in the case of
the Calkin algebra the main technical lemma and the glueing construction simplify and
becomes of the tridiagonal construction and the kind of approximately commuting partition
of unity used to glue parts of operators in [143].

We deal with generalizations of multiplier and duality results from [140] to the
general setting. Here once appropriate assumptions are found, the proofs in [140] generalize
immediately.

The term normed ideal will be used as an Abbreviation for symmetrically normed
ideal ([137], [139]) of compact operators on a separable infinite dimensional complex
Hilbert space H'.

Thisisanideal 0 = J < B(H) of the algebra of all bounded operators on H which
is contained in K (H) the ideal of compact operators and which is endowed with a certain
norm | |;with respect to which is a Banach space.The norm is given by|T|; = |T| ¢ =
®(s,(T),s,(T),...) where ® is a norming function (see §3 in [137]) and s;(T) =
s,(T ) =..are the s-numbers of T . Given a norming function ® we will use the notation in
|9] and dente by (S¢ ,| | and SQ(DO), | |o) the normed ideals which are the set of all compact
operators T so that |T |4 < oo and, respectively, the closure in Sg of R(H )the ideal of finite
rank operators.

We will always leave out K (H )as a normed ideal.

If (3, | |5)isanormed ideal we shall also use the notation for the closure of R(H) in J.
Remark thatsince | | = | | ¢ for some norming function ®,7© = Sg)) Alsoif| |5 =

| |ewe clearly have Sg)) cJ csg and if Séo) = S the function @ is called
“mononorming.
If T = (T} )1<j<n 1s an n-tuple of operators the definition of the number

(1) = l}iefjrelfi(f;[f)ux‘l» T]|5

from ([142] see also [141], [144]), where (J,| |) is a normed ideal and R* (H) = {A €
R(H)|0 < A < 1} the lim inf being with respect to the natural order on R (#)and

where we use the notation[A, T ] = ([4,T}])1<j<n and |(X j)

1<jen), = M@Xisjsn |Xj|j. If

| |9=1 |e wealso write kg (T) for ky(T).

We will be mainly interested in the condition k;(T ) = 0. Results concerning this are
summarized in [144]. If T is an n- tuple of commuting hermitian operators and 7 = C,, the
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Schattenvon Neumann class, then we have ke (T) = 0 if n = 2. This implies the fact that
ke, (N ) = 0if N is a normal operator which underlies the results in [140].

We should also recall (see [142] or [141]) that k;(T ) = 0 is equivalent to
kg(rlIT*") =0 where " = (T)1<cj<n or to kj(ReT][[lmT) =0 where Ret =
(Re T )i<j<n and Imt = (IMm T )14 <p-
The condition k4(t ) = 0 is also equivalent to the existence of a sequence € A4, € R ()

w
such that A,, = 1 and |[An, T] |(7 — 0 as n — oo oralso to the existence of a sequence 4,, T

1,A, € Rf(H)satisfying additional conditions like m > n = 4,4, = A, and
A, B, = B, where B,, € R(H) are given and so that |[An' T] |(7 — 0 asn — oo,

Let T = (Tj )1<jen, I; = T, 1 < j < n be an n-tuple of hermitian operators in B(H) and let
(J,11g) be a normed ideal we define €(7;7) = {X € B(H) |[X,Tj] € 3,1 <) <
n}and K (1t;7) = €(r; ) NK(H).Then €(7; 7) is a Banach algebra with the norm
X = IX]| + |[X, 7 ]|; with an isometric involution ||| X*||| = |||X]||| and K (7 ;T)1is a
closed two-sided ideal, which is also closed under the involution. We shall denote by
P(F) the finite-rank hermitian projections. Clearly P(H) € R(H) € K (z; 7).
Proposition(2.3.1)[132]: Assume K;(7) = 0.
() IfP € P(H) and € > 0, then thereis A € Rf (H)sothatP < Aand |||4|]| < 1 +
€.
(b) IfR(H) isdenseinJand P € P(H), K, € K(z; 7),1
thereis A € Ry (H)sothat P < A, |||(1 —AK, ||| <e1
€.
Proof: (a) Since K;(t) = Othereis A € R{(H),P < Asothat|[4,7]|; < €, which in
view of the fact that ||A|| < 1 gives |||A]|]| < 1 + €.
b) Since [K;,T;]€ 7,1 < r <m,1 < j< n and R(H) is dense in J, there is a
projection Q € P(H) so that |[(I — Q)[K,,Tj]l; < €/4and ||[(1— Q)K;|| < €/4,1 <
r < m,1 < j < n. Clearly, we may assumewithout loss of generality that P > Q and
KAl < L,L1<r<m.
Using a), thereis A € R (H)sothatQ <P < Aand |[A,7]|; < €/4.We have

10— KA < | (= QKNI < /4

mand € > 0, then

<
< mand|||A]l] < 1 +

r <
r <

and
[0 = A3, Tl < 1A e]ls 1961 + max |0 — (KT, < /4 + /4 = /2

It follows that [||(I — A)K, ||| < €.
Corollary(2.3.2)[132]: If K3(t ) = 0 andR(H) is dense in J, then R(H) is dense in
K(t; 7).
Proposition(2.3.3)[132]: Assume k;(t) = 0and 7(® = 7, that is R(#) is dense
inJ. LetX,,.... X, €E(r; 1), K4,..., K3 €K (r; 7),P € P(H)and € > 0 be given.
Then there is B € R (H) sothatP < B,|||B||| <1+¢€
A — BN < & 111X, BINlI < €

forl <j<rl<p<m
Proof: Without loss of generality we will assume that X,, = X;,1 < p < m. Since
7 = 7O thereis Py € P(H) so that P < P, and

(0 = P)XpT]ls + (X710 = Po)ly < €/2.
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Applying repeatedly Proposition(2.3.1) we can findP, € P(H),A; € RY (H),
Ph< P <P,<...,
Ay < A < A, <.,
sothat P, T Tass - oand P < Ag < Poyq, (I — Psyq)XpAg = 0,
(I = Psy )T As = 0,1 — Ps+1)XpAs =0
(that is Psy1 H D XpAH + T ASH), |1AGII <1 + €275 L and |||(I — A5)K;||| < €. For
1<p<ml1<l<nl<j<randals =20.LetB = N1 (4, +-+ Ay).

We will show that choosing N sulciently large, B will have all the desired properties.

Clearly, since Ay = P,1 < s < N we will also have the same inequality for their
mean, that is B = P . Similarly, (I — B)K; is the mean of the (1 —A4,)K;,1 < s < N
and this gives |(||I — B)Kj” | <e.

Also, the same kind of argument gives |||B]|| < 1 + N~ le.

To prove that || | [Xp,B]||| < € if N is large enough we will show that [X,,, B] — 0 and
|[Xy, B],T]|ls » 0as N — co. Remark that the conditions on P;, A, Xp,, T; imply that in the
orthogonal sum decomposition

H=PH S P—P)H D P,— P)H D...
we have that A; is block-diagonal, while the X, and T;, being hermitian, are block-
tridiagonal. With the notation Qy = Py, Qs = P, — Ps_4,s = 1, we have A;_; = Qo +
o+ Qg1 + QsA;_1Q5ifs = 1.1t follows that

s—1 1 1
B0+ > (1-5)e [ =V D) nneseenf < v,
1<s<N 1<s<N
Hence the tridiagonality gives
_1 s—1
l2.%00 < 2v ]+ lle+ Y (1-27) e,
1<ssN
SZN‘1+N‘1< z Qs+1X,Qs|| + z QsXpQs41 )s41v—1||xp||
1<ss<N 1sssN
and hence [B,X,] - 0asN — oo
Since we may choose P, # 0, we have ||B|| = 1 and hence |||B]|| <1+ N~ te gives

|[B,7]|; < eN~1 It follows that
I[[B, Xs1,€lly < 2[[B, 7 15[ X, || + 1[B, [Xp, 7 11l

< 2N“TelXpll + |1 = B)[Xp,T ]Il + |Xp, 71 — B)s.
Since B = P,, it follows that

|(I - B)[Xp:T]|p+ |[Xp:T](I - B)|7 < 6/2-
Hence |[B, Xp], Tt |5 < € for N.
Corollary(2.3.4)[132]: Assumk;(t) =0 and 7@ =7. Let X;,...,X,, €E(t; ) and a
sequence Yy € R(H),s € Nbe given. Then there is a sequence A; € R (H) so that
AYs =Yg and AgA; = Ay, A XpAr = XpA, if s > t and moreover

As T LI[IAsIII = LT = ADKI| = 0, [[[[Xp, As]lll = 0

ass —» ooforallk e K(r;9)and1 < p < m.

We pass now to the quotient Banach algebra with involution £(t; 7)/K (t; J) which we
shall denote by E/K (t; 7). If p: B(H) —» B(H)/K(H) = B/K(H) is the canonical
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homomorphism to the Calkin algebra, which we shall denote by B/XK (H), then there is a
canonical isomorphism of £/ (t; J)and the sub algebra p(E(t; 7)) of B/K (t; 7). We
shall often also denote by p the homomorphism E(7; 7) — E/K(z; 7).
Proposition(2.3.5)[132]: We assume k;(t) = 0 and 7@ = 7. Given X € £(r; 7) and
E > O thereis A € R (H) so that

IAll = LAl < 1 + eand ||| = ADX|I| < llp(X)|l + €
where the norm of p(X) is the B/K (H) norm. In particular, the norm of X = K'(t; J) in
E/K (t; T) equals the norm of p(X) in B/K(H). Thus algebraic embedding of £/
K(t; J) into B/K(H) 1s isometric and E/K (t; T) identifies with a C*-subalgebra of
B/K (H).
Proof: We have stated this fact which is an immediate generalizationof results in [140] and
[134], with a lot of detail, since it will be often used.
In view of our assumption, that k;(t) = 0, there are A, T I,A,, € R{ (H) so that
|[4,, T]lg = 0 as n — oo. then also ||(I — 4,)X]|| = |[p(X)|| as n — oco.we also have

[T = ADX,T]l; < [Ap T ]ls X+ [T = A)[X, T]ls

and the first term in the right-hand side - 0 asn — oo by the properties of the 4,, , while
the second also— 0 since J©@ = J and (I — A,)[X, T ] converges weakly to 0 asn — oo.
The rest of the statement is well explained in the statement of the corollary itself.
We show what amounts to countable degree-1 saturation of € /XK (t; J) under the
assumption that k;(t ) = 0, in the model-theory terminology of [134],[114].The result is
given in Theorem (2.3.8),which is formulated in operator-algebra terms, using one of the
equivalent definitions of countable degree-1 saturationwhich can be found in [114].
We begin with a rather standard technical fact.

Lemma (2.3.6)[132]: Let G = G* € E(r; J)be such that|||G — % I|| £1.

Then G/? € €(t; 7) and there is a universal constant C, so that
II[c¥2X]||| < ClIGXII ifX € E(t; 7)
and
I[GY%,t]l; < CI[GT]ls
Proof: The Lemma is an easy consequence of the functional calculus formula

G1/2 = (Zni)‘lf(zl — 6)'zY2dz,
T

where I' 1s the circle |z — 3/2| = 5/4, and of the fact that for z € I" we have :
Il (2l — &)l = 4/5ll (zI = G)™*(4/5(z — 3/2)] — 4/5(G — 3/2D)7 |
<1-4/51=5
and
[(z — G)"LX] = (zI — &)7YG,X](z] — G) !
Lemma(2.3.7)[132]: Assume k;(t) = Oand7 = 7. Let M, € €(t; J),
n € Ne, | Oasm —» oo,P, € P(H),P, T1ask — oo and and increasing function
¢ : N > Nbe given. Then there are R,, € R} (H), m € N so that
() Xmz1 R = 1
(i1) the R,,,’ s commute
(i) |[Ryll =1 and |[R,, T ]l < €pifm = 2
WV)RpP, =0 ifm=2n+2n=>1
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V) IRy, M ]Il | < € ifk < (m),m = 2
(vi) R,MyR,, = 0,R,R,, = 0
Ifk < o(m),k < p(n),In-m|= 2,m = 2,n = 2.
Proof: There will be no loss of generality to assume that M; = and M, = M, ,K € N.
Given 6,, < 1/106,, | 0 m — oo, we can use Proposition (2.3.1) repeatedly, to find a
sequence of projections Ep € P(H),Ex T I as k—> o0 and a sequence of A, €
RI(H), A, T Ilask - o0,A; = 0 satisfying the following conditions:
Ex = Py, Ex = Ay, (I — ExM,A, = 0 ifp < p(k + 2)
and also
Ars1 = EpllAe — Edll = 1,

NAksalll < 1 4 6pqq

and
HAean Mpllll < Serif p < 0k + 2).

Note that since the Ep’'s are projections, 0 = A; < E; < A < E; <z-<E, <
A1 < Eppq << 1 implies that{Ay| k = 1} U {Ex |k = 1} is a set of commuting
operators.

With these preparations one would be tempted to define R, to be (4, —
A,_1)Y? however this would lead to dilJculties with commutators and |||-||| -norms
because the square-root function is not dil lerentiable at 0.

We define

B,=1— (I — A%)? = A%2(2] — A).
Then E,, < A, < E,4q casily gives E, < B,y1 <E,,sand A; = 0 gives B, = 0. It
is also easily seen that defining
Ry = (By — Bn—l)l/zrn = 2
R,=0

we have

B,? = An(21 — A%)\/?

(I— Bpp)2 =1~ A2

R, = (B,(I - Bn—l))l/z = B;/Z(I - Bn—l)l/2
= An(2l — ARV — A3y,
Then forn = 2 we have
1121 — A7) — 3/21|Il = |IIAR — 1/21]l|
= 142 — 1721 + |[42,7]];
< 1/2 + 2 ||A.ll l[A Tt ]l 9 < 1/2 + 26, < 1.
We can then apply Lemma(2.3.6)to G = 2] — A2 and X € £(7; J) and
get that
21 — A2)Y%,7]]; < Cl43,7]l; < 2C|[An 7]l < 2C5,
and
2t = AY2x1||| < C AL XTI < 2C N4, XTI + 8,) <
3CINAR, X Il
Since P,, T I we have E,,, T I and hence B, T I asm — oo. In view of B; = 0 we get
that condition (i) is satisfied by the Ry. Also, since the B,, commute, it follows that the R,
commute and that condition (ii) holds. Further, since ||Ax;+; — Exll = 1, we have that 4,
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has an eigenvector for the eigenvalue (i) in (Ex;; — Ex)H, which is then also an
eigenvector for the eigenvalue (1) of By, and an eigenvector for the eigenvalue 0 of By, so

that it is an eigenvector for the eigenvalue (i) for (By4+, — Bk)l/ 2 = Ry4q. Thus we have
IRl = 1ifm > 2, which is the first part of condition (ii). Further R, E,,_, = 0 gives
R, R;—2 = 0,sothat (iv) is satisfied. Also, since M; = I and M;, = M, ,to check that (vi)
holds, it sullces to check that R,MyR,, = 0ifn > m + 2,1 <k < ¢(m).indeed, we
have R,M\R,, = Bi/z(l — B,_)Y2M,BL? (I — Bm_l)l/Z and thus it sullces to show
that (1 —B,_;)MyB,, = 0if1 < k < @(m),n = m + 2, which in turn will follow
if we show that (I — A,_1)MA, = 0if1 < k < o(m),n = m + 2. Note further
that ifn > m + 2 wehaveA,_; = E,_, = E,, anditsullcesif (I — E,,)M A for k <
@(m) for m = 2, which is satisfied in view of the construction of the E,,, and 4,,.
We are thus left with having to deal with the second part of (ii1) an (v).
We have

I[RmT 1ls = [[Am(2] — A2)Y2(U — A2,_1), 7]l
S 2[Rt ]ly + I[21 — A2DY2,1]|; + 2|[A% 1, 7]y

< 20+ 2C6,, + 46,-1-

Hence, choosing the §,,,’s so that 2(C + 1)6,, + 40,,-1 < €, Will insure that the second
part of (ii1) holds.
Turning to condition (vi), we have
R Millll = [[|[Am 21 — AZYY2U = AR, Mi ]|

< MAm M ||| 21 = AZ)Y2||[ 11T = AZ_ll

+||[[@r = A3 M]|[| AR T = A%l

+ 2 [Am-1, Ml Ao 1 HARI ]| 2T = AZDY2|

< (2 + I[21 — AZDY2 112 + Sn-1)? + 3C l[[Am, M1l (1

+ Sm)(z + 5m—1)2 + 25111—1(1 + Sm—l)(l + Sm)(z

+ ([ = A3V 7]ly)

< dm(2 + 2C6,)(2 + 6p_1)? + 3Cm(1 + 8,)(2 + 6p-1)?

+ 26;-1(1 + 6,1 + 6,)(2 + 2C6,,),
ifm > 2and k < @(m). Clearly, the §,,, ’s can be chosen so that ||[[R,,, Mi ]|l < €.
By Proposition (2.3.5), /K (T ; ) under the assumptions thatk,(T) = OandJ = 7
is a C*-algebra, actually a C*-subalgebra of the Calkin al-gebra. Recall also that p will denote
both the homomorphis B(H) — B/K(H) as well as the homomorphism E(T ; 7)) —
E/K (T ; 3, which can be viewed as its restriction to E(T ; J) (see the discussion preceding
Proposition (2.3.3) and Proposition (2.3.5).
Let X, X]* ,J € N be non-commuting indeterminates and let

n
fu(Xy, o X)) = e, + Z(ajnijjn +cinXjdjn)
j=1
where e, a1, -+, Anny -+ P1ins -+ By C1ms -+ +» Ciy A1y - -+ A @re in E/K (t; ) so that
the f,, are non-commutative polynomials with coefficients not commuting with the variables.
We shall denote the ring of such polynomials by £/K (t;7) (XjX]-* j E N), , the f,,’s being
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polynomials of degree < 1 in the indeterminates.
Theorem (2.3.8)[132]: Assume k;(t) = OandJ = J7© Let

€n, ajp, b 1 <j<nne€N,

jn G djn € 27773 =<

be such that there are Y;, € E/K(t;J) ,1 <j < nn €N, so that ||ym|| <
1and |||en + lejsn(ajnyjmb]-n + cjny]-*mdjn)” — rn| < 1/m, if 1 <n <m where r;, €
R. then there are Y; € E/K (t;T), j € Nso That ||Y;|| < 1, forj € N and

€n + 2 (a]ny]b]n + C]ny;d]n) =TIy
1<js<n
foralln € N.
Proof: Let Ey, Ajy, Bin, Ciny Djn, Yin € E(7;J) for 1 < j < n,n N, be so that
P(En) = en,P(Ajn) = 2jn, P(Bjn) = bjn, P(Cin) = ¢jn, P(Djn) = djn, p(Yin)
= Y ¥l <1
and |[Yj,, T]l; < €, for some given sequence €, I 0. It will be convenient to also
introduce faXe, 0 X)) €EE /K (T )X, X/ '| j €EN) and E,(X:,...,X,) €
E(t; 7) (X;, X j € N) the non-commutative polynomials

falXy, .0 X)) = e, + z (@jnXjbjn + cinX; djn),

1<js<n

E,(Xy,....X,)=E, + Z (AjnX;Bjn + CinX; Djn).
1<jsn
We shall apply Lemma (2.3.7) with a sequence M}, € E(t; J7),k € N and an increasing
function @: N — N such that the set {M;, | 1 < k < ¢@(m)} cntains the following operatr
Emn, Ajms Bims Cims Djmy Yim, Yy where 1 < j < mand also E,(Yim, ..+, Ynm) and

(B (Yoo Ypm) ) By (Vi -+, Yam)
withl<n <m1 < p< m,1< g < m. Note that the listed operators won’t exhaust
{M, |1 < k < @(m)}, since ¢ being increasing we will have that if 1 < m' < m then
{M|1 = k <o(m)} c {M|1=<k<q(m)}
Since p(E,(Yim--Yum)) = i(Uims-- Ypm) if 1<n<m, we can find P €
P(H), P, T1I so that

|”Fn(Y1m;---»Ynm)(I - Pm)” — 1| < 1/m
ifl <n<m. Remarkthatif1l <n <mandN > m then

Fn(Ylm: ] Ynm) z RI%

k>N+2
because YsnizRE <1 —P, and ] — Yjsn+2R2 € R(H) € K () so that

”Fn(ylmr---rynm)(l - Pm)” > Fn(ylm:---:ynm) Z Rl% = ||fn(y1m»---rynm)||
k=N+2
We can therefore find a sequence 1 < N; < N, <..so that N,, = m +2,N,,; — N, =

8 forallm,p € N and

- 1< 1/m
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E.(Yim--o, Yum) z Rl — | < 1/m
1f1 <n < mand also

E. (Y1) Yum) Z RZ|| — | < 1/m.

Nm+3<k<Np41-3
We will show that if the €, are chosen so that ),,,,51 €,, < o0 ,then  the operators

) Rk

mz2j \N;p<k<Np 41
will satisfy ¥; € (T ;7), ||Y|| < 1 and p(Y;) = y; will satisfy f,(y1,...,¥n) = 1, for all
n € N.

We will not need to put conditions on the €, in order that ||Y] || <1

Indeed, this can be seen as follows. Let Z : H — H ®I?(N) be the operator

thz z R, h®e,

mZ] Nmsk<Nm+1

And let S; € B(H®I%(N)) be the operator

S; Z h,®e;, = z z Yimh,®ey.

k=1 m2j Nyp<k<Np41
Since ||Y]m|| < 1, we have ||S]|| < 1 and we also have ||Z|| < 1 since

z*z=z z R£SZR,§=1.

m2j Npyp<k<Npyq k=1
Hence ||YJ|| < lsinceY; = Z°5;Z.
Our next task will be to show that if },;,>1 €, < 0, we will have [[Y}, T ]|; < oo, which
together with the boundedness of Y; we just showed, will give ¥; € £(7 ;7).
Since the sum defining Y; is weakly convergent to Y;,it will be sufficient to show that
assuming Y.,,»1 €y, < © , we can insure that

2 z RijmRk,T < 00,

m2j || Nypsk<Npp41 g
Since the Yj,;, with 1 < j < m are among the M;,, with 1 < p < ¢@(m) we infer from
condition (vi) in Lemma (2.3.7) that |||[Rk, Y}m“” < gif Ny, < kand1 < j < m.
Also by condition (iii) of Lemma(2.3.7), | [|Rx ||| < 1+ €.

This gives
Y RmRet|| = > vmRbe|| <|| D [ReValRe
Nyp<k<Npiq g Ny <k<Npiq g Npp<k<Npiq g
< D ReYmllllRdl < ) a+e
Ny <k<Npiq Ny sk<Npiq
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Hence in order that Y; € E(7; 7) it will sullce that};;>; € < o and

Sl 2 ] <o
mzj N,

Sk<Nm+41 7
Since |[Ry ,7]l; < €if k > 2 by (iii) of Lemma (2.3.7) and ||Yj,|| < 1, we have

N DR 2 DT D By,

mzj || Npsk<Np 41 mzj Nmsk<Np41 k=<2
=S et Yo
mzj k=2
under the assumption that)’;.; €, < oo . Hence under this condition on the €, we have Y} €
E(t;9).

Finally, we turn to showing that assuming Y,,51 €, < 0, we will have ||f,,(v4,..., y)Il =
1, foralln € N,wherey; = p(Y;).Clearly f,(y1,...,¥n) = p(F(Yy,...,Y,)). Note also
that the relations we’re aiming at being about norms in the Calkin algebra, we will no longer
have to deal with |||. |||-norms and the ideal J for this matter.

We begin by showing that we can arrange that the dil Jerence between F, (Y,...,Y,) and

Z z RoE, (Vi v, Yo R

mza2n Nm5k<Nm+1
1s a compact operator. Since

E,(Yy,.....,Y,) =E, + 2 (AjnY; Bin + CinY; D)

1<jsn
it will sullce to prove the assertion in (iii) cases, when F,(Y;,...,Y,) equals
En, AjnYjBjn, CjnYjn Djn where 1 < j < n.In the first case we have

D ReEnRe—Fy=— Y Y RiFuRi+ ) (RiEnRy— EnRD),

k=N, 1<jsn k=1 1<k<Np,
The first sum being finite rank, we need that the second sum be compact.
If k = n, |[[Ry, Ex ]Il < € since E,, is among the M, with p < @ (n) < @(k) and condition
59 of Lemma (2.3.7) holds. Thus,”RkEan — EnR,i” < €, implies that the dil Jerence we
consider will be compact if )51 € < .
In case F, is Aj,Y;Bj,, where 1 < j < n, we must insure compa ness of

> ) ReAYimBuRe ) Al ) RmRe |Bp
m2n Ny <k<Np 41 m2n Ny <k<Nm41
= z Z ([RicAjn]YimBjnRic + AjnRicYim | Bjms Rc])-
m2n Ny <k<Np 41

The last sum being a sum of finite rank operators it will sulJce to have Convergence of the
sum of their norms. Since the 4;, and Bj, are among the M, with p < @(n) < @(k) we
have that the norms of the commutators are majorized By € in view of (vi) in Lemma (2.3.7)
and hence the sum of norms is majorized by
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Kz €x
K>1
where K 1s a bound for ||Ajn|| and ||Bjn||. Thus again it will sullce that }};»; €, < ..

The third situation when we consider C;,Y;" Dj;,, is entirely analogous to that of 4;,Y;B;,
since we treated Yj,and Y};, symmetrically in our assumptions about ¢.

Again, summability of the €, will sullce.
We need then to show that if },;»; €, < 00, we will also have that the essential norm of

0, = z z Ran(Ylmr ey Ynm)Rk

mza2n Nmsk<Nm+1
will be 7.
Using again the operator

7:H - H(N),Zh = Z R h®e,
k=N
we have ||Z|| < 1and Z*T,,Z — Q,, € R(H), where fort > n we define on H® [%(N)
operators I};; by

rmz hy Qe = Z z E (Y, o, Y) (I = P ) ®er.

k=1 m2n Ny <k<Np 41
Since [[Fell = supmee 1FoYimo -+ Yam) (I — Bp)ll we have
| ITaell = ra] <t7* and hence lim |ITyell = ry This gives [[p(Qu)ll < lim [ITyell = ry

and hence we are left with the opposite inequality ||[p(Q,)]| < 7,.
We will again use a compact perturbation and pass from (,,to another operator

E, = z E,(Yirm - > Yom) z RZ.

mzn N <k<Npm+1
Indeed we have

En —Qy = z Z [Fn(Ylmr---:Ynm):Rk]Rk-
m2n Ny <k<Np 41

And

[Rn(ylm» T Ynm)r Rk]Rk < €k
Again compactness will follow if ;51 €, < oo.
Recall now that we had chosen the N,,, so that

E,(Yirm - > Yom) Z Ri| -1y <1/m
Nm<k<Nmi1
and also

E,(Yim - > Yom) z RE[[ —rn| < 1/m.
Nm4+3sk<N, ,,-3
Since by Lemma (2.3.7) we have that the R}, are finite rank positive contractions, commute
and satisfy |k — | = 2 = Ry R; = 0 it is easily seen that if A,,, is the projection onto the
range of Yy, . ._.on RZ we will have R,A,,= 0ifs < N, ors = N,,,; and hence
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Ap,Ay= 0ifp # q andif n < m we have

B Yom) Y R[S 150 All < |[F i Vo) Y R

Np+3<k<N N <k<Nm41

m+1—3
so that

”lEnAm” - rnl < 1/m
This implies

p(Ey) = lim Sup“EnAm“ =TIy .
. . . moteo : :
We will sometimes also deal with normed ideals in which the finite rank operators are not

dense, which occurs when the norming function @ is not mononorming (see the
preliminaries and [9]or [139]). We begin with a basic lemma.
Lemma (2.3.9)[132]: Let ® be a norming function and let (7| |5) = (#¢,]||s)-s0 that

(7(0),| l7) = (gog’), | |) is the closure of R, (K) in J.Assume K;(t) = 0.Then K (7 ; 7(9)
is a closed two-sided ideal in £(t; J) and the norm in E(7; J) extends the norm in
K (t; 7). Moreover, the unit ball of (E(z;7), ||l |l]) is weakly compact.

Proof. It is clear that the norm of E(7; 7)extends the norm of K (t; 7(®) and that
K(r; 7)is a closed subalgebra of E(t; 7). By Corollary(2.3.2) R, (H)is dense in
K (t; ) and hence K (t; 7)is the closure in E(7; 7) of the two-sided ideal R, (H),
which implies that also K (7 ; 7(® is a two-sided ideal in (7 ; 7). If X is the weak limit of
the net (X, )4eq in the unit ball of £(7; J)then by the weak compactness of the unit balls of
B(H) and of o4 (see [137]) we have || X]| < 1and |[X,T ]| < 1so that X € E(T; 7).
Since H is separable we may replace (X, )qe; by a subsequence and use the semicontinuity
properties of | |land | | under weak convergence to get that ||| X||| < 1. Thus the unit
ball of E(7; 7) is a closed subset of the unit ball of B(H') and hence weakly compact.

We pass now to bounded multipliers M (¥ (t; 7)) that is double centralizer pairs
(T',T") of bounded linear maps K(t; 7)) - K (r; 7©) so that T'(x)y =
xT"(y) ([138]).

Proposition (2.3.10)[132]: Assume k;(t) = 0 where 7 = o4 and 7@ = pg))We have
MK (r; I©)) = E(r;9), that is if (T',T") € M(K(r; 7)) then there is a unique
Te&(r;I)sothatT' (x) = xTand T""(x) = T x.

Proof: By Corollary (2.3.4) there is a sequence Ag € RY () so that ||Ag|| = 1,s >t =
AA;, = A, and A T L||IAGH = LI — ADK||| » 0ifs - wand K € K (r; 1©O).

Assume (T',T") € MK (t; 1)) and let K, = T'(4,)As = AT (Ay).

Clearly supgey |||Ks|l| < oo the multiplier being bounded. Remark also that s > t =
A KA = AT (AAA: = A T'(AHAy = A AT (A) = A:T""(A;) = K;.Henceif T is
the weak limit of a subsequence of the K, we have A;T A; = K, for all t and hence T does
not depend on the subsequence, that isT = w — lim,_, K and also T € E(t;J) since
the unit ball of £(7;7) is weakly closed.

On the other hand if K € K(t; ) then |||A;K — K]||| > 0 as s —» o and also
|IIKA; — K||]| » 0ass — oo (replace K by K**). We have
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T' (K)A; = UmT'(KA)A, = lim KAST"(A) = lim KAST'(A)A,
S—00
= lim KT'(A)A, A, = KT A,

S—00

and since this holds for all t € N we have T'(K) = KT. This then gives T'(4;)K =
A, T KA;K = A, T"(K)andhence T"(K) = T K.

Uniqueness of T follows from K (t; 7)) o R(H). The converse, that T € £(1;7)
gives rise to a multiplier, is a consequence of Lemma (2.3.9).

We pass now to duality. Recall from the theory of normed ideals ([137], [139]) that given
norming function @ there is conjugate norming function ®* so that the sual of the banach

space (go¢),| o) 1S (P9 | |e+) under the duahty (X,Y) » Tr(XY)for (X,Y) € go(o)

£ o+ (We leave out of the discussion the case of goq, = £, , where the dual is B(H)).
Proposition(2.3.11)[132]: Let ® be a norming function so that ks (t) = 0, let ®*

Be its conjugate and assume pg’) #+ ¥, then the dual of K (T; gog)))can be identified
isometrically with (£; X (§4+)™)/N where

N = Z [ y] (y] 1<j<n € 'gl X (80 ¢>*)n |(yj)15j5n

1<jsn

€ (po+)"with z [Tj,yj] €ty

1<jsn

and the duality map K (T g)g)) X (£1 X (pp:)™) = C is

< (x (y])1<1<n)>—>Tr Kx Z[ k]y;

1<j<n
and the norm on (; X (4)") is

(x, (yj)lsjsn) =max| |xl|y, Z |yf @

1<jsn

Corollary (2.3.12)[370]: Let G; = G; € €(z; I)be such that }; [||G; — % I|| <1.

Then Gl/ > e E(t; J) and there is a universal constant C, so that

gy [ll6= Xl < 2 cllis Il irx e eces 9)

DGl <) clGT
- .

J
Proof: The Lemma is an easy consequence of the functional calculus formula

Z Gjl/2 = (21Ti)_1j Z (zI — Gj)_lzl/zdz,

j r J
where I is the circle |z — 3/2| = 5/4, and of the fact that for z € I' we have :
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Dl = eyl
J

4
== Ml @ = 6p7t@/se - 3/21 = 4/5(6; - 3/20)7|

-1

3(1—3) =5
zﬁﬂ4nx]z@z l6X(e - 6)

and
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Chapter 3
Regularity Properties and Strongly Self-Absorbing C*-Algebras

We report the program to classify separable amenable C*-algebras. Our emphasis is
on the newly apparent role of regularity properties such as finite decomposition rank, strict
comparison of positive elements, and Z -stability, and on the importance of the Cuntz
semigroup.

Section (3.1): Classification Program for Separable Amenable C*-Algebras

Rings of bounded operators on Hilbert space were first studied by Murray and von
Neumann in the 1930s. These rings, later called von Neumann algebras, came to be viewed
as a subcategory of a more general category, namely, C*-algebras. (The C*-algebra of
compact operators appeared for perhaps the first time when von Neumann proved the
uniqueness of the canonical commutation relations.) A C*-algebra is a Banach algebra A
with involution x — x* satisfying the C*-algebra identity:

lIxx*|| = [Ix]|?, vx € A.

Every C*-algebra is isometrically x-isomorphic to a norm-closed sub *_algebra of the -
algebra of bounded linear operators on some Hilbert space, and so may still be viewed as a
ring of operators on a Hilbert space.

In 1990, the first-named initiated a program to classify amenable norm-separable C*-
algebras via K -theoretic invariants. The graded and (pre-)ordered group K, @ K; was
suggested as a first approximation to the correct invariant, as it had already proved to be
complete for both approximately finite-dimensional (AF) algebras and approximately circle
(AT) algebras of real rank zero ([161], [163]). It was quickly realised, however, that more
sensitive invariants would be required if the algebras considered were not sufficiently rich
in projections. The program was refined, and became concentrated on proving that Banach
algebra K-theory and positive traces formed a complete invariant for simple separable
amenable C*-algebras.

Recent examples based on the pioneering work of Villadsen have shown that the
classification program must be further revised. Two things are now apparent: the presence
of a dichotomy among separable amenable C*-algebras dividing those algebras which are
classifiable via K-theory and traces from those which will require finer invariants, and the
possibility—the reality, in some cases—that this dichotomy is characterised by one of three
potentially equivalent regularity properties for amenable C*-algebras.

We give a brief account of the activity in the classification program over the past decade,
with particular emphasis on the now apparent role of regularity properties. After reviewing
the successes of the program so far, we will cover the work of Villadsen on rapid dimension
growth AH algebras, the examples of Rgrdam which have necessitated the present re-
evaluation of the classification program, and some results of Winter obtained in the presence
of the aforementioned regularity properties. We also discuss the possible consequences for
the classification program of including the Cuntz semigroup as part of the invariant (as a
refinement of the k, and tracial invariants).
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We denote by K the C*-algebra of compact operators on a separable infinite-
dimensional Hilbert space # .For a C*-algebra A,welet M, (A) denote the algebra of n x
n matrices with entries from A. The cone of positive elements of A will be denoted by A4, .

The Elliott invariant of a C*-algebra A is the 4-tuple
EN(A) == ((KoA KoA*, 3 0), KA T A, pya), (1)

where the K-groups are the Banach algebra ones, K,A* is the image of the Murray-von
Neumann semigroup V(A) under the Grothendieck map, Y54 is the subset of K,A
corresponding to projections in A, T* A is the space of positive tracial linear functionals on
A,and PA is the natural pairing of T*A and K,A given by evaluating atrace at aK,-class. See
Rgrdam [195]. In the case of a unital C*-algebra the invariant becomes

((K()A, K0A+r []-A]); KlA; TA; PA)

where [1,]is the K,-class of the unit, and T A is the (compact convex) space of tracial states.
We will concentrate on unital C* -algebras in the sequel in order to limit technicalities.

The original statement of the classification conjecture for simple unital separable
amenable C*-algebras read as follows:

Conjecture(3.1.1)[145]: Let Aand B be simple unital separable amenable C*-algebras, and
suppose that there exists an isomorphism
@ : Ell(A) — EIlI(B).
It follows that there is a * —isomorphism ®: A — B which inducs @.
It will be convenient to have an abbreviation for the statement above. Let us call it (EC).

We will take the following deep theorem, which combines results of Choi and Effros
([153]), Connes ([155]), Haagerup ([174]), and Kirchberg ([180]), to be our definition of
amenability.

Theorem (3.1.2)[145]: A C*algebra A is amenable if and only if it has the following
property: for each finite subset G of A and € > 0 there are a finite-dimensional C*-algebra
F and completely positive contractions @, yr such that the diagram

A— o

\ o
™, e

N

o v
' \uk &

F

commutes up to e on G .

The property characterising amenability in Theorem (3.1.2) is known as the completely
positive approximation property.

Why do we consider only separable and amenable C*-algebras in the classification
program? It stands to reason that if one has no good classification of the weak closures of
the GNS representations for a class of C* -algebras, then one can hardly expect to classify
the C* -algebras themselves. These weak closures have separable predual if the C*-algebra
is separable. Connes and Haagerup gave a classification of injective von Neumann algebras
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with separable predual (see [156] and [175]), while Choi and Effros established that a C*-
algebra is amenable if and only if the weak closure in each GNS representation is injective
([154]). Separability and amenability are thus natural conditions which guarantee the
existence of a good classification theory for the weak closures of all GNS representations of
a given C* -algebra. The assumption of amenability (at least for a simple classification; cf.
however [164]) has been shown to be necessary by Dadarlat ([160]), see Rardam [195].

One of the three regularity properties alluded to is defined in terms of the Cuntz
semigroup, an analogue for positive elements of the Murray-von Neumann semigroup V(A).
It is known that this semigroup will be a vital part of any complete invariant for separable
amenable C*-algebras ([201]). We present both its original definition, and a modern version
which makes the connection with classical K-theory more transparent.

Definition(3.1.3)[145]:(Cuntz-Rgrdam; see [158] and [199]). Let M. (A) denote the
algebraic limit of the direct system (M,,(A), @,,), where @, : M,(A) = M, ., (A)isgiven by

a 0
ar (o 0)
Let M, (A), (resp. M, (A),) denote the positive elements in M, (A)(resp. M,,(4)) Given

a,b € M, (A), we say that a is Guntz subequivalent to b ( written a < b ) if there is a
sequence of (v,,),=; elements in some M, (A)such that

lv,bvi; — all = o.
We say that a and b are Cuntz equivalent (written a ~ b)if a < b and a < b.This relation is
an equivalence relation, and we write (a) for the equivalence class of a.The set
W(A) = My(A)y/ ~
becomes a (positive) ordered Abelian semigroup when equipped with the operation

(@) + (b) = (a®b)
and the partial order
(a)< ()= a < b.

Definition(3.1.3) is slightly unnatural, as it fails to consider positive elements in AQX.
This defect is the result of mimicking the construction of the Murray-von Neumann
semigroup. Each projection in A @K is equivalent to a projection in some M, (A), whence
M (A) is large enough to encompass all possible equivalence classes of projections. The
same is not true, however, of positive elements and Cuntz equivalence. The definition below
amounts essentially to replacing M, (A) with A @K in the definition above (this is a
theorem), and also gives a new and very useful characterisation of Cuntz subequivalence,
see [183] and [188].

Consider A as a (right) Hilbert C*-module over itself, and let H, denote the countably
infinite direct sum of copies of this module. There is a one-to-one correspondence between
closed countably generated submodules of H, and hereditary subalgebras of A QK the
hereditary subalgebra B corresponds to BH,.Since A is separable, B is singly hereditarily
generated, and it is fairly routine to prove that any two generators are Cuntz equivalent in
the sense of Definition (3.1.3). Thus, passing from positive elements to Cuntz equivalence
classes factors through the passage from positive elements to the hereditary subalgebras they
generate.
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Let X and Y be closed countably generated submodules of H,. Recall that the compact
operators on H, form a C*-algebra isomorphic to A @K . Let us say that X is compactly
contained in Y if X is contained in Y and there is a compact self-adjoint endomorphism of
Y which fixes X pointwise. Such an endomorphism extends naturally to a compact self-
adjoint endomorphism of H,,and so may be viewed as a self-adjoint element of A @K Let
us write X < Y if each closed countably generated compactly contained submodule ofXis
iIsomorphic to such a submodule of Y.

Theorem(3.1.4)[145]:(Coward-Elliott-Ivanescu, [157]). The relation < on Hilbert C* -
modules defined above, when viewed as a relation on positive elements in M., (A), is
precisely the relation < of Definition (3.1.3)

Let [X] denote the Cuntz equivalence class of the module X.One may construct a positive
ordered Abelian semigroup Cu(A) by endowing the set of countably generated Hilbert C*-
modules over A with the operation

[X] + [Y]:=[XDY]
and the partial order
[X] < [Y] & X SY.

The semigroup Cu(A)coincides with W (A) whenever A is stable, i.e., A QXK = A, and has
some advantages over W (A) in general. First, suprema of increasing sequences always exist
in Cu(A). This leads to the definition of a category including this structure in which Cu(A)
sits as an object, and as a functor into which it is continuous with respect to inductive limits.
(Definition(3.1.3) casts W(A) asa functor into just the category of ordered Abelian
semigroups with zero. This functor fails to be continuous with respect to inductive limits.)
Second, it results in the simplification in the case that A has stable rank one that Cuntz
equivalence of positive elements amounts simply to isomorphism of the corresponding
Hilbert C*-modules. This has led, via recent work of Brown, Perera, to the complete
classification of all countably generated Hilbert C*-modules over A via K, and traces,
provided that A has the relatively common property of strict comparison ([150], [151]), and
to the classification of closed unitary orbits of positive operators in A @K through recent
work of Ciuperca ([152]).

Cuntz equivalence is often described roughly as the Murray-von Neumann equivalence of
the support projections of positive elements. This heuristic is, modulo accounting for
projections, precise in C*-algebras for which the Elliott invariant is known to be complete
([192]). In the stably finite case, one recovers K,,the tracial simplex, and the pairing p (see
(1)) from the Cuntz semigroup, whence the invariant

(Cu (4), K1 4)

is finer than EII(A) in general. These two invariants determine each other in a natural way
for the largest class of unital stably finite C*-algebras in which (EC) can be expected to hold
([150], [151]). The class in question consists of those algebras which satisfy a certain
regularity property, instability, which we shall introduce presently.

We describe three agreeable properties which a C*-algebra may enjoy. We will see
later that virtually all classification theorems for separable amenable C*-algebras via the
Elliott invariant assume, either explicitly or implicitly, one of these properties.
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The first regularity property—strict comparison—is one that guarantees, in simple
C*-algebras, that the heuristic view of Cuntz equivalence described is in fact accurate for
positive elements which are not Cuntz equivalent to projections (see [192]). The property is
K-theoretic in character.

Let A be a unital C*-algebra, and denote by QT(A) the space of normalised 2-quasitraces
on A (v. [147]). Let S(W (A)) denote the set of additive and order preserving maps d from
W (A)to R* having the property that d((14)) = 1. Such maps are called states.Given T €
QT(A), one may defineamap d; : M, (4), - R* by

dr(a) = lim 7 (an). 2)
n=oo
This map is lower semicontinuous, and depends only on the Cuntz equivalence class of a.
It moreover has the following properties:
(i)ifa < b,thend;(a) < d;(b);
(if) if a and b are orthogonal, thend; (a + b) = d; (a) + d; (b).

Thus, d.. defines a state on W (A). Such states are called lower semicontinuous dimension
functions, and the set of them is denoted by LDF(A). If A has the property thata < b
whenever d(a) < d(b) forevery d € LDF(A), then let us say that A has strict comparison
of positive elements or simply strict comparison.

A theorem of Haagerup asserts that every element of QT (A) is in fact a trace if A is exact
([176]). All amenable C*-algebras are exact, so we dispense with the consideration of quasi-
traces from here on.

The second regularity property, introduced by Kirchberg and Winter, is topological
in flavour. It is based on a noncommutati veversion of covering dimension called
decomposition rank.

Definition (3.1.5)[145]: ([182], Definitions 2.2 and 3.1). Let A be a separable C*-algebra.

(i) We shall say that a completely positive map ¢ : ©;_; M, — A is n- decomposable
if there is a decomposition {1,...,s} = [[iZ,]; such that the re-striction of ¢ to ®;¢,. M,
preserves orthogonality for each j € {0,...,n}.

(if) A will be said to have decomposition rank n, denoted by dr A = n, if n is the
least integer such that the following holds: Given {b4,...,b,}c A and
e> 0, there is a completely positive approximation (F,y, @) for by,...,b,
within (ei.e.,yy: A—>F and ¢@: F—> A are completely positive contractions and
llew(b;) — b;|]| < €) such that ¢ is n-decomposable. If no such n exists, we write

drA = oo.

Decomposition rank has good permanence properties. It behaves well with respect to
quotients, inductive limits, hereditary subalgebras, unitization and stabilization. Its
topological flavour comes from the fact that it generalises covering dimension in the
commutative case: if X is a locally compact second countable space, then drCy(X) =
dimX, see [182].

The regularity property that we are interested in is finite decomposition rank, expressed
by the inequality dr < oo. This can only occur in a stably finite C*-algebra.

The Jiang-Su algebra Z is a simple separable amenable and infinite-dimensional C*-
algebra with the same Elliott invariant as C ([177]). We say that a second algebra A is Z-
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stableif A ®Z = A. Z-stability is our third regularity property. It is very robust with respect
to common constructions (see[205]).

The next theorem shows Z-stability to be highly relevant to the classification program.
Recall that a pre-ordered Abelian group (G, G*)issaid tobe weakly unperforated if nx €
G*\{0} impliesx € G* foranyx € Gandn € N.

Theorem(3.1.6)[145]: (Gong-Jiang-Su, [173]). Let A be a simple unital C*-algebra with
weakly unperforated K,-group. It follows that

Ell(A) = Ell(A ®Z).

Thus, in the setting of weakly unperforated K, the completeness of Ell(e)inthe simple
unital case of the classification program would imply Z-stability. Remarkably, there exist
algebras satisfying the hypotheses of the above theorem which are

not Z-stable ([196], [201], [202]).

In general, no two of the regularity properties above are equivalent. The most
important general result connecting them is the following theorem of M. R@rdam ([197]):

Theorem (3.1.7)[145]: Let A be a simple, unital, exact, finite, and Z -stable C*-algebra.
Then, A has strict comparison ofpositive elements.

We shall see later that for a substantial class of simple, separable, amenable, and stably
finite C*-algebras, all three of our regularity properties are equivalent. The algebras in this
class which do satisfy these three properties also satisfy (EC). There is good reason to
believe that the equivalence of these three properties will hold in much greater generality,
at least in the stably finite case; in the general case, strict comparison and Z-stability may
well prove to be equivalent characterisations of those simple, unital, separable, and
amenable C*-algebras which satisfy (EC).

We have two goals to edify with the classification program and to demonstrate that
the regularity properties of pervade the known confirmations of (EC). This is a new point
of view, for when these results were originally proved, there was no reason to think that any
thing more than simplicity, separability, and amenability would be required to complete the
classification program.

We have divided our review of known classification results into three broad cate-
gories according to the types of algebras covered: purely infinite algebras, and two formally
different types of stably finite algebras. We will thus choose, from each of the three
categories above, the classification theorem with the broadest scope, and indicate how the
algebras it covers satisfy at least one of our regularity properties.

We first consider a case where the theory is summarised with one beautiful result.
Recall that a simple separable amenable C*-algebra is purely infinite if every non-zero
hereditary subalgebra contains an infinite projection (a projection is infinite if it is
equivalent, in the sense of Murray and von Neumann, to a proper subprojection of itself;
otherwise the projection is finite).

Theorem (3.1.8)[145]: (Kirchberg-Phillips, 1995, [179] and [193]). Let A and B be
separable amenable purely infinite simple C* -algebras which satisfy the Universal
Coefficient Theorem. If there is an isomorphism
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@ : Ell(A) — EIl(B),
then there is a * -isomorphism ®: A — B which induces

In the theorem above, the Elliott invariant is somewhat simplified. The hypotheses on A
and B guarantee that they are traceless, and that the order structure on K|, is irrelevant. Thus,
the invariant is simply the graded group K,@K;,along with the K,-class of the unit if it
exists. The assumption of the Universal Coefficient Theorem (UCT) is required in order to
deduce the theorem from a result which is formally more general: A and B as in the theorem
are *-isomorphic if and only if they are KK-equivalent. The question of whether every
amenable C*-algebra satisfies the UCT is open.

Which of our three regularity properties are present here? As noted earlier, finite
decomposition rank is out of the question. The algebras we are considering are traceless,
and so the definition of strict comparison reduces to the following statement: for any two
non-zero positive elements a,b € A,wehave a < b.This, in turn, is often taken as the very
definition of pure infiniteness, and can be shown to be equivalent to the definition preceding
Theorem(3.1.8)without much difficulty. Strict comparison is thus satisfied in a slightly
vacuous way. As it turns out, A and B are also instable, although this is less obvious. One
first proves that A and B are approximately divisible (again, this does not require Theorem
(3.1.8)) and then uses the fact, due to Winter, that any separable and approximately divisible
C*-algebra is z-stable ([206]).

We now move on to the case of stably finite C*-algebras, i.e., those algebras A such
that that every projection in the (unitization of) each matrix algebra M,,(A) is finite. (The
question of whether a simple amenable C*-algebra must always be purely infinite or stably
finite was recently settled negatively by Rgrdam. We will address his example again later.)
Many of the classification results in this setting apply to classes of C*-algebras which can
be realised as inductive limits of certain building block algebras. The original classification
result for stably finite algebras is due to Glimm. Recall that a C*-algebra A is uniformly
hyperfinite (UHF) if it is the limit of an inductive sequence

v S, S, %
where each @; is a unital x_homomorphism. We will state his result here as a confirmation
of the Elliott conjecture, but note that it predates both the classification program and the
realisation that K-theory is the essential invariant.

Theorem(3.1.9)[145]: (Glimm, 1960, [170]). Let A and B be UHF algebras, and suppose
that there is an isomorphsim

@ : Ell(A) — El(B).
It follows that there is a *_isomorphism ®: A — B which induces @

Again, the invariant is dramatically simplified here. Only the ordered K,-group is non-
trivial. The strategy of Glimm's proof (which did not use K-theory explicitly) was to
“intertwine" two inductive sequences (M, @;)and (M, ,y;).e., to find sequences of *-
homomorphisms n; and y; the diagramcommute. One then gets an isomorphism between
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the limit algebras by extending the obvious morphism between the induct ive sequences by
continuity.

&1 . b2 s
}r..[n_l —_— h-.[nz —_— }r-.[n_:; —_— % =

lnyﬁ LH M2 [H M3
11 12 13

L L L
M,

=~ M,,, 2. My, ——= -

The intertwining argument above can be pushed surprisingly far. One replaces the
inductive sequences above with more general inductive sequences (A;, @;)and (B, ),
where the A; and B; are drawn from a specified class (matrix algebras over circles, for
instance), and seeks maps n; and y;as before. Usually, it is not possible to find n; and y;
making the diagram commute, but approximate commutativity on ever larger finite sets can
be arranged, and this suffices for the existence of an isomorphism between the limit
algebras. This generalised intertwining is known as the Elliott Intertwining Argument.

The most important classification theorem for inductive limits covers the so-called
approximately homogeneous (AH) algebras. An AH algebra A is the limit of an inductive
sequence (4;, ¢;), where each A; is semi-homogeneous:

nj
A = 69 pilj(c(xi,j)®:ic)pi,j
] =
for some natural number n;, compact metric spaces X;;, and projections P;; € C(X;;) ®X.
We refer to the sequence (A;, @;)as a decomposition for A;such decompositions are not
unique. All AH algebras are separable and amenable.
Let A be asimple unital AH algebra. Let us say that A has slow dimension growth if it has

a decomposition (A;, @;) satisfyi
{ dim(X;,) dim(X; ,,) } _o
rank (pi,l) " rank (pi,ni)

Let us say that A has very slow dimension growth if it has a decomposition satisfying the
(formally) stronger condition that

lim sup sup

i—o0

rank (p;1)" rank (piyn,)

Finally, let us say that A has bounded dimension if there is a constant M > 0 and a
decomposition of A satisfying

i—>oo

3 3
im(X; im(X, .,
lim sup sup{dlm(xl’l) dim (Xin,) } =0

li_rln{dim(Xi,l)} < M.
i,

Theorem(3.1.10)[145]: (Elliott-Gong, Dadarlat, and Gong, [166], [159] and [172]). (EC)
holds among simple unital AH algebras with slow dimension growth and real rank zero.

Theorem(3.1.11)[145]: (Elliott-Gong-Li and Gong, [168] and [171]). (EC) holds among
simple unital AH algebras with very slow dimension growth.

All three of our regularity properties hold for the algebras of Theorems (3.1.10) and
(3.1.11), but some are easier to establish than others. Let us first point out that an algebra
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from either class has stable rank one and weakly unperforated K,-group (cf. [146]), and that
these facts predate Theorems (3.1.10) and (3.1.11). A simple unital C*-algebra of real rank
zero and stable rank one has strict comparison if and only if its K,-group is weakly
unperforated (cf. [191]), whence strict comparison holds for the algebras covered by
Theorem (3.1.10) A recent result shows that strict comparison holds for any simple unital
AH algebra with slow dimension growth ([204]), and this result is independent of the
classification theorems above. Thus, strict comparison holds for the algebras of Theorems
(3.1.10) and (3.1.11), and the proof of this fact, while not easy, is at least much less
complicated than the proofs of the classification theorems themselves. Establishing finite
decomposition rank requires the full force of the classification theorems: a consequence of
both theorems is that the algebras they cover are all in fact simple unital AH algebras of
bounded dimension, and such algebras have finite decomposition rank by [37, Corollary
3.12 and 3.3 (ii)]. Proving i-stability is also an application of Theorems (3.1.8) and (3.1.11):
one may use these theorems to prove that the algebras in question are approximately
divisible ([167]), and this entails i-stability for separable C*-algebras ([206]).

Why all the interest in inductive limits? Initially at least, it was surprising to find that any
classification of C*-algebras by K-theory was possible, and the earliest theorems to this
effect considered inductive limits (see AF algebras and AT-algebras of real rank zero in
[161] and [163], respectively; it should be pointed out that [161] is based not only on [170]
but on the generalisation of Glimm's approach to the full class of AF algebras by Bratteli in
[148]—in which even the class of AF algebras is mentioned for the first time). But it was
the realisation by Evans that a very natural class of C*-algebras arising from dynamical
systems—the irrational rotation algebras— were in fact inductive limits of elementary
building blocks that began the drive to classify inductive limits of all stripes ([165]). This
theorem of Elliott and Evans has recently been generalised in sweeping fashion by Lin and
Phillips, who prove that virtually every C*-dynamical system giving rise to a simple algebra
IS an inductive limit of fairly tractable building blocks ([187]). This result continues to
provide strong motivation for the study of inductive limit algebras.

Natural examples of separable amenable C*-algebras are rarely equipped with
obvious and useful inductive limit decompositions. Even the aforementioned theorem of Lin
and Phillips, which gives an inductive limit decomposition for each minimal C* -dynamical
system, does not produce inductive sequences covered by existing classification theorems.
It is thus desirable to have theorems confirming the Elliott conjecture under hypotheses that
are (reasonably) straightforward to verify for algebras not given as inductive limits.

Lin in [184] introduced the concept of tracial topological rank for C*-algebras. His
definition, is this: a unital simple tracial C*-algebra A has tracial topological rank at most
n € N if for any finite set FC A, tolerance € > 0, and positive element a € A there exist
unital subalgebras B and C of A such that

() 1a= 1@ 1c,
(i)  F is almost (to within e) contained in B @ C,
(iii) isisomorphic to FRQC(X), where dim(X) < n and F is finite-dimensional,and
(iv) 1z isdominated, in the sense of Cuntz subequivalence, by a.
One denotes by TR(A) the least integer n for which A satisfies the definition above; this is
the tracial topological rank, or simply the tracial rank, of A.
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The most important value of the tracial rank is zero. Lin proved that simple unital
separable amenable C*-algebras of tracial rank zero satisfy the Elliott conjecture, modulo
the ever present UCT assumption ([185]). The great advantage of this result is that its
hypotheses can be verified for a wide variety of C*-dynamical systems and all simple non-
commutative tori, without ever having to prove that the latter have tractable inductive limit
decompositions (see [194]). Indeed, the existence of such decompositions is a consequence
of Lin's theorem! (Rather, it is a consequence of his proof, which showed that his class
coincided with that of
[166].) One can also verify the hypotheses of Lin's classification theorem for many real rank
zero C*-algebras with unique trace ([149]), always with the assumption, indirectly, of strict
comparison.

Simple unital C* -algebras of tracial rank zero can be shown to have stable rank one and
weakly unperforated K,-group, whence they have strict comparison of positive elements by
a theorem of Perera ([191]). (There is a classification theorem for algebras of tracial rank
one ([186]), but this has been somewhat less useful—it is difficult to verify tracial rank one
in natural examples. Also, Niu has recently proved a classification theorem for some C*-
algebras which are approximated in trace by certain subalgebras of M,, ® C[0,1] ([189],
[190]).)

And what of our regularity properties? Lin proved in [184] that every unital simple C*-
algebra of tracial rank zero has stable rank one and weakly unperforated K, -group. These
facts, entail strict comparison and are not nearly so difficult to prove as the tracial rank zero
classification theorem. In a further analogy with the case of AH algebras, finite
decomposition rank and z-stability can only be verified by applying Lin's classification
theorem—aconsequence of this theorem (or rather, its proof; cf. above) is that the algebras
it covers are in fact AH algebras of bounded dimension!

Until the mid 1990s we had no examples of simple separable amenable C*-algebras
where one of our regularity properties failed. To be fair, two of our regularity properties had
not yet even been defined, and strict comparison was seen as a technical version of the more
attractive Second Fundamental Comparability Question for projections (this last condition,
abbreviated FCQ2, asks for strict comparison for projections only). This all changed when
Vil-ladsen produced a simple separable amenable and stably finite C*-algebra which did not
have FCQ2, answering a long-standing question of Blackadar ([208]). The techniques
introduced by Villadsen were subsequently used by him and others to answer many open
questions in the theory of nuclear C*-algebras including the following:

(i) Does there exist a simple separable amenable C*-algebra containing a finite and an
infinite projection? (Solved affirmatively by R@rdam in [196].)
(if) Does there exist a simple and stably finite C*-algebra with non-minimal stable rank?
(Solved affirmatively by Villadsen in [209].)
(iii) Is stability a stable property for simple C*-algebras? (Solved negatively by Rgrdam
in [198].)
(iv) Does a simple and stably finite C* -algebra with cancellation of projections
necessarily have stable rank one?
(v) Are the C*-algebras of minimal dynamical systems always classified by their
Elliott invariants? (Solved negatively by Kerr and Giol in [178].)
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Of the results above, (i) was (and is) the most significant. In addition to showing that simple
separable amenable C*-algebras do not have a factor-like type classification, Rerdam's
example demonstrated that the Elliott invariant as it stood could not be complete in the
simple case. This and other examples have necessitated a revision of the classification
program ([203]).

(EC) does not hold in general, and this justifies new assumptions in efforts to confirm it.
In particular, one may assume any combination of our three regularity properties. We will
comment on the aptness of these new assumptions. For now we observe that, from a certain
point of view, we have been making these assumptions all along. Existing classification
theorems for stably finite C*-algebras of real rank zero are accompanied by the crucial
assumptions of stable rank one and weakly unperforated K,; as has already been pointed
out, unperforated K, can be replaced with strict comparison in this setting.

How much further can one get by assuming the (formally) stronger condition of Z-
stability? What role does finite decomposition rank play? As it turns out, these two
properties both alone and together produce interesting results. Let 72.72.0 denote the class
of simple unital separable amenable C*-algebras of real rank zero. The following subclasses
of 770 tysatisfy (EC):

(i) algebras that satisfy the UCT, have finite decomposition rank, and have tracial
simplex with compact and zero-dimensional extreme boundary;

(if)Z-stable algebras that satisfy the UCT and arapproximated locally by subalgebras of
finite decomposition rank.

These results, due to Winter ([210], [211]), showcase the power of our regularity properties:
included in the algebras covered by (ii) are all simple separable unital Z-stable ASH
(approximately subhomogeneous) algebras of real rank zero.

Another advantage to the assumptions of Z-stability and strict comparison is that they
allow one to recover extremely fine isomorphism invariants for C*-algebras from the Elliott
invariant alone. (This recovery is not possible in general.) We will be able to give precise
meaning to this comment below, but first require a further discussion of the Cuntz
semigroup.

A natural reaction to an incomplete invariant is to enlarge it: include whatever
information was used to prove incompleteness. This is not always a good idea. It is possible
that one's distinguishing information is ad hoc and unlikely to yield a complete invariant.
Worse, one may throw so much new information into the invariant that the impact of its
potential completeness is severely diminished.

Rgrdam's finite-and-infinite-projection example is distinguished from a simple and
purely infinite algebra with the same K-theory by the obvious fact that the latter contains no
finite projections. The natural invariant which captures this difference is the semigroup of
Murray-von Neumann equivalence classes of projections in matrices over an algebra A,
denoted by V' (A). After the appearance of Rgrdam's example, the second-named author
produced a pair of simple, separable, amenable, and stably finite C*-algebras which agreed
on the Elliott invariant but were not isomorphic. In this case the distinguishing invariant was
Rieffel's stable rank. It was later discovered that these algebras could not be distinguished
by their Murray-von Neumann semigroups, but it was not yet clear which data were missing
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from the Elliott invariant. More dramatic examples were needed, ones which agreed on most
candidates for enlarging the invariant and pointed the way to the "missing information".

[202] constructed a pair of simple unital AH algebras which, while non-isomorphic,
agreed on a wide swath of invariants including the Elliott invariant, all continuous (with
respect to inductive sequences) and homotopy invariant functors from the category of C*-
algebras (a class which includes the Murray-von Neumann semigroup), the real and stable
ranks, and, as was shown later in [203], stable isomorphism invariants (those invariants
which are insensitive to tensoring with a matrix algebra or passing to a hereditary
subalgebra). It seemed reasonable to expect that the distinguishing invariant in this
example—the Cuntz semigroup—might be a good candidate for enlarging the invariant. At
least, it was an object which after years of being used sparingly as a means to other ends,
merited study for its own sake.

Let us collect some evidence supporting the addition of the Cuntz semigroup to the usual
Elliott invariant. First, in the biggest class of algebras where (EC) can be expected to hold—
Z-stable algebras, as shown by Theorem (3.1.6)—it is not an addition at all! Recent work of
Brown, Perera shows that for a simple unital separable amenable C*-algebra which absorbs
Z tensorially, there is a functor which recovers the Cuntz semigroup from the Elliott
invariant ([150], [192]). This functorial recovery also holds for simple unital AH algebras
of slow dimension growth, a class for which Z-stability is not known and yet confirmation
of (EC) is expected. (It should be noted that the computation of the Cuntz semigroup for a
simple approximate interval (Al) algebra was essentially carried out by lvanescu and the
first-named author in [169], although one does require [12, Corollary 4] to see that the
computation is complete.)

Second, the Cuntz semigroup unifies the counterexamples of Rgrdam. One can show that
the examples of [195], [201], and [202] all consist of pairs of algebras with different Cuntz
semigroups; there are no known counterexamples to the conjecture that simple separable
amenable C*-algebras will be classifiedupto *-isomorphism by the Elliott invariant and the
Cuntz semigroup.

Third, the Cuntz semigroup provides a bridge to the classification of non-simple algebras.
Ciuperca and the first-named author have recently proved that Al algebras—Ilimits of
inductive sequences of algebras of the form

n
© M, (C[0,1])
i=1

are classified up to isomorphism by their Cuntz semigroups ([152]). This is accomplished
by proving that the approximate unitary equivalence classes of positive operators in the
unitization of a stable C*-algebra of stable rank one are determined by the Cuntz semigroup
of the algebra, and then appealing to a theorem of Thom-sen ([200]). (These approximate
unitary equivalence classes of positive operators can be endowed with the structure of a
metric Abelian semigroup with functional calculus. This invariant, known as Thomsen's
semigroup, is recovered functorially in [152] from the Cuntz semigroup for a C*-algebra of
stable rank one, and so from the Elliott invariant in an algebra which is moreover simple,
unital, exact, finite, and Z-stable by the results of [150].

85



There is one last reason to suspect a deep connection between the classification program
and the Cuntz semigroup. Let us first recall a theorem of Kirchberg, which is germane to
the classification of purely infinite C*-algebras cf. Theorem (3.1.8).

Theorem(3.1.12)[145]: (Kirchberg, c. 1994; see [181]). Let A be a separable amenable C*-
algebra. The following two properties are equivalent:

(i) A is purely infinite;
(iDA ®0,, = A.

A consequence of Kirchberg's theorem is that among simple separable amenable C*-
algebras which merely contain an infinite projection, there is a two-fold characterisation of
the (proper) subclass which satisfies the original form of the Elliott conjecture (modulo
UCT). If one assumes apriori that A is simple and unital with no tracial state, then a theorem
of Rerdam (see [197]) shows that the property (ii) above, known as C -stability, is
equivalent to i-stability. Under these same hypotheses, the property (i) is equivalent to the
statement that A has strict comparison. Kirchberg's theorem can thus be rephrased as follows
in the simple unital case:

Theorem(3.1.13)[145]: Let A be a simple separable unital amenable C* -algebra without a
tracial state. The following two properties are equivalent:

(i) A has strict comparison;
(iIAQZ = A.

The properties (i) and (ii) in the theorem above make perfect sense in the presence of a
trace. We moreover have that (ii) implies (i) even in the presence of traces (this is due to
Rerdam; see [197]). It therefore makes sense to ask whether the theorem might be true
without the tracelessness hypothesis. Remarkably, this appears to be the case. Winter have
proved that for a substantial class of stably finite C*-algebras, strict comparison and i-
stability are equivalent, and that these properties moreover characterise the (proper) subclass
which satisfies (EC) ([207]). In other words, Kirchberg's theorem is quite possibly a special
case of a more general result, one which will give a unified two-fold characterisation of
those simple separable amenable C*-algebras which satisfy the original form of the Elliott
conjecture.

It is too soon to know whether the Cuntz semigroup together with the Elliott invariant will
suffice for the classification of simple separable amenable C*-algebras, or indeed, whether
such a broad classification can be hoped for at all. But there is already cause for optimism.
Zhuang Niu has recently obtained some results on lifting maps at the level of the Cuntz
semigroup to *_homomorphisms. This type of lifting result is a key ingredient in proving
almost any kind of classification theorem (cf. [164]). His results suggest the algebras of
[202] as the appropriate starting point for any effort to establish the Cuntz semigroup as a
complete isomorphism invariant, at least in the absence of K; (see [152]).
Section (3.2): Z-Stable Wilhelm Winter

A separable unital C*-algebra D # C is called strongly self-absorbing, if there is an
isomorphism D — D®D which is approximately unitarily equivalent to The first factor
embedding, cf. [222]. The interest in such algebras largely arises From Elliott’s program to
classify nuclear C*-algebras by K-theoretic invariants.
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Examples suggest that classification will only be possible up to D-stability (i.e., up
to tensoring with D) for a strongly self-absorbing D, cf. [221], [145], [224]. While the
known strongly self-absorbing examples are quite well understood, and are entirely
classified, it remains an open problem whether these are the only ones. Froma more general
perspective, the question is in how far abstract properties allow for comparison with
concrete examples. For nuclear C*-algebras, this question prominently manifests itself as
the UCT problem (i.e., is every nuclear C*-algebra KK-equivalent to a commutative one); a
positive answer even in the special setting of strongly self-absorbing C*-algebras would be
highly satisfactory, and likely shed light on the general case.

We shall be concerned with a closely related interpretation of the aforementioned
guestion: we will show that any strongly self-absorbing C* -algebra D admits a unital
embedding of a specific example, the Jiang—Su algebra Z (see [177] and to [220] for an
introduction and various characterizations of Z). It then follows immediately that D is in
fact Z-stable. The result answers some problems left open in [222] and in [213]; in particular
it implies that strongly self-absorbing C*-algebras are always K; -injective. It shows that the
Jiang—Su algebra is an initial object in the category of strongly self-absorbing C*-algebras
(with initial *-homomorphisms); there can only be one such initial object, whence Z is
characterized this way. It is interesting to note that the Cuntz algebra O, is the uniquely
determined final object in this category, and that O, can be characterized as the initial object
in the category of infinite strongly self-absorbing C*-algebras.

The Proof of the main result builds on ideas from [220] and from [213], where the
problem was settled in the case where D contains a nontrivial projection.

We generalize a technical result from [213] to a setting that does not require the
existence of projections, see Lemma (3.2.4) below. See [219] for a brief account of the
Cuntz semigroup.

Proposition(3.2.1)[212]: Let A be a unital C*-algebra, 0 < g < 1,.
Then, forany 0 # n € N, we have
Lion— g®%"> (1,— 9)®9gR...Qg
tg® 1L-9)Q 39 8.0y

+9 Q.80 9 & (I4— 9.
Proof: The statement is trivial for n = 1. Suppose now we have shown the assertion for
some 0 +# n € N. We obtain

1A®(n+1) - g®(”+1) = 1A®n ® g - g®n® g + 1A®n® (1A_ g)
= (Len— g®")® g + Lien ® (14— 9)
> (L-9®9g®.09)® g
+9 Q@ I,—- 9D I R®..Q9NR g

+t(I®. . ®9g®U-9)® g
+9®%" ® (14— 9),
where for the inequality we have used our induction hypothesis as well as the fact that
Lien @ (14— 9) = g®" ® (1, — g). Therefore, the statement also holds for n + 1.
Proposition(3.2.2)[212]: Let D be strongly self-absorbing, 0 <d < 1.
Then, forany 0 # k € N,
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[1per— d®*] < k - [(1p— d) ® lyer-v]in W(DDF)
Proof: The assertion holds trivially for k = 1. Suppose now it has been verified for some
k € N. Then,
[1p — d®FD] = [1,ek @ (Ip— d) + 1pex ® d — d®F ® d]
[1per ® (1p — d)] + [(1pex — d¥) @ 1p]
[((Ap = d) ® 1per] + k - [(Ip—d) ® lper-v & 1p]
(k+1) - [(1p—d) @ 1pek]
(using that D is strongly self-absorbing as well as our induction hypothesis for the second
inequality), so the assertion also holds for k + 1.
The following is only a mild generalization of [213, Lemma 1.3].
Lemma(3.2.3)[212]: Let D be strongly self-absorbing and let 0 < f < g < 15 be
positive elements of D satisfying 1, — g # Oand fg = f.
Then, there is0 # n € N such that
[f®n] < [1D®k — g®”]in W(D®”).
Proof: Since D issimpleand 1, — g # 0, thereisn € N such that
fl =n-[1p— g]

A IA

Then,

"1 <n-[(1p—9) ® f ®..0 f]
=[(lp—-9VfFR..Qfl+..+[f .0 f & (1p— 9)
=[lp—-9)QfFR..Qf+.+f Q.. f ® (1p — 9)]
S[(Ip—-9) ®yg®V..0g+..+9 ®..0 g  (1p — 9)]

where for the first equality we have used that D is strongly self-absorbing, for the second
equality we have used that the terms are pairwise orthogonal by our assumptions on f and
g, and the last inequality follows from Proposition (3.2.1).

The following is a version of [213] for positive elements rather than projections.
Lemma(3.2.4)[212]: Let D be strongly self-absorbing and let 0 < f < g < 1, be
positive elements satisfying 1, — g # Oand fg = f; let0 # d € D,.

Then, there is0 # m € N such that
[f®m] < [d® 1.D®(m—1)] in W(D®m)

Proof: By Lemma (3.2.3), there is 0 # n € N such that

[f®"] < [1pen — g©"];
since f®" L 1,00 — g®™, this implies

2 - [f®"] < [1penl.

By an easy induction argument we then have

2K [FO] < [1p@m]

forany k € N.
By simplicity of D and since d is nonzero, there is k € N such that
[f] < 2*- [d].
Set
m:==nk+1,
then
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o] 2 [a ® fOr V] = 28 [a @ fO] <[4 ® 1you]
= [d ® 1pem-n].
Below we establish the existence of nontrivial order zero maps from matrix algebras into
strongly self-absorbing C*-algebras, and we show certain systems of such maps give rise to
order zero maps with small complements, see [225] and [226].
Proposition(3.2.5)[212]: Let D be strongly self-absorbingand 0 + d € D,.
Then, forany 0 # k € N, there is a nonzero c.p.c. order zero map
Y: M, - dDd.
Proof: Let us first prove the assertion in the case where d = 1pand k = 2.
Since D is infinite dimensional, there are orthogonal positive normalized elements e, f €
D. Since D = DD is strongly self-absorbing, there is a sequence of unitaries (u,,)peny €
DD such that
(e ® Fuy — f®e;
sincee® f L f Q e thisimplies that there is a c.p.c. order zero map

g: M, - 1_[ DRD/QnDRD
N
given by
Glern) = e®f,5(exs) = f ®e,5(exn) = m((unle®N), )
(cf.[225]),where  : [[yD®D — [InD®D /QnDRX®D denotes the quotient map.
Since order zero maps with finite dimensional domains are semi projective (cf. [225]), &
hasa c.p.c. order zero lift M, — [[ DQD which in turn implies that there is a nonzero c.p.c.
order zero map
5:M2—>1_[ D®D=D.
N
Next, if k = 2" forsomer € N, then
T®
M,r = (M)®" =5 DO = D
IS @ nonzero c.p.c. order zero map; for an arbitrary k € N, we may take r large enough and
restrict 6®7to M,, € M, to obtain a nonzero c.p.c. order zero maps : o: M, — D.
This settles the proposition for arbitrary k and for d = 15. Now if d is an arbitrary nonzero
positive element (which we may clearly assume to be normalized), we can define a c.p.c.
map
D M, - 1_[ dDd /®y dDd 1_[ D /®y D
N N
by setting

P(x) := m((dop(x)d)nen) forx € My,
where again  : [[ydDd — [IydDd/&®y dDd denotes the quotient map and o,,:M;, —» D
Is a sequence of c.p.c. maps lifting the c.p.c. order zero map

wo My, - (I_[ND/®ND)nD',

u: D - (HND/®ND)HD’

with
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being a unital *~-homomorphism as in [222, Theorem 2.2]. It is straightforward to check that
1 is nonzero and has order zero. Again by semiprojectivity of order zero maps, this implies
the existence of a nonzero c.p.c. order zero map
Y : M, —» dDd
Proposition(3.2.6)[212]: Let B be a unital *-algebra and o: M, —» B a unital *-
homomorphism. Define
E:={f € C([0,1,B @ M) |f(0) € B Q 1u,,f(1) € 13 ® M,}.
Then, there is a unital *-homomorphism
0:M, > E
Proof: This follows from simply connecting the two embeddings ¢ @ 1, And 1), ®
idy, of M, into o(M,) ® M, = M, ® M, M along the unit interval.
Lemma(3.2.7)[212]: Letm € N and A a unital C*-algebra. Let
Q1) i) P My > A
be c.p.c. order zero maps such that

m
Z (Pi(le) <1y
i=1

and
[0:(M2), 0;(M)] = 0ifi # j.
Then, there is a c.p.c. order zero map
p: M,-> C'(p;(My)|i =1,....m) Cc A
such that

‘ﬁ(lmz) = ifpi(le)-

Moreover, if d € A, satisfies ¢@,,(e;;)d = d,we may assume that p(e;,)d = d.

Proof: In the following, we write C;,i = 1,...,m, for various copies of the C*-algebra

Co((0,1], M,); these come equipped with c.p.c. order zero maps g;: M, — C; given by
0i(x)(t) =t -xfort € (0,1]andx € M,.

By [223, Proposition 3.2(a)], the c.p.c. order zero maps ¢;: M, — A induce unique *-

homomorphisms C; - Aviag;(x) » ¢@;(x),forx € M,.

We now define a universal C*-algebra

m
B:= C*(Cy1 |ZQ1(1M2) <1,[C,Cl = 0ifi # j € {1,...,m}).
=1
Then, B is generated by the p;(x),i € {1,...,m}and x € M,; the assignment g;(x) ~

p;(x) fori € {1,...,m}andx € M,
induces a unital *~-homomorphism
m: B->C"(p;i(My),1,4]i € {1,...,m}) c A

satisfying
> moli) = ) ou(l,)
=1 =1
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Now if we find a c.p.c. order zero map

0: M, -> B
Satisfying
o(1y,) =X 0(1m,)
Then
¢ =10

will have the desired properties, proving the first assertion of the lemma. We proceed to
construct p.
Fork = 1,...,m, let

Jo =3 (=) o(ly,) < B
=k

denote the ideal generated by 1 - Y2, 0,(1y,) in B; let
By == B/Jx
denote the quotient. We clearly have
LhelcCn
and surjections
T Ty T
B—->B,—>..—B,.
Observe that
Tp,0 ...0 T 00, M, > B,
IS a unital surjective c.p. order zero map, hence a *-homomorphism by [223, Proposition
3.2(b)]; therefore, B,,, = M,.
Fork = 1,...,m— 1, set
(i) Ex :=={f € C([0,1], Bx4:1® M) | f(0) € By41® 1p,, f(1) € 15,, & My };
one easily checks that the maps
ox: By — Ej
induced by
t—=A-1) Tpyq...m1 0; (X) @ 1My)
Ty ... M1 0;(x) — fori = k + 1,...,mandx € M,
(t'_) t- 1Bk+1®x)
fori = kandx € M,
are well-defined *-isomorphisms. Similarly, the map
0p:B > Eq:= {f € C([0,1],B,) | f(1) €C- 1p}
induced by
0,(x) — (t— (1-10) mo; (x))fori =1,....,mandx € M,,
1p — 1g,
is a well-defined *-isomorphism; note that

Uo( " 01 (1Mz)> = (t— 1 — ©).1By).

=1
By (i) together with Proposition (3.2.6) and an easy induction argument, the unital *-
homomorphism
_ T e T Q@ M, - B,
pulls back to a unital *~-homomorphism
0:M; = By;
91



This in turn induces a c.p.c. order zero map
0:M; — By
By
6(x) = (t — (1-1).6(x));
note that this map satisfies
o(1y,) = (t— (1—10).1p).

We now define a *-homomorphism note that o(1,,) = X%, 0; (1p,), Whence g is as
desired.

For the second assertion of the lemma, note that ¢ and g,,, agree modulo J/,,,.
Therefore,p = g and ¢,,, = mo,, agree up to ©(J,,). However, one checks that =(J,;,) L
d, whence (p(x) — @n(x))d = 0 for all x € M, . This implies @(e;1)d =
Pm(e11)d = d.
Proposition (3.2.8)[212]: Let D be strongly self-absorbing, 0 # m € N and

@o: M, - D

a c.p.c. order zero map.

Then, there are c.p.c. order zero maps

O1yeerr @y My > D™

such that

(D) 1 = 9o® 1pemm-u

(i) [91 = (M2), 0;(My)] = 0if i # j

®
(i) 1pom T2 0; (L), = (1o — @o(1ay)) -
Proof: For k € {1,...,m}, define

®(k-1)
PSS ((19 — 900(11\42)) RPe® 1yem-n),
them the ¢, obviously satisfy Proposition (3.2.8)(i) and (ii).

A simple induction argument shows that, for k = 1,...,m,
k

®k
lpem_ ) @i (Iy),= (1p —9o(1y,))” ®lpem-i,

i=1
which is Proposition (3.2.8)(iii) when we take k = m.
We now assemble the techniques of the preceding and a result from [220] to prove the main
result; we also derive some consequences.
Theorem(3.2.9)[212] Any strongly self-absorbing C* -algebra D absorbs the Jiang—Su
algebra Z tensorially.
Proof: Let k € N. By Proposition(3.2.5), there is a nonzero c.p.c. order zero map ¢ :
M, — D. Using functional calculus for order zero maps (cf. [226]), we may assume that
there is

2<d < ¢p(eq1)
such that

d # 0and p(e;;1)d = d.

Note that

(10— (1)) (Up — d) = 1p — 9(1us,).
By Proposition(3.2.5), there is a nonzero c.p.c. order zero map
Y : M, - dDd,;
note that
92



ple )Y : (x) =yY(x)forj = 1,...,kand x € M,.
Apply Lemma(3.2.4) (with D®*,1p(e;1)®*, (1D — @ (14,)) ® 1pek-n and  (1p —
d) ®1,,ex-1 inplace of D,d, f and g, respectively) to obtain 0 # m € N such that
(i) [((1p — @(1n,)) ® 1pew-1)®™] < [P(e11)®“® 1peem-n] in W((D® K)®™) .
From Proposition (3.2.8) (with D®* in place of D and ¢y: = ¢® 1pg-1y) We obtain
c.p.c. order zero maps

P1yeees O My > (DE)E™
Satisfying (3.2.8) (i), (ii) and (iii). By relabeling the ¢,;we may assume that actually ¢,,, =
©o® 1(D®k)®(m_1)in (3.2.8) (i).
From Lemma (3.2.7), we obtain a c.p.c. order zero map
@: My C (pi(Mp) i = 1,...,m) < (D®F)®™

such that

(ﬁ(le) = ifpi(le)-

By the second assertion of Lemma(3.2.7) and_since
Pm(e11) W (L, ) ®1peum-1) = (@(e11)® 1petm-1) (W (1, )®Lpeim-1).
= l/)(le) R1yewm-1),
we may furthermore assume that

p(e11) W1y, )®lpeum-1) = Y(1y,)OLlyenm-1),
which in turn yields

(i) Y (1, ) ®1petkm-1 < P(e11)
since ¥ is contractive. Note that we have

[1 oo ~2(1m)] E20 [(150 ~ po(1) "]
= (10 - ¢(11,)®1p6m-»)

(iv) D [¥(e1)®*® 1peum—)]
in W((D®*)®™), Define a c.p.c. order zero map
d: Mk = (M2)®k N ((D®k)®m)®k ~ p®kmk_

™

By
o: = p®k,
We have

[1 (o™ cb(1(M2)®k)]

(32.2) _
322 . [(1(D®k)®m—go(1M2)>®1 ((Dm)@m)@"]

W k. [w(em@k@l em-n®1

(0°%) ((a@k)@”)@(k_”]
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< [¢(1M2)®k®1(9®(km—1))®k

(1;1) [@(e11)®*]

= [®(e11)]
InWw (((D®k)®m)®k). From [220] we now see that there is a unital
x-homomorphism

0 Zykpkyy = pRkmk ~ p,

Since k was arbitrary, by [206] this implies that D is Z-stable.
Corollary(3.2.10)[212]: The Jiang—Su algebra is the uniquely determined (up to iso-
morphism) initial object in the category of strongly self-absorbing C*-algebras (with unital
*-nomomorphisms).
Proof: By Theorem (3.2.9), the Jiang—Su algebra does embed unitally into any strongly self-
absorbing C*-algebra, so it is an initial object. If D is another initial object, then Z and D
embed unitally into one another, whence they are isomorphic by [222].
Sometimes an object in a category is called initial only if there is a unique morphism to any
other object; this remains true in our setting if one takes approximate unitary equivalence
classes of unital x-homomorphisms as morphisms, see [222], [214], [215], [216], [217] and
[218].
Corollary (3.2.11)[370]: Let A, be a unital C*-algebra, 0 < g, < 1,..
Then, forany 0 # n € N, we have

z (1A§’”_ g?”)ZZ (1AT_ gr)®gr®...®gr
£ 0 ® (L, - 0)® 6 ®..0 g

+) 9, ®..® gr ® (s, — g
Proof: The statement is trivial for n = 1. Suppose now we have shown the assertion for
some 0 # n € N. We obtain

z (1A§(n+1) _ g;@(n‘i'l)) = Z (1A§n ® 9r — g?n ® Jr + 1A§n ® (1Ar - gT‘))

r r

=), <(1A;®" = 92")® gr + Len ® (L, - gr))

ZZ ((1Ar_ gr)® Ir ®® gr)® Ir

+3 (9 ® (1~ 9)® 9 ®..® 6,)® r

+Z(gr ®® Ir ® (1Ar_ .gr))® 9r
+07" ® (La, = 9p),
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where for the inequality we have used our induction hypothesis as well as the fact that
Yr Lon ® (1o, — 9r) = X 92" ® (14, — g,). Therefore, the statement also holds
forn + 1.

Corollary(3.2.12)[370]: Let D,. be strongly self-absorbing, 0 < d, < 1p.
Then, forany 0 # k € N,

Z (1o — d®¥] < Kk - Z [(1p, = dr) ® 1psa-] in W (D)

T r
Proof: The assertion holds trivially for k = 1. Suppose now it has been verified for some
k € N. Then,

> 1o, = a2 ) =D [1p0e ® (1, = ) + 1o ® dp — d¥* @]

r

< z [1D§k ® (1p, — d)] + [(123;8’" N dr®k)® 1DT]
< z [(1Dr - d)® 1,0k ] + k- [(1Dr —-d)® Lyswn & 1_‘Dr]

=zr: (k+1) - [(h)r_ dr)® 11)?"]

r
(using that D,. is strongly self-absorbing as well as our induction hypothesis for the second
inequality), so the assertion also holds for k + 1.
Corollary(3.2.13)[370]: Let D be strongly self-absorbing and let0 < f, < g, < 14 be
positive elements of D satisfying 1, — g, # 0and ), f,.9, =X fr-
Then, thereis0 # n € N such that

> 1) e - 9T (057),

T T
Proof: Since D issimple and 1, — g, # 0, thereisn € N such that

[fr] < n - [1p— g/l
Then,

DU =) (o= g) @ f ®..® f]

T

:2 (1p—9) ® f, .0 f]+...+ Z[f; ®..Q f ® (Ip — gr)

=

=Z (0= 9) ®f; ®..Q fi+..+/ ®..Q fr ® (Ip— g,)]

T

<) [Up=9) ® g ®-® gr+.t9r .8 g, ® (Ip— g,)]
< Z [1pen — g™,

T
where for the first equality we have used that D is strongly self-absorbing, for the second

equality we have used that the terms are pairwise orthogonal by our assumptions on f,. and
gy, and the last inequality follows from Proposition (3.2.1).
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Chapter 4
Descriptive Set Theory and Unitary Equivalence

We deduce that AF algebras are classifiable by countable structures, and that a
conjecture of Winter for nuclear separable simple C*-algebras cannot be disproved by
appealing to known standard Borel structures on these algebras. We study that the
automorphisms of any separable C*-algebra that does not have continuous trace are not
classifiable by countable structures up to unitary equivalence.

Section (4.1): C*-Algebra Invariants

The classification theory of nuclear separable C*-algebras via K-theoretic and tracial

invariants was initiated by G. A. Elliott ca. 1990. An ideal result in this theory is of the
following type:
Let C, be a category of C*-algebras, C, a category of invariants, and F: C; — C, a functor.
We say that (F, C,) classifies C; if for any isomorphism ¢: F (4) —» F(B) there is an
isomorphism @: A — B such that F(®) = ¢, and if, moreover, the range of F can be
identified.

Given A,B € C;, one wants to decide whether A and B are isomorphic. With a
theorem as above in hand (see Elliott and Toms [259] or Rgrdam [269]), this reduces to
deciding whether F(A) and F(B) are isomorphic; in particular, one must compute F(B)
and F(B). What does it mean for an invariant to be computable? The broadest definition is
available when the objects of C; and C, admit natural parameterizations as standard Borel
spaces, for the computability of F(e) then reduces to the question “Is F a Borel map?”” The
aim is to prove that a variety of C*-algebra invariants are indeed Borel computable, and to
give some applications of these results.

The main results are summarized informally below.

Theorem (4.1.1)[257]: The following invariants of a separable C*-algebra A are Borel
computable: the (unital) Elliott invariant EII(A) consisting of pre-ordered K - theory, tracial
functionals, and the pairing between them;

the cuntz semigroup cu(4);

the radius of comparison of A4;

the real and stable rank of 4;

the nuclear dimension of A4;

the presence of Z - stability for 4;

the theory th(A4)of A.

Proving that the Elliott invariant and the Cuntz semigroup are computable turn out to
be the most involved tasks.

A classification problem is a pair (X, E') consisting of a standard Borel space X, the
(parameters for) objects to be classified, and an equivalence relation E, the relation of
iIsomorphism among the objects in X. In most interesting cases, the equivalence relation E
Is easily definable from the elements of X and is seen to be Borel or, at worst, analytic; that
is certainly the case here. To compare the relative difficulty of classification problems (X, E)
and (Y, F), we employ the notion of Borel reducibility:

One says that E is Borel reducible to F if there is a Borel map ©: X — Y with the property
that
xEY < 0(x)FO(Y).
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The relation F is viewed as being at least as complicated as E. The relation E is viewed as
being particularly nice when F -classes are “classifiable by countable structures”.
Equivalently (12), the relation E is no more complicated than isomorphism for countable
graphs. Theorem (4.1.1) (i) entails the computability of the pointed (pre-)ordered K, -group
of a unital separable C*-algebra. As isomorphism of such groups is Borel-reducible to
isomorphism of countable graphs, we have the following result.
Theorem (4.1.2)[257]: A Falgebras areclassifiable by countable structures.
In order to classify nuclear separable C*-algebras using only K -theoretic and tracial
Invariants, it is necessary to assume that the algebras satisfy some sort of regularity property,
be it topological, homological or C* -algebraic (see [8] for a survey). This idea is
summarized in the following conjecture of Winter and the second author.
Conjecture (4.1.3)[257]: Let A be a simple unital separable nuclear and infinite-
dimensional C*-algebra. The following are equivalent:
(i) A has finite nuclear dimension;
(if) A is Z-stable;
(iii) A has strict comparison of positive elements.
Combining the main result of [195] with that of [16] yields (i)= (ii), while Rgrdam proves
(if)= (iii) in[270]. Partial converses to these results follow from the successes of Elliott’s
classification program. Here we prove the following result.
Theorem (4.1.4)[257] The classes (i)- (iii) of conjecture (4.1.3) from Borel sets.
Therefore the classes of C*-algebras appearing in the conjecture have the same descriptive
set theoretic complexity.
We recall two parameterizations of separable C* -algebras as standard Borel spaces;
establishes the computability of the Elliott invariant; We consider the computability of the
Cuntz semigroup and the radius of comparison; the Appendix deal with Z-stability, nuclear
dimension, the first-order theory of a C*-algebra in the logic of metric structures, and the
real and stable rank.
In [262], we introduced four parameterizations of separable C*-algebras by standard Borel
spaces and proved that they were equivalent.
Let H be a separable infinite dimensional Hilbert space and let as usual B(H) denote the
space of bounded operators on H. The space B(H) becomes a standard Borel space when
equipped with the Borel structure generated by the weakly open subsets. Following [265],
we let
[(H)=BH)",

And equip this with the product Borel structure. For each y € I'(H) we let C*(y) be the C*-
algebras generated by the sequence y. If we identify each y € I'(H) with C*(y), then
naturally I'(H) parameterizes all separable C*-algebras acting on H. Since every separable
C*-algebra is isomorphic to a C*-subalgebra of B (H) this gives us a standard Borel
parameterization of the category of all separable C*-algebras. If the Hilbert space H is clear
from the context we will write I" instead of I (H). We define

y = y' & C*(y)is isomorphicto C*(y").
Let Q(i) = Q +iQ denote the complex rationals. Following [265], let ( p;:j € N)
enumerate the non-commutative *-polynomials without constant term in the formal
variables Xy, k € N, with coefficients in Q(i), and for y € I" write p;(y)for the evaluation
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of p; with X;, =y (k). Then C*(y) is the norm-closure of {p;(y):j € N}. The map I' -
I':y — y where 7 (j) = pj(,) is clearly a Borel map from I" to I'. If we let
) I (H) = {p:y € [(H)},
then I' (H) is a standard Borel space and provides another parameterization of the C*-
algebras acting on H ; we suppress H and writ” whenever possible. Fory € ['lety €I be
defined by
Fm) =y & piX, )
and note that I’ — I':y + ¥ is the inverse of I' - I':y = ¥ we let =~ be defined by
y ~Te C*(y) is isomorphic to C*(y").
It is clear from the above that I" and I are equivalent parameterizations.
An alternative picture of I" (H) is obtained by considering the free (i.e., surjectively
universal) countable unnormed Q (i)-*-algebra 2. We can identify 2 with the set {p,:n €
N}. Then
y(H) = {f: A > B(H): f is a * Bhomomorphism} to C*(f")
is easily seen to be a Borel subset of B(H)¥. For f € IyletC*(f). be the norm closure of
im(f), and define
f =T f' = C*(f)is isomorphic C*(f").

Clearly, the map I - Iy v f, defined by f, (p;) = y(j) provides a Borel bijection
witnessing that I” and [ are equivalent (and therefore they are also equivalent to I.)

If we instead consider the free countable unital unnormed Q (i)-+-algebra 2 and let

fmu(H) = {f: A B(H): f is unital * homomorphism},
then this gives a parameterization of all unital separable C*-subalgebras of B(H). Note that
A, may be identified with the set of all formal *-polynomials in the variables X; with
coefficients in Q (i) (allowing a constant term).
We introduce a standard Borel space of Elliott invariants. We prove that the computation of
the Elliott invariant of C*(y) is given by a Borel-measurable function. The Elliott invariant
of a unital C*-algebra A is the sextuple (see [268], [269]).
Ko(A), Ko(AD*, [14]0), K1 (A), T(A),14: T(A) = S(Ko(A)).

Here, K,(A4),K,(A)",[14],) is the ordered K, -group with the canonical order unit,
K, (A)isthe K, -group of A, and T (A4)is the Choquet simplex of all tracial states of A. Recall
that a state ¢ on a unital C*-algebra A is tracial if ¢(ab) = ¢(ba) for all a and b in A.
Finally, r,: T(A4) - S(KO(A)) is the coupling map that ssociates a state on K,(A) to every
trace on A. Recall that a state on an ordered Abelian group is a positive homomorphism
f:G — (R, +) and that the Murray-von Neumann equivalence of pro jections p and g in A
implies ¢(p) = ¢(q) for every trace ¢ on A.

As usual, identify n € N with the set {0, 1,...,n — 1}. Forn € N U {N}, let

Sm) = {f:n* > n: (vi,j,k e )f(i,f G, K)) = fF(F @), k)}

Note that S(N)is closed when NN” is given the product topology, and that if for f € S(n)
and i,j € n we define i ., j as f (i,)), then ., gives n a semigroup structure. The space
S(n)may therefore be thought of as a Polish space parameterizing all countable semigroups
with underlying setn € N U {N}. We let S'(n) = S(n) X n, and think of elements (f,i) €
S'(n) as the space of semigroups with a distinguished element i.
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The subsets of S(n) (respectively S’ (n)) consisting of A be semigroups, groups and
Abelian groups form closed subspaces that we denote by S,(n),G(n) and G,(n)
(respectively S’ ,(n),G'(n) and G’ ,(n).

The isomorphism relation in S(n),S,(n),G(n) and G,(n), as well as the corresponding
“primed” classes, are induced by the natural action of the symmetric group Sym (n). These
are very special cases of the logic actions, see [145].

We also define the spaces G,.q (n) andG’,.q (n) of ordered Abelian with a distinguished
order unit, in the sense of Rodman [269]. The space G,.q (1) consists of pairs
(f,X) € G5(n) X P(n) such that if we define for x,y € n the operation x+,y = f(x,y)
and x < xy © y+¢(—x) € X, then we have X+,X € X,—-XNX ={0}andX — X = n.
The space G’ o4 (1) consists of pairs ((f, X),u) € Gorq (n) X n satisfying additionally the
conditions

(Hu €X;

(i) for all x € n there is k € N such that —ku < xX < xku.

From their definition it is easy to verify that G,.q (N) and G',.q (N) form Gg subsets of
G,(N) x P(N) and G,.q(N) x N, and so are Polish spaces.

Define G,.q and G',.q to be the disjoint unions

Gora = ]_[ Gora(m) and G' g = L[ G'orq (n)
neNU{N} neNU{N}
and give these spaces the natural standard Borel structure. Similarly, define the standard
Borel spaces S, S,, G and G, and their primed counterparts to be the disjoint union of their
respective constituents.

Recall that a compact convex set K is a Choquet simplex if for every point x in K
there exists a unique probability measure p supported by the extreme boundary of K that
has x as its barycentre. Every metrizable Choquet simplex is affinely homeomorphic to a
subset of AN, with A= [0, 1].

For every C*-algebra A the space T'(A) of its traces is a Choquet simplex. In case
when A is separable it can be identified with a compact convex subset of the Hilbert cube
AN. In [262] it was shown that all Choquet simplexes form a Borel subset of the F(AVY)).
Astate on ordered Abelian group with unit (G,G*,1) is a homomorphism ¢: G — R such
that ¢[G*] € R*and ¢(1) = 1. For every n € N U {N} the set Z,of all ((f,X,w)¢) €
G'ora (n) X R™ such that ¢[X] € RY, p(w) = 1 And (£ (i, ))) = ¢ (@) + () for all i, j
is clearly closed. By [262], the map states: G',.q (n) = R™ such that States(f, X, u) of Z,
at (f, X, u)is Borel.

Recall that K., denotes the compact metric space of compact convex subsets of AN,
Lemma (4.1.5)[257]: There is a continuous map ¥: K,y — C(AN, AN ) such that W(K) is
a retraction from AN onto K for all K € K.qpy-

Proof: Identify AN with [T,[— 1/n, 1/n] and consider the compatible £, metric d, on AN,
Consider the set

7= {(K,x,y):K € Keonv, X € AN,y € Kandd, (x,y) = Zlglg dz(x,z)}

Since the map (K, x) = inf,cxd,(x,z)is continuous on {K € K.,ny: K # @}, this set is
closed. Also, for every
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K, x there is the unique point y such that (K, x,y) € Z (e.g., [266]). By compactness, the
function x that sends (K, x) to the unique y such that (K, x, y)(K, x,y) € Z is continuous.
Again by compactness, the map ¥ (K) = {(x,y): (K,x,y) € Z}is continuous for K €
Keonv, € N U {N}, and (f, X, u) € G',.q (n) let Pairing (f, X, ) be the set of all h: AN—
R™ such that there exists a continuous affine function h': K — States (X, f,u) such that
with ¥ as in Lemma (4.1.5) the following diagram commutes

i U(K) QN

h' /

R'i’l

Again the set of all (K, (f,X,u), h) as above is closed and by [262] the map Pairing is
Borel.++ Gy, G, T, .
Definition (4.1.6)[257]: The space Ell of Elliott invariants is a subspace of

G’ ord X Gg X Keony X C(AN.A™)
neNU{N}

consisting of quadruples Gy, G,,T,r where Gy € G',-q,G; € G4, T € Kiony IS @ Choquet
simplex, and r € Pairing(T, G,). By the above and [262], the set Ell is Borel and therefore
it is a standard Borel space with the induced Borel structure.
We say that two such quadruples( Gy, G, T,r)and ( G,',G,', T',r") in Ell are isomorphic if
Gy = Gy, G, = G, and there is an affine isomorphism a: T — T’ such that we have # [ T o
r=r"oal T', where #:S(G,) = S(G,") corresponds to some isomorphism n: G, = G,'.
This is clearly an analytic ceequivalen relation.
The isomorphism relation defined above is clearly analytic and it corresponds to the
isomorphism of Elliott invariants. The rest contains the proof of the following theorem.
We will start by showing:
For a C*-algebra A, let ~, denote the Murray-von Neumann equivalence of projections in
A. Therefore, p ~4 q if there is v € A such that vv* = p and v*v = q. Note that p ~4 g
implies ¢ (p) = ¢(q) for every trace ¢ of A. If A is clear from the context we will simply
write ~. Also, following the usual conventions, for a,p € B(H) we write a@®ba for the
element

(‘3 2) e M,(B(H)).

For the next Lemma, recall from [262] the Borel function projections j: I' — I" which
computes, for each y € T, a sequence of projections that are dense in the set of projections
in C*(y).
Lemma (4.1.7)[257]: (i) The relation r, € ' X N x N defined by
n(y,mn) & proj(y)(m)~C*(y)proj(y)(n)

is Borel.
(i1) The re’lation Y, € T' X N X N X N defined by

r(y,m,n k) < proj(y) m)@proj(y) (M)~M,(C* ())proj () (k) DO
is Borel.
Proof: To see (i), note that
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n(y,mn) & @Rlpk)pk()* = proj(y) M)l < 5 A llpk() pk(y) —

proj(y) ()|l < =.
For (ii), note that for m,n, k € N the maps I' > M,( B(H))

y = proj(y)(m)® proj(y)(n)and y = proj(y)(k)® 0
are Borel by farah et al. [262]. Thus,

ry(m,n k) & @0)||pi(Mo))pi (M ()" = proj(y) (m)@proj(y) ()|

1 . _ 1
< 7 MIp(M2(3))pi(M2 () = proj(») ()& 0f| < 7
gives a Borel definition of r,.
Proposition (4.1.8)[257]: There is a Borel map K, ,,: I, = G’ such that

Kou@) = (Ko(C*1)" . [Lpo]o)

for all y.
Proof. Note in Lemma (4.1.7) that for each y € I}, (1), = {(m,n) € N}:ry (y, m,n)
defines an equivalence relation denoted on N. Let B, € I, (n € N U {o0}) be the setof y €
I" such that (ry),, has exactly n classes. Then (B,,) is a Borel partition of I;,.. On each B, we
can find Borel functions o,,;: B, = N, (0 < i < n),selecting exactly one pointin each (r;),,-
class. ldentifying n € N with the set {0,...,n— 1}, let V, (y) (wherey € B,)) be the
semigroup on n defined by

i+j=konr(y,0,,1),0,;0) )00 ()
By Farah et al. [255] there is a Borel map y: I" - I' such that C*(y(y)) = C*(y)®X. We
define V(y) = Vo(lp(y)) and note that this gives us a Borel assignment B,, — S(n) of
semigroup structures on n. The K, group of C*(y)is then the Grothendieck group
constructed from V(y) with the order unit being the unique i €n such that
0n,i(¥) ~y u(y), and so the proof is complete once we prove the next Lemma.
Lemma (4.1.9)[257]: There is a Borel map S, —» G,.q associating to each Abelian
semigroup (defined by) f € S, the Grothendieck group constructed from f.
Proof: It is enough to construct a Borel S,(n) — G,.4 as required for each n € N U {N}.
We follow the description of the Grothendieck group given in [6]. Defining

P={(f, (i) (k)€ sy xn*xn? @Am)i+si+; + m = k+7j+,m},
we have that Pr is an equivalence relation on n? for all f € S,. Write S,(n) as a disjoint
union of Borel pieces By (k € N U {N})such that f € By if and only if P, has exactly k
classes. We can then find on each piece B, Borel functions selecting an element in each P¢

class, and from t selecti on the Grothendieck group of f can be defined on k in a Borel way.
Corollary (4.1.10)[257]: There is a Borel map K,: T = G,.q such that

Ko@) = (Ko(C* ), K& (C* ) )
Proof: By Farah et al [262] the unitization C*(y) of C*(y)is obtained via a Borel function,
and by the above proof so is K|, (é*(y)). Then K,C*(y) is isomorphic to the quotient of
K, (C*(y))by its subgroup generated by the image of the identity in C*(y).
Proposition (4.1.11)[257]: There is a Borel map K;: I' = G such that
Ki(y) = K (C* ()
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for all y.

Proof: By Bott periodicity, K,;C*(y) = K, (C ((0,1),A4)) and by [262] and Proposition
(4.1.8) the right-hand side can be computed by a Borel function.

Theorem (4.1.12)[257]: There is a Borel map EII:T, — Ell such that Ell (y) is the Elliott

invariant of C*(y), forall y € T.

Proof. The computation of K -theory is Borel by Proposition (4.1.8) and Proposition
(4.1.11) By Farah et al. [262], the computation of the tracial simplex T(y) = TC*(y)is
Borel as well. Since ¢ € T(y)is identified with a continuous map on a dense subset of
C*(y), by restricting this map to Proj (y) and then composing with the embedding of
Proj (y) into K, (y) we obtain the restriction of the coupling map ¢+, to the positive part
of K,(y).The coupling map is now canonically extended to K,(y).

[262] defined an alternative space of Choquet simplexes and showed that it is weakly
equivalent to the more straightforward one used above.
We show that the Cuntz semigroup of a separable C*-algebra is Borel computable, as is a

related invariant, the radius of comparison. The relevance of the Cuntz semigroup to C*-
algebra classification was demonstrated in [271], where it was used to distinguish simple
unital separable nuclear C* -algebras with identical Elliott invariants; see also [108]. We
review the basic properties of Cuntz semigroups below, see [164].

Let A be a C*algebra. Define on (A ® X). a pinary relation by letting a < b if and
only if v,bv,, — a for some sequence v, in A ® K. Let us write a~b ifa S band b < a.

In this case, we say that a is Cuntz equivalent to b. Let Cu (A) denote the set (A Q@ K),/~
of Cuntz equivalence classes. We use [a] to denote the class of a in Cu(A). It is clear that
[a] < [b] & a < b defines an order on Cu(A). We also endow Cu (A) with an addition
operation by setting [a] + [b] := [a’ + b'], where a’ and b’ are orthogonal and Cuntz
equivalent to a and b respectively (the choice of a’ and b’ does not affect the Cuntz class of
their sum).

The semigroup Cu (A)is an object in a category of ordered Abelian monoids denoted by Cu,

a category in which the relation of order-theoretic compact containment plays a significant
role, see [258]. Let T be a preordered set with x,y € T. We say that x is compactly
contained in y—denoted by x « y—if for any increasing sequence y,in T with supremum
y, we have x <y, forsome n, € N. An object S of Cu enjoys the following properties:

(P1) S contains a zero element;

(P2) the order on S is compatible with addition: x; + x, < y; + y, whenever x; < y;,i €
{1,2}

(P3) every countable upward directed set in S has a supremum;

(P4) the set x. = {y € S |y « x} is nonempty and upward directed with respect to both <
and <, and contains a sequence (x,,) such that x,, «< x,,,, for everyn € N and sup,x,, =
X;
(P5) the operation of passing to the supremum of a countable upward directed set and the
relation <« are compatible with addition: if S; and S, are countable upward directed sets in
S, then S; + S, is upward directed and sup(S; + S,) = supS; + supS,, and if x; < y; for
i €{1,2},thenx; + x, K y; + y,.

Here we assume further that 0 < x for any x € S. This is always the case for Cu(A).For S
and T objects of Cu the map ¢: S — T is a morphism in the category Cu if
(M1) ¢ preserves the relation <;
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(M2) ¢ is additive and maps 0 to 0;

(M3) ¢ preserves the suprema of increasing sequences;

(M4) ¢ preserves the relation <.

Definition (4.1.13)[257]: Let S € Cu. A countable subset D of S is said to be sup-dense if
each s € S is the supremum of a <« -increasing sequence in D. We then say that S is
countably determined. (Here by <« we mean the relation«
on D inherited from S,i.e.,d; < d, inD iffd; < d, InS.)

Definition (4.1.14)[257]: Let Cu, denote the category of pairs (S,D) where S is a
countably determined element of Cu, and D is a distinguished sup-dense subset of S which
IS moreover a semigroup with the binary operation inherited from S. We further assume D
to be equipped with the relations < and « inherited from S.

An element x of S € Cu such that x «< x is compactly contained in itself, or briefly
compact. If (§,D) € Cu, then D automatically contains all compact elements.

Let C be the space of triples (@D, s, <) in NV*N x P(N x N) x P(N x N) with the
following properties:

(i) (N,®, S, ) is an ordered semigroup under the order < (we will use a, b, c, etc. to
represent elements of the semigroup);

(if) « isatransitive antisymmetric relation with the property that a << b and ¢ < d implies
a®c K bdd;

(ili) a < b implies a < b;

(iv) for each a in the semigroup, there is some b « a, and if a does not satisfy a « a, then
the set of all such b is upward directed and has no maximal element.

(Warning: « here is not defined in terms of < as in our discussion of the Cuntz semigroup,
but rather is just some other relation finer than <. It will coincide with the Cuntz semigroup
definition in the case that an element of C really is a sup-dense subsemigroup of an element
of the category Cu.) We can define amap @: Cu, — C in an obvious way: send (S, D) to the
triple @, <, < corresponding to D (D = {d,,;: n € N} is the ordered semigroup on N defined
by m@&n =kifand only ifd,,, +d,, = dy,m Snif and only if d,,, S d,, and m LK n if
and only if d,,, < d,,).

If D € C, we let D” denote the set of «-increasing sequences in D. Define an equivalence
relation on = on D” by

(xn) = () © (Vm)@An)xy, K ¥, and y, K Xy,

Equip D7 with the relations

() <7 () © (Y)(@EM)x, < Yy
and
() <7 () © @M (V)X S Vi
Note that
() 7 ) A Om) <7 () © (x0) = ()
Define (x,)®” (v,) = (x,,®y,,) and set
W(D)=D"/~ and W(S) =57/~

Note that the operation @ and the relations <” and «” drop to an operation + and relations

< and «< on W (D), respectively.
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If (S,D) in Cuy, then the semigroup D is an element of the category Pre Cu introduced in
[100], and S is a completion of D in Cu in the sense of [100]. An appeal to [100] shows that
S, too, is a completion of D in Cu, whence
wWD)= W) =S

In Cu.

Let y be the Borel space of all functions from N to the Baire space N". Since a € y
is amap from N - N¥ and the elements of C have N as the underlyingset, ifD, and D, in C
are fixed then a € y codes a map from D, to DN. We shall identify a with this map
whenever D, and D, are clear from the context. The set of all triples (D,, D,, a ) such that
the range of « is included in D5 is a closed subset of C2 x y. To each D € C, we associate
amap nD:D — D” (or simply n if D is clear from the context) as follows: Select, in a Borel
manner, a sequence nD(a) = (a,) which is cofinal in {b € D |b «< a}. The association
D - nD isthen Borel. If f: W (D,) = W(D,) is a semigroup homomorphism preserving <
and «< and a € y, then we say that a codes F if [@ (a)]F[n (a)] for all a € D,. Note that
really codes the restriction of F to n(D,),but, as we shall see, F is completely determined
by this restriction if W (D,)and W (D,) are in the category Cu.
Lemma (4.1.15)[257]: Let (S,D) € Cu,. Then (a,,) <7 (b,) in D7 if and only if [a,] <
[b,] in W(D) = S, where « is the relation of order-theoretic compact containment
inherited from the relation < on S.
Proof: suppose first that(a,,) <” (b,,), and fix m, such that a,, < by, for all n.We must

prove that if, for fixed j, (C;}) € D7, and if moreover[C;] is a < Bincreasing sequence in j
with supremum [b,,], then [(a,)] < [C,{"’] for some j, € N. first we recall (see the proof of
the existence of suprema in inductive limits of cuntz semigroups in [258]) that for such
(¢}), there is a sepuence of natural numbers (n;) with the property that (C1) ~ (by,). In

particular,there is j, such that b « C,{;?O. Since (C/°) € D7, we have
(C2) = (by) ay K by, < C,{jo

forall n € N, and so (a,,) «” (€.°). This implies[(a,)] < [C;°]as required.

For the converse, assume that [a,] < [b,,].Since b,, < b,,,1, we know that for any
element of the sequence n(b,,), there is an element of the sequence n(b,,,,) that «-
dominates it, so that [n(b,,)] < [(bm+1)] There is also, for given m, and element of the
sequence n(b,,+)that <-dominates b,,,. (These two assertions follow from property (4) in

the definition of C.) It follows that for some sequence m;, we have [n(bf)m,- ] = [ (bp)]-

dentifying 77(b;) with (C;))from the first part of the proof and observing (see again
the proof of existence of suprema in inductive limits of Cuntz semigroups in [258]) that the

n; chosen above can be increased without disturbing the fact (Cj ) ~ (bn)we see that by
increasing the m;if necessary, we also have that sup;[n(b;)] = [n(b;) [ (b)) It

follows that [n(b;, )] = [(a,,)] for some j,, whence a,, «< b;, for all n, as requwed

Lemma (4.1.16)[257]: Let (S,D) € Cu,y. Then a K b |n D if and only if [ (a)] K
[n(b)eW (D)=S
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Proof: By Lemma (4.1.15), it will suffice to prove that a «< b iffn (a) «” n (b) in D”.
Suppose first that a «< b, so that (n (a);) and ( (b),,)are «<-increasing sequences in D
with suprema a and b, respectively (this uses several acts: that D is embedded in S €
Cu;that objects in Cu admit suprema for increasing sequences; and that S may be identified
with W (S)). Since a < b,there is mysuch that n (b),, = a = n (a); for all i and for all
m = m,, as required.

Conversely, suppose that n(a) «<” n(b), so that there is m, such that n (a); < n (b),, for
allm > m,. Now

supn (@); =a <N (D) KN (D)m+1 < D.
l

so that a «< b.
Lemma (4.1.17)[257]: Let (S,D) € Cuq. Then (a,,) <~ (b,) in D” if and only if [a,] <
[b,] iInW(D) = S.
Proof: Suppose that (a,) <’ (b,,). It follows that for each n € N there is m(n)such that
anbm(n) < bm(n)+1-
The statement [(a,,)] < [(b,,)] amounts to the existence of (c,) € D” such hat (a,) = (c,,)
and (c,,) <” (b,,). Here we can take (c,,) = (a,), completing the forward implication.
Suppose, conversely, that [(a,)] < [(b,)], so that there is some (c,) € D” such that
(a,) = (cp)and (c¢,) < (b,).Since (a,)and (c,)are cofinal in each other with respect to «
, it is immediate that (a,,) <7 (b,).
Lemma (4.1.18)[257]: Let (S,D) € Cuy.Then a < b in D if and only if [n(a)] < [n(b)]in
W(D) = S.
Proof: By Lemma (4.1.17), it is enough to prove that a < b iff n(a) <" n(b) in
D7 .Suppose first that. a < b. The sequence (n(a),,),being cofinal with respect to «< in {c €
D | ¢ < a}, has a supremum in S, namely, a itself. A similar statement holds for b. For any
n € N, we have n(a),, < a, and supn(b),, = b = a. It follows that n(b),,, » n(a), for
all m sufficiently large, whence [n(a)] < [n(b)], as desired.
Suppose, conversely, that n(a) <” n(b) in D”. Since sup n(a),, = a,supn(b),, = b, and
for reach n there is m such that n(a),, < n(b),,, it is immediate thata < b in S.
Using methods similar to those of Lemmas (4.1.15)- (4.1.18) one can also prove the
following result.
Lemma (4.1.19)[257]: Let (S, D) € Cu,. Then the following are equivalent:
a®b = cin D;
n(@)®”"n(b) =n (c)]in D”;
(iii) [n(@)] + [n(b)] = [n (©)] in W (D).
Lemma (4.1.20)[257]: Let D;, D,, € C be sup-dense subsemigroups of elements of Cu. If «
codes a homomorphism @: W (D,) - W(D,), then for a, b € D, we have:
a S b implies (Vvm)(3n)a(a),, < a(b),;
a < b implies (3n)(Vvm)a(a),, S a(b),;
a(a)®a(b) (defined pointwise) satisfies a(a)®@a(b) = a(a®b).
Conversely, if a has properties (i)- (iii), then
(Y:n(Dy) /=) = D, » W(D,)
To see that < is preserved by & on W(D,), consider [(b,)] < [(c,,)]. Passing to
subsequences we can assume that b, < c; for every k. Then by property (ii) and Lemmas
(4.1.15) and (4.1.16) we have
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[a(bi)] < [alce)] =>k511p[a(bk)] < Sl;p[a(ck)] = Y[(b)] < P[]

We shall now define an analytic equivalence relation on C which, for sup-dense
subsemigroups of elements of Cu, amounts to isomorphism. Consider the standard Borel
space C? x y 2. In this space consider the Borel set y consisting of all quadruples
(D4, D,, a4, ;) such that
(i) @, and a, satisfy the (Borel) conditions (i)- (iii) of Lemma (4.1.17);

(ii) (Va € D,)(Vb € D,) we have

a1(a) <7 n(b) © n(a) K az(b)
and

n(b) «” a;(a) © a,(b) <’ n(a).
It is straightforward to verify that the conditions above define a Borel subset of C? x
y2, whence y is a standard Borel space. Now define a relation E on C by

DiE D; & (3ay,az) (D1, Dy, a1, a3)ex

whence E, as the co-ordinate pro jection of y onto €2, is analytic.

Proposition (4.1.21)[257]: Let D, D, € C be sup-dense subsemigroups of elements of Cu.
It follows that D, E' D,iff W(D;) = W(D,)in the category Cu.
Proof: Assume W(D,) = W(D,)and let ¢: W(D,) —» W (D,) be an isomorphism. Pick a;
that codes ¢ and a, that codes ¢~1, so that a; and a, have the properties (i)- (iii) of
Lemma (4.1.20). For (ii) in the definition of X, we will only prove the first equivalence, as
the second one is similar. By Lemma (4.1.15), the first equivalence in (i) is equivalent to

(Va € D1)(Vb € D;)[a;(a)] K [n(b)] & [n(a)] K [az(b)] -
Suppose [a, (a)] « [n(b)], so that

¢ a1 (a)] < ¢~ n(b)]

(morphisms in Cu preserve «). Since a, codes ¢~1,the right hand side above can be
identified with [a, (b)]. Similarly, ¢ "*[a;(a)] = ¢ 1¢p[n(a)] = [n(a)], sothat [ n(a)] K
[a,(b)]. The other direction is similar, establishing (ii) from the definition of X, whence
D,E D,.

Now assume (D,,D,, a;,a,)ex for some a; and a,. Using Lemma (4.1.20) we
obtain homomorphisms ¢,: W (D,) —» W(D,)and ¢,: W (D;) - W(D,). Let us verify that
¢, © ¢, = idW(D,) (the proof for that ¢, © ¢, = idW(D,) is similar). Fix [ (f,)] €
W (D,). Since a » [ n(a)] is a complete order embedding of D; into W (D,) relative tos
and<« by Lemma (4.1.15), we have [(f,, )] = sup[n (f,)]- Since ¢, preserves <, we have a

n

corresponding <« -increasing sequence ¢4 [n(f,)] = [a(f, )],i € N (see Lemma (4.1.20)).
Choose a «- increasing sequence [n(b;)] in W(D,) with supremum ¢ [(f,, )], and note
that this is also the supremum of the sequence [a,(f, )]. Since W(D,) € Cu we may,
passing to asubsequence if necessary, assume that

[n(b)] < [y (f)]land[a; (f;)] < [n(biy1)] -
Using (ii) in the definition of X and the relations above we obtain

[a2(b))] < [n(f)]and[n(f)] < [az(bit1)],
so that the sequences [a,(b;)]and [n(f;)] have the same supremum, namely, [ (f;)]. Now
we compute:

(20 P[] = (P20 ¢y) Sll%p[U(fi )]
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= (sgp[az(ﬁ- )])

= (sgp[n(ﬁ- )])
= [ )]

Recall the following well-known lemma.
Lemma (4.1.22)[257]: For any strictly decreasing sequence €, of positive tolerances
converging to zero, the sequence ((a — €,,),) <-increasing in Cu(A).

In some cases, for example when a is a pro jection, the sequence in the Lemma is eventually
constant, that is, (a) is compact. This occurs, for instance, when a < (a — €), for some € >
0.

Proposition (4.1.23)[257]: There is a Borel map y:I" > C such that W(y(y)) =
Cu(C*(y)).
Proof: Fix y, € I" such that C*(y,) is the algebra of compact operators and a bijection
between N2 and N. Moreover, choose y, so that all operators in y, have finite rank and y,
is closed under finite permutations of a fixed basis (e, ) of H. We also fix a sequence of
compact partial isometries v,,,, such that v,,, swaps the first m vectors of (e,,) with the next
m vectors of this basis. This sequence will be used in the proof of Claim (4.1.25).
Let y denote the Borel map from I' to I" obtained as the composition of three Borel maps:
Tensor (:, y,), where Tensor is the Borel map from [262]; the map y — (an(y)) (see [262]);
and finally the map that sends (a,,) to (b,) where

b = (G Bro(y) =1/m(m)) &

(here n » (my(n),m;(n)) is the fixed bijection between N and N?2).

Fix y € I'. Then y, Tensor (y, y,) satisfies C*(y)®¥K = C* Tensor (y,y,) Moreover, for
any two positive entries a and b if y, there are orthogonal positive a’ and b’ in y, such that
a~a' and b~b'. (Here ~ denotes Cuntz equivalence.) If y, = (pn(yl)), then the elements

of y, are norm-dense in C*(y,) = C*(y)®X, and y, contains y; as a subsequence. Finally,
If y5 is the sequence as in (1), then y; is a norm-dense set subset of the positive elements of
C*(y)QXK. Let us write d,,,(y) := (y3)m) and x,,(y) := (y,)n.
Claim (4.1.24)[257]: The map I' —» P (N)?:y %= R[ <, y], defined by

(m,n) € R[S, ylifand only ifd,, (y) 2 d,, ()
(where < is computed in C*(y;) = C*(y)®X is Borel.
Proof: Recall that a map is Borel if and only if its graph is Borel. We have

(writing dy, for d,,, (¥) and x, for x,,(y)) (m,n) € R[ <,y] if and only if
DGl - dnll < 17,
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Therefore, the graph of Y is equal to N; U; A;; where all of these sets are Borel since the
maps y ~ d,,(y) and y » d,,(y) are, by the above, Borel. The map that sends the pair of
sequences x;and d; to R[<, y]is therefore Borel. The computation of these two sequences

from y is Borel by construction, and this completes the proof. I' - P(N)3:y it R[+,y],
By Claim (4.1.24), for each y we have a preordering R[<, y]on N. Then

R[~,y] ={(m,n): (m,n) € R[S, y] and (n,m) € R[S, y]}
Is also a Borel function, and it defines a quotient partial ordering on N for every y. In what
follows we use [a] to denote the Cuntz equivalence class of a positive element of C*(y).

Claim (4.1.25)[257]: the map / TP(N)3:y s R[+, y], defined by
(m,n, k) € R[+,ylifand only if [d,,] + [d,,] = [d]

(where + is computed in (Cu(C*(y)))) is Borel. Moreover, it naturally defines a semigroup
operationon N/R[~,y ].

Proof: Fix y. Let us first prove that the sequence d,,, := d,,, () is such that for all m and n
there is k satisfying [(d,,,) | + [d,, ] = [dk ]. Our choice of generating sequence y, for K
ensures that each d,,, is contained in C*(y)®M,, for some n, where M; € M, € M5 - - - iS
a fixed sequence of matrix algebras with union dense in K. The M,, are the bounded
operators on span (e, ..., e,). By construction y, is closed under finite permutations of the
basis (e,,), so that for a large enough [ the isometry v; (see above) we have that d,,
= (1Q®v,)d,,,(1®v;) * is both Cuntz equivalent to d,, and orthogonal to d,,. Here the "1”
in the first tensor factor is the unit of C*(y)
if C*(y)is unital, and the unit of the unitization of C*(y) otherwise. Note that w,
:=d,,(1®v;)belongs to C*(y)®XK and that w,d,,w; = d3, is cuntz equivalence to and
orthogonal to d,,,. It follows that

ld, + wldmwf] = [d,] + [wldm(‘)f] = [d,] + [din]-

By the defininition of the function Tensor in [262], for all | we have w,d,,w; = d,)and
d, +d = dy for some (1) and k(D).

Now we check that the graph of ¥, is Borel. This is equivalent to verifying that the graph
of the function that maps each triple (y, m,n) to the set X,, , ,, of all k such that (m, n, k) €
Y, (y) is Borel. Moreover, a function A from a Borel space int (N)is Borel if and only if
all of the sets {(y, k): k € A (y)} are Borel.

It will therefore suffice to check that the set { (y, (im,n, k)): (im,n, k) € Y, (y)}is Borel.
But by the above, (m,n, k) € Y, (y) is equivalent to (writing d,,, for d,,(y))

Am)(Vl =2 m)d,, + w,d,,,w; ~d.
where ~ is the Cuntz equivalence relation: a ~ b iffa < b and b < a. This is a Borel set,
and therefore the map vy is Borel.

Clearly, ¥, (y) is compatible with <and it defines the addition on N/R[~, y] that coincides
with the addition on the Cuntz semigroup.

Claim (4.1.26)[257]): Themap I' » P (N)?y » R[<,y], defined by

(m,n) € R[«, ylifand only if [d,,,] < [d,]

(where <« is computed in Cu( C*(y))is Borel.

Proof: We have [d,,] < [d,] if and only if there exists j € N such that d,, < (d,, —
1/))+ [164].

Recalling that d (d, —1/j), for all n and j, we see that is equivalent to

n(nj) =
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@) (m,w(nj)) € R[S, y]
and therefore the map is Borel.
Collecting these three claims we see that the map which sends y to an element of C
representing Cu( C*(y))—call it &—is Borel.
The radius of comparison is a notion of dimension for noncommutative spaces which is
useful for distinguishing simple nuclear C*-algebras and is connected deeply to Elliott’s
classification program (see [259], [108]).
Consider the standard space C,, = C X N, where the second co-ordinate of (D,e) € C,,
represents a distinguished element of D. Let Cu,, denote the category of Cuntz semigroups
with a distinguished compact element. It is straightforward, by following the proof of
Proposition (4.1.23), to verify that there is a Borel map y:I;, —» C, such ¥(y) =

(D,|1¢+»]), where D is (identified with) a countable sup-dense subsemigroup of
cu(C*(y)).
If (S,e) € Cu,, then the radius of comparison of S (relative to e), denoted by r (S, e), is
defined by r (S,e) = inf{m/n | m,n € NAx <y in Swhenever (n + 1)x + me < ny}
if this infimum exists, and by (S, e) = oo otherwise. Of course, this definition makes sense
for any ordered semigroup with a distinguished element e, for example an element (D, e) of
C % N, so we can equally well define r (D, e) in the same way.
Proposition (4.1.27)[257]: Let (S,e) € Cu,, and let D €S be a countable sup-
subsemigroup of S containing e. It follows that, with respect to the common element
e,r(S,e) =r(D,e).
Proof: We suppress the e and write only r(D)and r(S). It is clear that (D) < r(S). Given
e > 0, we will prove r(S) < rD + €. Choose m,n € N to satisfy
r(D)<m/n<r(D)+e€
Let x,y € S satisfy
(n+1) X +me < ny.
There are rapidly increasing sequences (x;) and (y;) in D having suprema x and y,
respectively. Since e is compact, so is me, that is me « me. Since (n + 1)x; K (n+ 1)
for any k, we can use the fact that addition respects <« to conclude that
(n+ 1Dx, + me K (n+ 1)x + me < ny.
It follows that
(n + 1)x;, + me <K ny.
Since the operation of addition respects the operation of taking suprema, we have sup ny, =
ny, whence for some (and hence all larger) [, € N, we have
(n+ Dx;, + me < nyy,.
Now since m /n > r(D) we conclude that X, <Y,. Taking suprema yields X <Y,
proving that r(S) < m/n > r(D) + ¢, as desired.
Proposition (4.1.28)[257]: The map rc:I;, > RT U{o} given by rc(y)=
r(Cu(C* ™)), [Ic+]) is Borel.
Proof: The map y: I, — C, is Borel and satisfies 7(y(y)) = r (Cu (C* (), [1¢+¢y 1) by
Proposition (4.1.27). It will therefore suffice to prove that r: C, = R U {0} is Borel. For
m,n € N the set
Apn{(D,e) € Cyl(vx,y €eD)(n+ Dx+me <ny = x < y}
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is Borel. Define a map &,,:C, » R*U{co} by declaring that ¢, ,(D,e)=
m/nif(D, e)eA,, ,andé,, ,(D,e) = o otherwise. Viewing the ¢, , as co-ordinates we
obtain a Borel map é:C, » (RtuU {oo})Nz in the obvious way, and (D,e) =
infé (D, e).This shows that r is Borel, as desired.

Unlike other invariants of C*-algebras treated, the theory Th (A) of a C*-algebra A
comes from logic. By the metric version of the Keisler—Shelah theorem [256], it has the
property that two C*-algebras have isomorphic ultrapowers Itrafilters on uncountable sets,
even if the algebras in question are separable. A comprehensive tr if and only if they have
the same theory. It should be emphasized that the ultrapowers may have to be associated
with ultrafilters on uncountable sets, even if the algebras in question are separable. A
comprehensive treatment of model theory of bounded metric structures is given in [256],
and model-theoretic study of C*-algebras and tracial von Neumann algebras was initiated in
[260], [261].

We now give a special case of the definition of a formula ([261]) in the case of C*-
algebras (cf. [261]). A term is a x_polynomial. A basic formula is an expression of the form
lp(xo, ..., xn—1)|lWhere p(x,...,x,—1) iS a term in variables x,,..., x,_,. Formulas are
elements of the smallest set F that contains all basic formulas and has the following closure
properties (we suppress free variables in order to increase readability).

(F1) If f:R™ - R is continuous and ¢4,..., ¢, are formulas, then f(@4,...,0,) IS a
formula.

(F2) If ¢ isaformula, K = N is a natural number, and x is a variable then both sup),<x ¢
and inf}, <k ¢ are formulas.

Equivalently, formulas are obtained from basic formulas by finite application of the
above two operations.

The quantifiers in this logic are sup <1 and infy,<; A variable appearing in a
formula ¢ outside of the scope of its quantifiers (i.e., any ¢ as in (F2)) is free.

As customary in logic we list all free variables occurring in a fornula ¢ and write
©(xg,...,Xp_1).- A formula ¢ (x,,...,x,_1). IS interpreted in a C* -algebra A in a natural
way. Given a,,...,a,_; in A, one defines the value ¢(a,,...,a,_1)? recursively on the
complexity of formula ¢. As a,,...,a,_; vary, one obtains a function from A™ into R
whose restriction to any bounded ball of A is uniformly continuous ([261]). A sentence is a
formula with no free variables. If ¢ is a sentence then the interpretation ¢4 is a constant
function and we identify it with the corresponding real number. Theory of a C*-algebra A is
the map ¢ — @4 from the set of all sentences int R.

The above definition results in an uncountable set of formulas. However, by
restricting terms to *_polynomials with complex rational coefficients and continuous
functions f in (F1) to polynomials with rational coefficients, one obtains a countable set of
formulas that approximate every other formula arbitrarily well. Let S, denote the set of all
sentences in this countable set. Clearly, the restriction of Th (A) to S, determines Th (A4)
and we can therefore consider a closed subset of RS to be a Borel space of all theories of
C*-algebras.

Proposition (4.1.29)[257]: The function from I into RS¢ that associates Th(C*(y)) toy €
I is Borel.
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Lemma (4.1.30)[257]: Given a formula ¢(x,,...,x,-1), the map that associates

<p(yk(0),...,yk(n_1))c 102 pair (y, k) € [ x N™ is Borel.

Proof: By recursion on the complexity of ¢. We suppress parameters Y (y)x,, ..., X, for
simplicity. If ¢ is basic, then the lemma reduces to the fact that evaluation of the norm of a
x-polynomial is Borel-measurable. The case when ¢ is of the form f (¢,,..., @,—1) asin
(F1) and lemma is true for each ¢; is trivial.

Now assume ¢ is of the form sup <k (¥) with K = 1. Function t;: R — R defined by
t(r) =r,ifr < Kandt(r) = 1/rifr > K is continuous, and since

Q¢ = SUPien YklyilDyo),
AS

we conclude that the computation of ¢ is Borel as a supremum of countably many Borel
functions. The case when ¢ is in infj,; <, (y) is similar.

We note that an analogous proof shows that the computation of a theory of a tracial von
Neumann algebra is a Borel function from the corresponding subspace of Effros—Mar echal
space into RS,

The stable rank sr (A) of a unital C*-algebra A is the least natural number n such that

n
Zbiai — 1A < 1}

i=1
Is dense in A™, if such exists, and oo otherwise. The real rank rr (A) is the least natural

number n such that
n
z biai —_ 1A < 1}

1=1
where A, denotes the self-adjoint elements of A. Again, if no such n exists, we say that

rr(A) = oo,

Theorem (4.1.31)[257]: The maps SR: ' - N U {co} and RR:I' = N U {0} given by
SR(y) = sr(C*(y)) and RR(y) = rr(C*(y)), respectively, are Borel.

Proof: We treat only the case of SR (e); the case of RR (e) is similar. We have

2.

Forfixed i; < i, < - <i,andj; <j, <- <j, theseton the left hand side is norm open
in all co-ordinates B(H)N = T, and hence Borel. The theorem follows immediately.

The Jiang-Su algebra Z plays a central role in the classification theory of nuclear separable
C*algebras. Briefly, one can expect good classification results for algebras which are Z-
stable, i.e., which satisfy AQZ = A (see [259] for a full discussion). We prove here that the
subset of I" consisting of Z-stable algebras is Borel.

It was shown in [264] that Z can be written as the limit of a C*-algebra inductive sequence
®1 ¢2 ¢s3

an,n1+1 - an,nz‘l'l — Zn3,n3+1 — Y

L, = {(al, ., y) € A" 3by4, ...., b, € Asuch that

Lgy%. = {(al, ey Qpyq) € AMFY3ADy, ..., b, € Aggsuch that

C*(y) €Ly, © (Vi,<iy <-in)(Fj1 <jp <+ <Jn):

Where
Zn,n+1 = {f € C([O, 1];Mn®Mn+1)|f(0) € Mn®1n+1:f(1) € 1n®Mn+1}
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is the prime dimension drop algebra associated to n and n + 1. The property of being Z-
stable for a C* -algebra A can be characterized as the existence, for each n, of a sequence of
*_homomorphisms ¥.: Z,, ,+1 — A with the property that

I (F), X1l = 0,Yf € Zy 41, Vx € A.
The algebra Z,, ,,+; was shown in [264] to admit weakly stable relations, i.e., there exists a
finite set of relations R,,in [ (n) indeterminates with the following properties:
(i) the universal C*-algebra for R, is Z,, ;1.
(ii) for every € > 0 there exists §(e) > 0 such that if g,,...,g; () are elements in a C*-
algebra A which satisfy the relations R,, to within & (€), then there exist hy,..., h; ) € A
which satisfy the relations R,, precisely and for which ||g; — h;|| < e.
What is really relevant for us is that if g, ,...,g; () are elements in a C* -algebra A which
satisfy the relations R,, to within 6 (¢), then there is a x_homomorphism n:Z, ,,,1 = 4
such that the indeterminates for R, are sent to elements e -close to g;,...,gimn),
respectively.
Using the equivalence of the parameterizations I" and I” for separable C*-algebras, we may
assume that the sequence y in B(H)N giving rise to C*(y) is in fact dense in C*(y).The Z-
stability of C*(y) for y = (a;);ey 1S then equivalent to the following statement:
(Vk)(vn)(Vj) (EI (il, o) il(n)))such that a;q,...,a;myarea § (1/k)Brepresentation of R,
and|| [a;s, am]ll < 1/k foreachs € {1,...,l(n)}andm € {1,...,j}.
If we fix k,n,j and (i, ..., ij))itis clear that those y € I for which (a;4, ..., A, (n)) Satisfy
the latter two conditions above form a norm open and hence Borel set. This theorem follows
immediately:
Theorem (4.1.32)[257]: {y € ' | C* (y) is Z- stable} is Borel.
A completely positive map @: A — B between C* -algebras has order zero if it is
orthogonality preserving, in the sense that for positive a, b in A we have ab = 0 implies
¢(a)p(b) =0
A C*-algebra A has nuclear dimension at most n if the following holds. For every € > 0, for
every finite F € A, there are finite-dimensional C*-algebras B;,..., B, and completely

positive maps y: A — Dis Y: A - such that

M) ||Yed(a)—al| <eforalla €F,

(i) [yl < 1, and

(iii) ¢ T Bi has order zero for every i < n.

The nuclear dimension of A, denoted dimnuc 4,is the minimal n (possibly o) such that A
has nuclear dimension < n (see [196]).

The proof of the following theorem is based on Effros’s proof that nuclear C*-algebras form
a Borel subset of I" (see [265]).

Theorem (4.1.33)[257]: The map dim,.: " = N U {oo} is Borel.

Proof: It suffices to check that the set of all y such that dimnuc(C *(y)) < nis Borel. Let
M., (A*)denote the space of n X n matrices of the elements of the Banach space dual of A,
naturally identified with the space of bounded linear maps from A into M,,(C).We consider
this space with respect to the weak™ topology, which makes it into a K, Polish space.
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As demonstrated in [265], there isa Borel map Y:I' x n — (Mn(A*))N such that Y’ (y,n)
enumerates a dense subset of the (weak™-compact) set of completely positive maps from A
into M,,(C). Note that order zero maps form a closed subset of the set of completely positive
maps, and the proof from [265] provides a Borel enumeration of a countable dense set of
completely positive order zero maps.

Again as in [265], we use the fact that a map ¥ from M,,(C)to A is completely positive if
and only if ¥(x;;) X;,x; a;; where (a; ;) is a positive element of M,,(4) of norm < 1.
By Farah et al.[262] there is a Borel function 5: T — (I' ™™)N such that Z(y) is an
enumeration of a countable dense set of such (a; ;).

Inspection of (i) (iii)in the definition of dim,,.(C*(y)) < n reveals that the verification
of these conditions is only required over countable subsets of the allowable ¢, vy, and a,
subsets which are computed in a Borel manner from y using the maps Y, =, and v itself,

respectively. It follows that the set of y for which dim,,.(C*(y)) < n is Borel.
Corollary (4.1.34)[370]: (i) The relation, € T X N x N defined by
n(y?—1Ln+en) < proj(y* — D(n+e)~C(proj(y* — ()
is Borel.
(i1) The re”lation Y, € T' X N X N X N defined by
(v —1,n+¢enk)

= proj(y* — D(n + €)@proj(y* — D(m)~M,(C*(y* — 1))proj(y?
— D (k)®0

is Borel.

Proof: To see (i), note that

n(?-1n+en) o @lpk(? - Dpk(y? - 1" —proj(y? — D(n + &)l <7 A
Ipk(y? — 1)"pk(y? - 1) — proj(y? - D)l < -.
For (ii), note that for n + €, n, k € N the maps I' - M,( B(H))
y? =1 o proj(y? — D(n + €)@ proj(y* — 1)(n)and y - proj(y* — 1)(k)® 0
are Borel by farah et al. [262]. Thus,
r,(n+¢€nk)

o @)||pi(M(y? = D)pi(M,(y* - 1))
— proj(y? — 1)(n + €)®proj(y* — D(n)|

1 x 1
<7 M (M2 = D)pi(M2(y? = 1)) = proj(y* - DS 0| < 7
gives a Borel definition of r,.
Corollary (4.1.35)[370]: There is a Borel map Ky: ' = G,.q such that

Ko? — 1) = (Ko(C* (% - D), K (C* (% - 1)),
Proof: By Farah et al [262] the unitization C*(y? — 1) of C*(y? — 1) is obtained via a
Borel function, and by the above proof so is K, (C‘*(y2 — 1)). Then K,C*(y? — 1) is

iIsomorphic to the quotient of K|, (5*(y2 — 1))by its subgroup generated by the image of
the identity in C*(y? — 1).
Corollary (4.1.36)[370]: Let (S,D) € Cu,. Then (a,,) <~ (a,, + €) in D7 if and only if
[a,] < [a,+€]inW(D) =S.
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Proof: Suppose that (a,) <~ (a, + €). It follows that for each n € N there is m(n)such
that

AnAm(n) + e K Am(n)+1 + €.
The statement [(a,)] < [(a, + €)] amounts to the existence of (a,, + 2¢) € D7 such hat
(a,) = (a, + 2¢) and (a, + 2¢) <7 (a,, + €). Here we can take (a, + 2¢) = (a,),
completing the forward implication.
Suppose, conversely, that [(a,,)] < [(a,, + €)], so that there is some (a,, + 2¢€) € D” such
that (a,) = (a, + 2¢)and (a,, + 2¢) < (a, + €).Since (a,)and (a, + 2¢)are cofinal in
each other with respect to <, it is immediate that (a,) <7 (a, + €).
Corollary (4.1.37)[370]: Let (S,D) € Cuy.Thena < a+€in D if and only if [n(a)] <
[n(a+¢e)]inW(D) = S.
Proof: By Lemma (4.1.17), it is enough to prove that € = 0 iff n(a) <" n(a+¢€) in
D7 .Suppose first that. a < a + €. The sequence (n(a),,),being cofinal with respect to « in
{a+2€€D|a+2e K a}, has a supremum in S, namely, a itself. A similar statement
holds for a + €. For any n € N, we have n(a),, < a,and supn(a+¢€),, =a+e=>a.lt
follows that n(a + €),, > n(a),, for all m sufficiently large, whence [n(a)] < [n(a +
€)], as desired.
Suppose, conversely, that n(a) <" n(a+¢) in D”. Since supn(a), = a,supn(a +
€)m = a + €, and follr each n there is m such that n(a),, < n(a + €),,, it is immediate
thate > 0in S.
Corollary (4.1.38)[370]: Let (Sj,e) € Cu, , and let D; €S; be a countable sup-
subsemigroup of S; containing e. It follows that, with respect to the common element
e,r(S]-,e) =r (Dj, e).
Proof: We suppress the e and write only r(D;)and r(S;). It is clear that r(D;) < r(S;).
Given € > 0, we will prove (S;) < rD; + €. Choose n + €,n € N to satisfy

7/‘(Dj)<n-|'(:'

" < r(Dj) +e€
Let x2,y? € S; satisfy

(n+1) X +(n+e)e < ny?
There are rapidly increasing sequences (x;) and (yz) in D; having suprema x? and y?,
respectively. Since e is compact, so is (n + €)e, that is (n + €)e < (n + €)e. Since xZ <
(n + 1) for any k, we can use the fact that addition respects « to conclude that

m+Dx2+(n+ee<Kn+1)x?+ (n+e)e <ny?.

It follows that

(n+ 1)xf + (n+ €)e K ny?.
Since the operation of addition respects the operation of taking suprema, we have
sup ny? = ny?, whence for some (and hence all larger) [, € N, we have

(m+ Dx2 + (n+e)e < nyf..
Now since nTJrE > r(D;) we conclude that X, < Y,,. Taking suprema yields X <Y, proving

that 7(S;) < == > r(D;) + €, as desired.
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Section (4.2): Automorphisms of Separable C*-Algebras

If Ais a separable C*-algebra, the group Aut(A4)of automorphisms of A is a Polish
group with respect to the topology of pointwise norm convergence. An automorphism of A
is called (multiplier) inner if it is induced by the action by conjugation of a unitary element
of the multiplier algebra M (A) of A. Inner automorphisms form a Borel normal subgroup
Inn(A) of the group of automorphisms of A. The relation of unitary equivalence of
automorphisms of A is the coset equivalence relation on Aut(A)determined by Inn(A). The
main result presented here asserts that if A does not have continuous trace, then it is not
possible to effectively classify the automorphisms of A up to unitary equivalence using
countable structures as invariants; in particular this rules out classification by K-theoretic
invariants. (The K-theoretic invariants of C*-algebras were shown to be computable by a
Borel function in [257]. Even though [257]. does not consider the K -theory of
*_homomorphisms, it is not difficult to verify that the proof can be adapted to show that the
computation of K-theory of x-homomorphisms is given by a Borel functor. The main
ingredient of the proof is the fact that one can enumerate in a Borel fashion dense sequences
of projecti ons and of unitary elements of the algebra and of all its amplifications [254].) We
will show that the existence of an outer derivation on a C*-algebra A is equivalent to a
seemingly stronger statement, that we will refer to as Property AEP (see Definition (4.2.11)),
implying in particular the existence of an outer derivable automorphismof A.

The notion of effective classification can be made precise by means of Borel
reductions in the framework of descriptive set theory (see [264] and [259]). If E and E' are
equivalence relations on standard Borel spaces X and X respectively, then a Borel reduction
from E to F is a Borel function f: X — X'such that for every x,y € X, xEyif and only if
f(xX)E'f (y). The Borel function f witnesses an effective classification of the objects of X
up to E, with E'-equivalence classes of objects of X’ as invariants. (In [254] and [257] the
computation of most of the invariants in the theory of C*-algebras is shown to be Borel.)

If E and F are, as before, equivalence relations on standard Borel spaces, then E is Borel
reducibleto F if there is a Borel reduction from E to F. This can be interpreted as a notion
that allows one to compare the complexity of different equivalence relations. Some
distinguished equivalence relations are used as benchmarks of complexity. Among these are
the relation =, of equality for elements of a Polish space Y, and the relation ~, of
isomorphism within some class of countable structures C. If E is an equivalence relation on
a standard Borel space X, we say that:

(@) E is smooth (or the elements of X are concretely classifiable up to E) if E is Borel
reducible to =, for some Polish space Y;

(b) E is classifiable by countable structures (or the elements of X are classifiable by
countable structures up to E) if E is Borel reducible to ~,.for some class C of countable
structures.

A nontrivial example of smooth equivalence relation is the relation of unitary equiva-
lence of irreducible representations of a Type | C*-algebra — see [100]. Since all
uncountable Polish spaces are Borel isomorphic to R, the class of smooth equivalence
relations includes only the equivalence relations that are effectively classifiable using real
numbers as invariants. The class of equivalence relations that are classifiable by countable
structures is much wider. In fact most classification results in mathematics involve some
class of countable structures as invariants. Elliott's seminal classification of AF algebras by
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the ordered Kygroup in [161] is of this sort, as well as the K-theoretical classification of
purely infinite simple nuclear C*-algebras in the UCT class obtained by Kirchberg and
Phillips in [289] and [193]. In the last decade a number of natural equivalence relations
arising in different areas of mathematics have been shown to be not classifiable by countable
structures. For example the type of invariants that appears in the spectral theorem for normal
operators transcend countable structures by a result of Kechris and Sofronidis [263]. The
theory of turbulence, developed by Greg Hjorth in the second half of the 1990s, plays a key
role in the proof of this and of many other analogous results.

Turbulence is a dynamic condition on a continuous action of a Polish group on a
Polish space, implying that the associated orbit equivalence relation is not classifiable by
countable structures. Many nonclassifiability results were established directly or indirectly
using this criterion. Hjorth showed in [260] that the orbit equivalence relation of a turbulent
Polish group action is Borel reducible to the relation of homeomorphism of compact spaces,
which in turn is reducible to the relation of isomorphism of separable simple nuclear unital
C*-algebras by a result of Farah, Toms and Tornquist [254]. As a consequence these
equivalence relations are not classifiable by countable structures.

We use Hjorth's theory of turbulence to prove the following theorem. (See Definition
(4.2.3) for the notion of continuous trace C*-algebra.)

Theorem(4.2.1)[278]: If A is a separable C*-algebra that does not have continuous trace,
then the automorphisms of A are not classifiable by countable structures up to unitary
equivalence.

Theorem(4.2.1) strengthens , where the automorphisms of A are shown to be not
concretely classifiable under the same assumptions on the C*-algebra A. We will in fact
show that the same conclusion holds even if one only considers the subgroup consisting of
approximately inner automorphisms of A4, i.e. pointwise limits of inner automorphisms.

A particular implication of Theorem (4.2.1) is that it is not possible to classify the
automorphisms of any separable C*-algebra that does not have continuous trace up to
unitary equivalence by Borel-computable K-theoretic invariants. This should be compared
with the classification results of (sufficiently outer) automorphisms up to other natural
equivalence relations, such as outer conjugacy; see [244]. Nakamura showed in [244] that
aperiodic automorphisms of Kirchberg algebras are classified by their KK-classes up to
outer conjugacy. Theorem 1.4 of [239] asserts that there is only one outer conjugacy class
of uniformly aperiodic automorphisms of UHF algebras. These results were more recently
generalized and expanded to classification of actions of Z2and Z" up to outer conjugacy or
cocycle conjugacy (see [294], [293], [287], and [295]).

Phillips and Raeburn obtained in [85] a cohomological classification of automorphisms of
a C*-algebra with continuous trace up to unitary equivalence. Such classification implies
that if A has continuous trace and the spectrum of A is homotopy equivalent to a compact
space, then the normal subgroup Inn(A)of inner automorphisms is closed in Aut(A); see
[60]. In particular (cf. [100]) this conclusion holds when A is unital and has continuous trace.
It follows from a standard result in descriptive set theory —see [259] — that the
automorphisms of A are concretely classifiable up to unitary equivalence if and only if
Inn(A)is a closed subgroup of Aut(A). Theorem 0.8 of [60] and Theorem (4.2.1) therefore
imply the following dichotomy result:
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Theorem(4.2.2)[278]: If A is a separable unital C*-algebra, then the following statements
are equivalent:

(i) the automorphisms of A are concretely classifiable up to unitary equivalence;

(i1) the automorphisms of A are classifiable by countable structures up to unitary equiv-
alence;

(iif) A has continuous trace.

More generally the same result holds if A is a separable C*-algebra with (not necessarily
Hausdorff) compact spectrum. Without this hypothesis the implication 3 = 10of Theorem
(4.2.2) does not hold, as pointed out in [60]. We do not know if the implication 3 = 2 holds
for a not necessarily unital C*-algebra A. This is commented on more extensively.

In particular Theorem (4.2.2) offers another characterization of unital C*-algebras that have
continuous trace, in addition to the classical Fell-Dixmier spectral condition (see [57], [282])
or the reformulation in terms of central sequences by Akemann and Pedersen; see [1].

The dichotomy in the Borel complexity of the relation of unitary equivalence of au-
tomorphisms of a unital C*-algebra expressed by Theorem (4.2.2) should be compared with
the analogous phenomenon concerning the relation of unitary equivalence of irreducible
representations of a C*-algebra A. It is a classical result of Glimm from [286] that such a
relation is smooth if and only if A is Type I It was proved in [267] and, independently,

C_ _uon wntmuuus lJ'. ce o

Property yes no
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Property outer only inner
AEP derivation
X - S

derivations
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nonelerment ary
direct summand

SN S central
C__ nonclassification > nonhypercentral
I sequence

Fig. (1)[278]: Proof strategy. This diagram illustrates the strategy of the proof of Theorem
(4.2.1).

In [283] that the irreducible representations of a C*-algebra that is not Type I are in fact not
classifiable by countable structures up to unitary equivalence.

The strategy of the proof of Theorem (4.2.1), summarized in Fig. (1), is the following: We
first introduce in Definition (4.2.11) and (4.2.16) Properties AEP and AEP* , named after
Akemann, Elliott, and Pedersen since they can be found in nuce in their works [1] and [64].
(The main result of [64] is a characterization of C*-algebras with only inner derivations as
direct sum of simple C*-algebras and C*-algebras with no nontrivial central sequence [64].
Theorem 2.4 of [1] shows that a C*-algebra is does not have any nontrivial central sequence
if and only if it has continuous trace.) We then show in Proposition (4.2.17) that Property
AEP™ is stronger than Property AEP; moreover by Theorem (4.2.20) Property AEP is
equivalent to the existence of an outer derivation, and by Lemma (4.2.10) it implies that the
conclusion of Theorem (4.2.1) holds.

117



This concludes the proof under the assumption that the C* -algebra A has an outer
derivation. We then assume that A does not have continuous trace and has only inner
derivations. Using the already mentioned characterization of C*-algebras with only inner
derivations from [64] and the characterization of continuous trace C*-algebras in terms of
central sequences given in [1], we infer that in this case A has a simple nonelementary direct
summand. We then deduce in Proposition (4.2.25) that A contains a central sequence that is
not strict-hypercentral. (A similar result was proved by Phillips in the unital case, cf. [298].)
The proof is finished by proving that the existence of a central sequence that is not strict-
hypercentral implies that the conclusion of Theorem (4.2.1) holds. This is done in
Proposition (4.2.26).

Contains some background on C*-algebras and introduces the notations used in the
rest; infers from Hjorth's theory of turbulence a criterion of nonclassifiability by countable
structures, to be applied in the proof of Theorem (4.2.1); establishes Theorem (4.2.1) in the
case of C*-algebras with outer derivations, while deals with the case of C*-algebras with
only inner derivations; present a dichotomy result for derivations analogous to Theorem
(4.2.2).

We have tried to equally accessible to both set-theorists and operator-algebraists. A

deep knowledge about operator algebras, see [297], [100], [83] and [296].
A C~-algebra is a norm-closed self-adjoint subalgebra of the Banach x_algebra B(H).of
bounded linear operators on some Hilbert space H. The group Aut(A).of automorphisms of
A is a Polish group with respect to the topology of pointwise convergence; see [60]. A C*-
algebra is called unital if it contains a multiplicative identity, usually denoted by 1. If A is
unital and u is a unitary element of A (i.e. such that uu* = u*u = 1), then

Ad(uw)(x) = uxu”

defines an automorphism Ad(u) of A. When A is not unital one can consider unitary
elements of the multiplier algebra of A. The multiplier algebra M (A)ofAis the largest unital
C* -algebra containing A as an essential ideal; see [100]. It can be regarded as the
noncommutative analog of the Stone-Cech compactification of a locally compact Hausdorff
space. The strict topology on M(A)is the locally convex vector space topology on
M(A) generated by the seminorm x & |lax|| + ||xa||[for a € A [100]. A positive
contraction b, of A is strictly positive if

1
aby - a

for every a € A[100]. If b, is any strictly positive contraction in A, then the strict topology
on M(A)can be equivalently defined as the locally convex vector space topology on A
generated by the single seminorm

x  |[|myx]|| + |lxby||. The multiplier algebra of a separable C*-algebra A is not norm
separable (unless A is unital, in which case M (A) coincides with A). Nonetheless the strict
topologyof M (A) is Polish and induces a Polish group structure on the group U (A4)of unitary
elements of M(A). If u is a unitary multiplier of A, i.e. an element of U(A), then one can
define as before the automorphism Ad(u)of A. An automorphism of A is called innerif it is
of the form Ad(u)for some unitary multiplier u, and outer otherwise. Inner automorphisms
of a separable C*-algebra A form a Borel normal subgroup of Aut(u). Two automorphisms
a and Bof A are called unitarily equivalent « o S~ 1is inner or, equivalently,
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a(x) = B(uxu®)
for some unitary multiplier u and every x GA. This defines a Borel equivalence relationon
Aut(u).
A representationof a C*-algebra A on a Hilbert space H is a *_homomorphism from Ato the
C*-algebra B(H)of bounded linear operators on H; see [100]. Two representations m, ' of
Aon Hilbert spaces H, H'are unitarily equivalentif there is a surjective linear isometry
U: H — H'such that
Un(a) =n'(a)U
for every a € A. A representation n of A on a Hilbert space H is called irreducibleif there
IS no nontrivial closed subspace of H which is m(a)-invariant for every a € A. The
spectrum A of a separable C*-algebra A is the space of unitary equivalence classes of
irreducible representations of A on a separable Hilbert space [83]. This is canonically
endowed with the hull-kernel topology, which is the topology having as open basis the
collection of sets of the form

0, ={lf] € A:1  Ker(m)}

for some closed ideal I of A. In general this topology has very poor separation properties,
and can even fail to be T,. Aclosed ideal of A is primitive if it is the kernel of an irreducible
representation of A. A C*-algebra A is called primitive if {0} is a primitive ideal in A, i.e. A
has a faithful irreducible representation. The primitive spectrum Aof A is the space of
primitive ideals of A endowed with the quotient topology from the canonical surjection
A- A

[] = Ker(m).
An element x of a C*-algebra A is abelianif the closure of x*Ax in A is a commutative
subalgebra.
Definition(4.2.3)[278]: A separable C*-algebra A has continuous trace if it is generated by
abelian elements, and the spectrum A endowed with the hull-kernel topology is a Hausdorff
space.
Equivalent reformulations of the notion of continuous trace C*-algebras can be found in
[100]. The class of C*-algebras that do not have continuous trace is fairly large, and in
particular includes all C*-algebras that are not Type I. (A C*-algebra A is Type | if every
nonzero quotient of A contains a nonzero abelian element. Several equivalent
characterizations of Type | C*-algebras are listed in [100].) More information about C*-
algebras with continuous trace can be found in the monograph [299].

We assume all C*-algebras to be norm separable, apart from multiplier algebras and
enveloping von Neumann algebras. If A is a C*-algebra, then the universal representation
m,, 0f A is the direct sum of all cyclic representations of A associated with states of A [83].
The enveloping von Neumann algebra of A is the closure of m, [A]in the strong operator
topology. It is a well known theorem (see [83]) that the enveloping von Neumann algebra
of A is isometrically isomorphic — as a Banach space —to the second dual of A. We will
therefore denote in the following by A™ the enveloping von Neumann algebra of A. The o-
weak topology on A** coincides with the weak™ topology of A** regarded as the dual
Banach space of A*. The algebra A can be identified with a o-weakly dense subalgebra of
A™*.Moreover by [83] we can identify the multiplier algebra M (A) ofAwith the idealizer of
A inside A**;i.e. the algebra of elements xsuch that xa € A and ax € A for every a € A.
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Analogously, the unitization A of A [100] is identified with the subalgebra of M(A)
generated by A and 1.

If xis a normal element of 4, i.e. commuting with its adjoint, and f is a complex-valued
continuous function defined on the spectrum of x, then f(x) denotes the element of A
obtained from x and f using functional calculus (11.2 of [100]). If x, yare element of a C*-
algebra, then [x,y]denotes their commutatorxy — yx; moreover if Sis a subset of a C™-
algebra A4, then S’ n Adenotes the relative commutantof S in A; see [100]. The set N of
natural numbers is supposed not to contain 0. Boldface letters t and sindicate sequences of
real numbers whose n-th terms are t,,and s,, respectively. Analogously x stands for the
sequence (x,,),enOf elements of a C*-algebra A.

Recall that a subset A of a Polish space X has the Baire property [264] if its symmetric
difference with some open set is meager. A function between Polish spaces is Baire
measurable [264] if the inverse image of any open set has the Baire property. Observe that,
in particular, any Borel function is Baire measurable. Suppose that E and R are equivalence
relations on Polish spaces X and Y, respectively. We say that E is generically R-ergodic if,
for every Baire measurable function f: X — Y such that f (x)Rf (y) whenever xEy, there is
a comeager subset C of X such that f(x)Rf (y) for every x,y € C[259]. Observe that if E
is generically R-ergodic and no equivalence class of E is comeager then, in particular, E is
not Borel reducible to R.

The study of Borel complexity of equivalence relations is Hjorth's theory of
turbulence. See [260]. Turbulence is a dynamical property of a continuous group action of
a Polish group G on a Polish space X; see [260]. The main result about turbulent actions is
the following result of Hjorth (Theorem 3.21 in [260]):

The orbit equivalence relation E} associated with a turbulent action G ~ X of a
Polish group G on a Polish space X is generically ~.-ergodic for every class C of count-
able structures, where =~ denotes the relation of isomorphism for elements of C.Since (by
definition of turbulence) EF hasmeager equivalence classes, it is in particular not
classifiable by countable structures.

This result is valuable because it allows one to obtain several nonclassification results.
In order to apply such result it will be useful to first state and prove the following to easy
lemmas:

Lemma(4.2.4)[278]: Suppose that E, F, and R are equivalence relations on Polish spaces
X,Y,and Z, respectively, and that F is generically R-ergodic. If there is a comeager subset
C of Y and a Baire measurable function f:C — K such that:

(a) f(x)E(y) for any x,y € C such that xFy;

(b) f(C) is comeager in X for every comeager subset C of C;
then the relation E is generically R-ergodic as well.
Proof: Suppose that g: X — Zis a Baire measurable function such that g(x)Rg(x") for any
x,x' € X such that xEx'. The composition g of is a Baire measurable function from C to
Z such that (g of)(¥)R(g of )(y")for any y,y’ € C such that yEy'.. Since C is comeager
in Y, and F is generically R -ergodic, there is a comeager subset C of C such that
(gof)(¥)R(g of )(y")for every y,y' € C. Therefore, f[C]is a comeager subset of X such
that g(x)Rg(x")for every x,x' € f[C].

Observe that if f is continuous, open, and onto, then it will automatically satisfy the
second condition of Lemma (4.2.4).
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Lemma(4.2.5)[278]: Suppose that E and F are equivalence relations on Polish spaces X
and Y, respectively, and F is generically = C -ergodic for every class C of countable
structures. If there is a Baire measurable function f: Y — Xsuch that

(a) f(x)Ef(y) whenever xFy, and

(b) no preimage of an E-class is comeager,
then the relation E is not classifiable by countable structures.
Proof: Suppose by contradiction that there is a class C of countable structures and a Borel
reduction g: X — C of E to = The composition gof:Y — Cis a Baire measurable
function from Yto C such that (gof)(y) = C(g o f)(y')for any y,y' € Y such that yEy'.
Since F is generically =~ -ergodic, there is a comeager subset C of Y such that
(gof)(y) =c (go f)(y') for every y,y' € C. Therefore, being g a reduction of E to
~,f(Y)Ef(y")forevery y,y" € C. This contradicts our assumptions .
Consider RN as a Polish space with the product topology and #'as a Polish group with its
Banach space topology. The fact that the action of #2on RN by translation is turbulent is a
particular case of [260]. It then follows by Hjorth's turbulence theorem that the associated

orbit equivalence relation E]ﬁ{; Is generically =¢-ergodic for every class C of countable
structures. It is not difficult to see that the function f: (R \ {0}DN — (0, 1)N,defined by

F@ = (o
A\l +1)

satisfies both the first (being continuous, open, and onto) and the second condition of
Lemma (4.2.4), where:

. . 1 .
(a) F isthe relation E]f];Nof equivalence modulo #1of sequences of real numbers;

(b) Eis the relation EﬂélNof equivalence modulo #1of sequences of real numbers be-
tween 0 and 1.

It follows that the latter relation is generically = C-ergodic for every class C of countable
structures. Considering the particular case of Lemma (4.2.5) when F is the relation

Efol 1ynone obtains the following nonclassifiability criterion:
Criterion(4.2.6)[278]: If E is an equivalence relation on a Polish space X and there is a

Baire measurable function £:(0,1)N - X such that:

(a) fF(x)Ef(y)forany x,y € (0,1)N,such that x —y € £%;

(b) any comeager subset of (0, 1)N contains elements x, y such that then the relation E

Is not classifiable by countable structures.

In order to apply Criterion (4.2.6). we will need the following fact about nonmeager subsets
of (0, DHN:

Lemma(4.2.7)[278]: If X is a nonmeager subset of (0, 1)N,then there is an uncountable
Y < X such that, for every pair of distinct points t,s of Y, || s — t||e = i, where

It — slle = suplt, — sql.
. nenN
Proof: Define for every s € (0, 1),
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K, = {t € (0, 1)N|||t — 5|l < i}

Observe that Kis a closed nowhere dense subset of (0, 1)N. Consider the class A of subsets
Y of X with the property that, for every s,t inY distinct, ||s — t|| = %. If A is partially
ordered by inclusion, then it has some maximal element Y by Zorn's lemma. By maximality,

Xc U{s € (0, 1)N|||t — 5l < i}

tey
Since the set X is nonmeager, Y is uncountable.

The aim is to show that if a C*-algebra A has an outer derivation, then the relation of
unitary equivalence of approximately inner automorphisms of A is not classifiable by
countable structures. In proving this fact we will also show that any such C*-algebra satisfies
a seemingly stronger property, that we will refer to as Property AEP (see Definition
(4.2.13)).

A derivation of a C*-algebra A is a linear function

60:A—- A
satisfying the derivation identity:

6(xy) = 8(x)y + x6(y)
for x,y € A. The derivation identity implies that § is a bounded linear operator on A; see
[83]. The set A(A) of derivations of A is a closed subspace of the Banach space B(A) of
bounded linear operators on A. A derivation is called a *_derivation if it is a positive linear
operator, i.e. it sends positive elements to positive elements. Any element aof the multiplier
algebra of Adefines a derivation ad(ia)of A,by
ad(ia)(x) = [ia, x].

This is a *_derivation if and only if a is self-adjoint. A derivation of this form is called
inner, and outer otherwise. More generally, if a is an element of the enveloping von Neu-
mann algebra of A that derives A4, .ie. ax — xa € A for any x € A,then one can define the
(not necessarily inner) derivation ad(ia) of A. Since any derivation is linear combination of
*_derivations (see [83]), the existence of an outer derivation is equivalent to the existence

of an outer x_derivation. The set A,(A) of inner derivations of A is a Borel (not necessarily
closed) subspace of A(A). The norm on A,(A) defined by
llad(ia)llaya) = infflla — z|| |z € Z(4)},
where Z(A) denotes the center of A, makes A,(A) a separable Banach space isomet-rically
isomorphic to the quotient of A by Z(A) The inclusion of A,(A)in A(A)is continuous, and
the closure Ay(A)of Ay(A) in A(A).is a closed separable subspace of Ay(A) If § is a
*_derivation then the exponential exp(§)of &, regarded as an element of the Banach
algebra B(A)of bounded linear operators of A4, is an automorphism of A. Automorphisms of
this form are called derivable. If § = ad(ia)is inner then

exp(6) = Ad(exp(ia))
Is inner as well. Lemma (4.2.7) provides a partial converse to this statement. (The converse
is in fact false in general; see [42].) For more information on derivations and derivable
automorphisms, see[83].

122



Lemma(4.2.8)[278]: Suppose that A is a primitive C*-algebra. If § is a *_derivation of A
with operator norm strictly smaller than 27 such that exp(8) is inner, then § is inner.

The lemma is proved in [42] under the additional assumption that A is unital. It is not
difficult to check that the same proof works without change in the nonunital case.
Definition(4.2.9)[278]: Suppose that A is a C*-algebra, (a,),cy IS @ dense sequence in the
unit ball of 4, and x = (x,,),,ey IS @ Sequence of pairwise orthogonal positive contractions
of A such that foreveryn € N and i < n,

I, ]Il < 277 (1)
Since the x,, 's are pairwise orthogonal, if t is a sequence of real numbers of absolute value
at most 1, then the series
> e

neN
converges in the strong operator topology to a self-adjoint element of A**. Moreover, the

sequence of inner automorphisms

Ad | exp (i E(thn)>

k<N
neN

of A converges—in view of(1)—to the approximately inner automorphism

a; :=Ad | exp (i z (t, — sy )ty xn>

neN
The equivalence relation E, on (0, 1)N is defined by
SE.t iff a, and aiare unitarily equivalent.

Observe that this equivalence relation is finer than the relation of #1-equivalence in-
troduced. In fact if s,t € (0,1)N and s,t € £1, then the series

PNCEENES

neN
converges in A. It is then easily verified that

u:=exp (i Z(tn — Sn)xn>

neN
Is a unitary multiplier of A such that

Ad(w)oa, = a;.
Therefore, if the equivalence classes of E, are meager, the continuous function

(0, DN - Aut(4)

t— a;

satisfies the hypothesis of Criterion (4.2.6). This concludes the proof of the following
lemma:
Lemma(4.2.10)[278]: Suppose that A is a C*-algebra. If for some sequence x of pairwise
orthogonal positive contractions of A satisfying the commutation condition (1) the
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equivalence relation E, has meager equivalence classes, then the approximately inner
automorphisms of A are not classifiable by countable structures.
Lemma (4.2.10) motivates the following definition.
Definition(4.2.11)[278]: A C*-algebra A has Property AEP if for every dense sequence
(ap)nen In the unit ball of A there is a sequence x = (x,,),ey Of pairwise orthogonal
positive contractions of A such that:
) N[x, —a;lll <27™fori € {1,2,...,n};
(if) the relation E, as in Definition (4.2.9) has meager conjugacy classes.

It is clear that if a C*-algebra A has Property AEP, then A has an outer *_derivation. In
fact, if s,t € (0, 1)N are such that sE, t, then the self-adjoint element

a= (ta = s

neN

of A™ derives A. The automorphism Ad(exp(ia)) is outer, and hence such is the
*_ derivation ad(ia). The rest is devoted to prove that, conversely, if A has an outer
derivation, then A has Property AEP.

The following lemma shows that primitive nonsimple C*-algebras have Property AEP. The
main ingredients of the proof are borrowed from [64] and [1].

Lemma(4.2.12)[278]: If A is a primitive nonsimple infinite-dimensional C*-algebra, then
it has Property AEP.

Proof: Fix a faithful irreducible representation T : A - B(H). By [83] m extends to a o-
weakly continuous representation ©**: A** — B(H). Fix a dense sequence (a,)qen in the
unit ball of A and a strictly positive contraction b, of A. (Recall that a positive contraction
b, of A is strictly positive if

1
ab; — a
for every a € A [100].) As in the proof of [1], one can define a sequence x = (x,,) ey Of
pairwise orthogonal projections such that for some € > 0 and every k,n € N such that k <

n,
(@) llxpboll > &
(0) [lon , arll <277

Now suppose by contradiction that the equivalence relation E, has a nonmeager equivalence
class X. Thus for every t, s € X the automorphism

ay s = Ad| exp <i Z(tn — sn)xn>

neN

is inner. Fix t, s € X. Observe that a, ¢ is the exponential of the =_derivation

0¢ s = ad (i Z(tn — Sn)xn>.

neN
By Lemma (4.2.8) the =_derivation &,  is inner. Thus, there is an element z, ; of the center

of the enveloping von Neumann algebra of A such that
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Z(tn - Sn)xn + Zt s € M(A)

neN

Recall that = has been extended to a o-weakly continuous representation 7**: A** - B(H)
by [83]. The image of a central element of A** under =** belongs to the relative commutant
of m[A] in B(H), which consists only of scalar multiples of the identity by [100]. Thus,

Y <Z (tn - Sn)xn> en” [M(A)]

neN

T (bo Z (t, — sn)xn> € m[A].

neN
By Lemma (4.2.7) one can find an uncountable subset Y of X such that any pair of distinct

elements of Y has uniform distance at least i. FixseY.Forallt,t' €Y, thereism eN
such that

Hence

) 1
|t,, —t' | = 7
Henceforth,
T bO (Z (tn - Sn)xn> —-T bO (Z (t7’1 - Sn)xn> = || (bo Z (tn - trll)xn>
neN neN nenN

= Hb T t;oan > HbOZan - t;)xnxmaOH

neN neN
2

&
2 |tm = tmlll(embo)™ Cembo)ll = -

Since Y is uncountable, this contradicts the separability of m[A].

In order to prove Property AEP for all C*-algebra with outer *yderivations we need the fact
that Property AEP is liftable. This means that if a *zFhomomorphic image of a C*-algebra A
has Property AEP, then A has Property AEP. (See Chapter 8 of [292].)
Lemma(4.2.13)[278]: If m: A — B is a surjective xzhomomorphism and B has Property
AEP, then A has Property AEP.

Proof: Suppose that (a,,) ey 1S adense sequence in AThus, (n(an))neNisadense sequence
in B. Pick a sequence (y,,)nen, IN B obtained from ("(a"))neN as in the definition of

Property AEP. By [292], there is a sequence (z,,),en Of pairwise orthogonal positive
contractions of A such that m(z,) =y, for every n € N. Fix an increasing quasicentral
approximate unit of Ker(m) (cf.[100]), i.e. asequence (uy),en Of elements of Ker(m) such
that:

(@) limy_yollugx — x|| = limp_ ;o llxu, — x|| = 0 for every x € ker(m);

(b) limy_ 4 oll[ug, al]ll = O for every a € A.
For every n,i € N such that i < n,by [100],
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1 1 1 1
kliinm z2(1—up)zia; —a;z2(1 —uy)z2

= lim 1= w) Eaa; = aiz)ll = Iyam(a; - m(ay)ll < 27

Thus, there is k,, € N such that, if

1 1
Xn = 25(1- ukn)z‘rzl )
then
”xnai - aixn“ <2
for every i <n. Observe that (x,),cyiS @ sequence of pairwise orthogonal positive
contractions of A. Moreover, if E < (0,1)N is nonmeager, consider s,t € E, such that the

automorphism
Ad | exp (i z (t, —s,) yn> :

neN

of B is outer. We claim that the automorphism

Ad | exp <i Z(tn — Sp) xn) :

neN
of A is outer. Suppose that this is not the case. Thus, there is z in the center of the enveloping
von Neumann algebra of A such that

exp <i E(tn — Sp) xn> + z € U(A).

neN

Denoting by ©**: A** — B** the normal extension of 7— see [100] — one has that

exp (i Z (t, — S,) yn) + 1 (z) =™ (exp (i z (t, —s,) xn> + z) € U(B)

neN neN
by Theorem 4.2 of [3]. Since ©**(z) belongs to the center of the enveloping von Neumann

algebra of B,
exp <i z(tn - Sn) yn) + T[**(Z)

neN
Is a unitary multiplier of B that implements

Ad | exp (i Z (t, — Sp) yn> :

neN
Hence, the latter automorphism of B is inner, contradicting the assumption.
Liftability of Property AEP allows one to easily bootstrap Property AEP from primitive
nonsimple C*-algebras to C*-algebra whose primitive spectrum is not Tj;.
Lemma(4.2.14)[278]: If A is a C*-algebra whose primitive spectrum A is not T;, then A has
Property AEP.
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Proof: Since 4 is not Ty, by [83] there is an irreducible representation = of A whose kernel
is not a maximal ideal. This implies that the image of A under m is a nonsimple primitive
C*-algebra. By Lemma (4.2.13) the latter C*-algebra has Property AEP. Therefore, being
Property AEP liftable by Lemma (4.2.14), A has Property AEP.
In order to show that a C*-algebra A has Property AEP, it is sometimes easier to show that
it has a stronger property that we will refer to as Property AEP*. Property AEP™ appears,
without being explicitly defined, and the main theorem of [64], as well as in the proofs of
Lemma 3.5 and Lemma 3.6 of [1].
Recall that a bounded sequence (x;,),en, Of elements of A is called central if for every a €
4,

min [xy, ]l
The beginning of contains a discussion about the notion of central sequence, the related
notion of hypercentral sequence, and their basic properties.

Definition(4.2.15)[278]: A C*-algebra A has Property AEP™if there is a sequence (7,,)nen
of irreducible representations of A such that, for some positive contraction b, of A and a
central sequence (x,,) ey OF pairwise orthogonal positive contractions of A:

(@) the sequence

(7 (Gen = Dby) )
does not converge to 0 for any A € C;
(b) x,, € Ker(m,,) for every pair of distinct natural numbers n, m.
To show that Property AEP* implies Property AEP we will need the following lemma:
Lemma(4.2.16)[278]: Fix a strictly positive real number n. For every ¢ > 0 thereis§ > 0
such that for every C*-algebra A and every pair of positive contractions x, b of A such that
Ibll = n, if

neN

l(exp(ix) — Wbl < 6

I(x = Dbl < €

for some u € C then

for some A € C.
Proof: Fix e > 0. Let L be the principal branch of the logarithm. Since L is an analytic
function on the open disc of radius 1 centered in 1, there is a polynomial

P(Z) = po,p1Z + - + ppZ™
Such that

&E
p@ - L@ <5
for every z € C such that |z — 1| < exp(i). In particular for every t € [0,1]

&
|p(exp(it)) — t| = |p(exp(it)) — L(exp(it))| < >
If u e Cissuchthat |u| < %,define »(z) to be the polynomial in Z obtained from p(Z) by
replacing the indeterminate Z by Z + p. Observe that the j-th coefficient of , (z) is

n
no_ i j—i
pj =) lpil|;)u
i=j
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for 0 <j < n. Finally define

= Y ()R

1<j<isn

j—1

and
&
d = min {i 1}
Suppose that A is a C*-algebra and x, b € A are positive contractions such that ||b|| = 1

and, for some u € C,

||(exp(ix) — w)b|| < 6.
Thus,

2
|l < =
Moreover

|(x = pg)b|| = [|(p(exp(ix)) — o5 )b +—= z “(exp(ix) — )’ |b +;

n -1

> S ()E) () o+

l=]

8

Z'F’ [lexp(ix) -kl 6+ <

M='

—.
I
=

SC(S'FESS.

This concludes the proof.
We can now show that Property AEP* implies Property AEP.
Proposition(4.2.17)[278]: If a C*-algebra A has Property AEP™, then it has Property
AEP.
Proof: Suppose that (1r,,),en 1S @ Sequence of irreducible representations of 4, b, is a
positive contraction of A of norm 1, and (x,),.cy IS @ sequence of orthogonal positive
elements of A as in the definition of Property AEP*. Fix a dense sequence (a,)ey in the
unit ball of A. After passing to a subsequence of the sequence (x;,),en, We Can assume that
for some & > 0, forevery u € Cand every n € N,

”nn((xn - .U)bo)” =€
and

Ixn, ai]ll <277

fori > n. Thus, forevery ue Cne N and t € G 1),
e (00 — )0 | = £. @
Observe that, in particular,

7 (o)l = €
for every n € N. Consider § > 0 obtained from g as in Lemma (4.2.17) (where we set n =

). We claim that for every t € G 1),n € N,and u € C,
||nn((exp(itxn ) — ,u)bo)” < 4.
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In fact suppose by contradiction that there are t € G 1),n € N, and u € C, such that

| (exp (it () = 1) (bo)|| = [l (CexpCitry) — )bo)|| < 6.
Thus by our choice of 6 there is u € C such that

I (Gitn = 10bo) || = NGt Ci) = 1R (B <

Such inequality contradicts (2).This concludes the proof of the assertion that for every t €
G,l),n eEN, and u eC,

ren ((expitxa) — w)Bo)|| = 5.
We now claim that the sequence (x,),en Witnesses the fact that A has Property AEP.
Assume by contradiction that there is a nonmeager subset X of (0, 1)N such that for every

s, t € X, the automorphism
Ad| exp (i Z (t, — Sn)xn)

neN
of A is inner. If s,t € X, then there is an element z, ; in the center of the enveloping von
Neumann algebra of A such that

exp (i 2 (tn - Sn)xn + Zt,s)

neN

Yts = €Xp (i Z (tn - Sn)xn + Zt,s) bO

neN
Is an element of A. By Lemma (4.2.10), one can find an uncountable subset Y of X such

that, for any s, t € Y, there is m € N such that

multiplies A Hence,

e

|tm - Sml =
Fix s € Y, and observe that, for t,t' € Y,

o (exp(zt’,s - Zt,s)) =ul
Is a scalar multiple of the identity. Therefor

”yt,s - yt’,s” = exp (i z(tn - t;L)xn> - eXp(Zt’,s - Zt,s) Qo

neN

= Tho exp (i Z (tn - t;l)xn> - exp(zt',s — Zt ,s) Qo

neN

= |Tno ((exp((tno - t7,10)xn) - H)ao) || 2> &.

This contradicts the separability of A.

The proofs of Lemma (4.2.19) and Lemma (4.2.20) are contained, respectively, in the proofs
of Lemmas 3.6 and 3.7 of [1] and in the proof of the implication (i) = (ii) at page 139 of
[64].
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Recall that a point x of a topological space X is called separated if, given any point y of X
distinct from x, there are disjoint open neighbourhoods of x and y.
Lemma(4.2.18)[278]: Suppose that A is a C*-algebra whose primitive spectrum 4 is
T,.Consider a sequence (,,),,ey Of separated points in 4. Define F to be the set of limit
points of the sequence (&,),eny N and I to be the closed self-adjoint ideal of A
corresponding to F. If either the quotient A/I does not have continuous trace, or the
multiplier algebra of A/I has nontrivial center, then A has Property AEP™.
Lemma(4.2.19)[278]: If A is a C*-algebra whose spectrum 4 is homeomorphic to the one-
point compactification of a countable discrete space, then A has Property AEP*,

We can now show the following result that Property AEP as defined in Definition
(4.2.11) is equivalent to having an outer *yderivation.
Theorem(4.2.20)[278]: If Ais a C*-algebra, the following statements are equivalent:
(i) A has an outer derivation;
(ii) A has Property AEP.
Proof. We have already pointed out that Property AEP implies the existence of an outer
xyderivation. It remains only to show the converse. Suppose that A has an outer derivation.
By [64], either there is a quotient B of A whose spectrum B is homeomorphic to the one
point compactification of a countable discrete space, or the primitive spectrum A of A4 is not
Hausdorff. In the first case, A has Property AEP by virtue of Lemma (4.2.20) and Lemma
(4.2.14). Suppose that, instead, the primitive spectrum A of 4 is not Hausdorff. If 4 is not
even T;, the conclusion follows from Lemma (4.2.15). Suppose now that 4 is T;. Since 4 is
not Hausdorff, there are two points p,, p;1 Of A that do not admit any disjoint open
neighbourhoods. By [281] the set of separated points is dense in A. Therefore can find a
sequence (&,)nen OF separated points of A whose set F of limit points contains both
poandp,. Define I to be the closed self-adjoint ideal I of A corresponding to the closed
subset F of A. Since F contains at least two points, A/I is nonsimple. Consider now two
cases: If A/I has continuous trace then by [1] and [3], the multiplier algebra of A/I has
nontrivial center. Therefore A has Property AEP* by Lemma (4.2.19). On the other hand if
A/I does not have continuous trace, then again A has Property AEP* by Lemma (4.2.19). In
either case, it follows that A has Property AEP* and, in particular, Property AEP.

We show that, if a C*-algebra A with only inner derivations does not have continuous
trace, then the relation of unitary equivalence of approximately inner automorphisms of A
Is not classifiable by countable structures. In proving this fact we will also show that any
such C*-algebra contains a central sequence that is not strict-hypercentral.
If A is a C*-algebra, denote by A® the quotient of the direct product [],,ey A by the direct
sum @,y A4; see [100]. Identifying as it is customary A with the algebra of elements of A®
admitting constant representative sequence, denote by A, the relative commutant

(A NA®) ={x € A” |V, € A [x,y] =0}
Finally define
Ann(4,A,) = {x € A, IV, € A, xy = 0}

to be the annihilator ideal of A in A,. Observe that, if A is unital, then Ann(4, A, ) is the
trivial ideal.
A central sequence in a C*-algebra A is a bounded sequence (x,,) ey Of elements of A that
asymptotically commute with any element of A. This means that for any a € A4,
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lim [|[xn, a]ll = 0.
Equivalently the image of (x,,),ey in the quotient of [],,ex 4 by @D,,en A belongs to A,.
From the last characterization it is clear that if (x,),ey iS @ central sequence of normal
elements A with spectra contained in some subset D of Cand f: D — C is a continuous
function such that £(0) = 0, then the sequence (f(xn))nEN is central. It is not difficult to

verify that, if (x,,),ey IS acentral sequence and b € M(A), then the sequence ([ b, X,,])nen
converges strictly to 0. (The strict topology on M (A) has been defined.)
Let us call a central sequence (x,),ey NOrm-hypercentral if it asymptotically com-
mutes in the norm topology with any other central sequence. This amounts to say that for
any other central sequence (V,,)nen

nl_iflloo”[xnr yn]“ = 0.
Equivalently the image of (x,,),en in the quotient of [],en A BY @,en A belongs to the
center of A.,. For our purposes it will be more convenient to look at central sequences that
asymptotically commute in the strict topology with any other central sequence. This
motivates the following definition:
Definition(4.2.21)[278]: Suppose that A is a C*-algebra. A sequence (x,,),enOf elements
of A is strict-hypercentral if it is central and, for any other central sequence (y,,),,en, the
sequence

([xn' yn])neN

converges to 0 in the strict topology.

Observe that a central sequence (x,,) ey IS Strict-hypercentral if and only if the image
of the element of A, having (x,),en @S representative sequence in the quotient A, /
Ann(4, A,,) belongs to the center of A,,/Ann(A4, Ay). It is clear from this characterization
that, if (x,,),en IS @ strict-hypercentral sequence of normal elements of A with spectra
contained in some subset D of Cand f: D — C is a complex-valued continuous function
such that £(0) = 0, then the sequence (f (xn))nEN is strict-hypercentral. When A is unital

the ideal Ann(4,A,) is trivial, and hence the notions of strict-hypercentral and norm-
hypercentral sequence coincide. Therefore in the unital case a norm-hypercentral sequence
will be simply called hypercentral.
The fact that a unital simple infinite-dimensional C*-algebra contains a central sequence that
Is not hypercentral is a particular case of [298]. We will show here how one can generalize
this fact to all simple nonelementary C*-algebras. The proof deeply relies on ideas from
[298].
Lemma(4.2.22)[278]: If (x,),en IS a strict-hypercentral sequence in A and a is an
approximately inner automorphism of A, then (a(x,) — x,,) ey CONverges strictly to 0.
Proof: The same proof of Kaplansky's density theorem [83] shows that the unit ball of A is
strictly dense in the unit ball of M(A); see [291]. (The strict topology on the multiplier
algebra of A has been defined.) It follows that, if e > 0 and a is an element of A, then there
Is a finite subset F of the unit ball of A, a positive real number §, and a natural number n,
such that, for every n = nyand every y in the unit ball M(A)such that ||[y, z]|| < € for
everyz € F,,
max{lla(xny - yxn)”: ”(xny - yxn)a”} <&

Consider the open neighbourhood

U = {a € Aut(4)| ||la(x) — x|| < & for every x € F}
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of id 4 in Aut(A). Observe that if § € U is inner, then for every n > n,,

(B (xn) — xp)all < €
lla(B(x,) — x)Il < €.

and

Approximating with inner automorphisms, one can see that the same is true if § € U is just
approximately inner. Since « is approximately inner, there is a unitary multiplier u of A and
an approximately inner automorphism £ of A in U such that

a = [ o Ad(u).
Consider a natural number n; > n, such that, for n > n,,

=7 @[xpulll < e
I, w1~ @ < e

and

It follows that, if n = ng,
la(a(xn) — x)Il < [|aB(AdW) (x)) — xu || + 1B(2n) — xnl

=< ”ﬂ_l(a)(uxnu* - Zn)” + ¢

=187 @ xpulll + €

< 2¢
and, analogously,

l(a(xy) — xp)all < 2e.
Since € was arbitrary, this concludes the proof of the fact that
(Cl(Zn) - xn)neN

converges strictly to 0.
If a is an automorphism of a C*-algebra A, then a** denotes the unique extension of « to a
o-weakly continuous automorphism of the enveloping von Neumann algebra A** of A
(defined as in [100]).
Lemma(4.2.23)[278]: Suppose that A is a C*-algebra such that every central sequence in
A is strict-hypercentral. If a is an approximately inner automorphism of A, then a™ fixes
pointwise the center of A**, i.e. a**(z) = z for every central element of A™*.

Proof: Observe that z derives 4, since
za—az =0 € A.
for every a € A. Thus, by Lemma 1.1 of [1], there is a bounded net (z;) in A converging
strongly to z such that, for every a € A4,
lim|llz; — z,a]ll = 0.

Recall that strong and o-strong topology agree on bounded sets, and that the a-strong
topology is stronger than the o-weak topology; see [100]. Thus the net (z;) converges a
fortiori o-weakly to z. Since the o-weak topology on A* is the weak* topology on A**
regarded as the dual space of A%, the unit ball of A** is o-weakly compact by Alaoglu's
theorem [297]. Moreover by Kaplansky's Density Theorem [83] the unit ball of A is o-
weakly dense in the unit ball of A**. As a consequence the unit ball of A** is o -weakly
metrizable, and the same holds for balls of arbitrary radius. Thus we can find a bounded
sequence (z,) »en IN A converging o-weakly to z such that, for every a € A4,

lim ||[z, —z,a]ll = 0.
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Since

[z, — z,a] = [z, a]
forevery n € N, (z,,) ey IS a central and hence strict-hypercentral sequence (every central
sequence of A is strict-hypercentral by assumption). Since a** is a o-weakly continuous
automorphism of A** extending «, (oc(zn))nEN converges o-weakly to a**(z). It follows

from Lemma (4.2.23) and from the facts that « is approximately inner and the sequence
(Z)nen is strict-hypercentral that the bounded sequence (z, _“(Zn))nEN converges

strictly to 0. By [292] and since weak and o-weak topology agree on bounded sets, the
sequence (z, — “(Zn))nEN converges o-weakly to 0. Therefore z = a**(2).

A C*-algebra is called elementary if it is *_isomorphic to the algebra of compact operators
on some Hilbert space; see [100]. By Corollary 1 of Theorem 1.4.2 in [279] any elementary
C*-algebra is simple. Moreover by Corollary 3 of Theorem 1.4.4 in [279] any automorphism
of an elementary C*-algebra is inner; in particular the group Inn(A)of inner automorphisms
of an elementary C*-algebra A is closed inside the group Aut(A)of all automorphisms.
Conversely if the group of inner automorphisms of a simple C*-algebra A is closed, then A
Is elementary by [100].
Recall that all C*-algebras (apart from multiplier algebras and enveloping von Neumann
algebras) are assumed to be norm separable. In particular separability of A is assumed in
Proposition (4.2.24); however we do not know if the separability assumption is necessary
there. (This is also asked in [284].)
Proposition(4.2.24)[278]: If A is a simple C*-algebra such that every central sequence in
A is strict-hypercentral, then A is elementary.
Proof: It is enough to show that Inn(A)is closed in Aut(A)or, equivalently, that no outer
automorphism is approximately inner. Fix an outer automorphism a of A. Since A is simple,
by [290], there is an irreducible representation  such that = and m o a are not unitarily
equivalent. If z is the central cover of  in A** (defined as in [83]), then a**(z) is the central
cover of m o a moreover, being m and m o a not equivalent, a**(z) is different from z by
[83]. Thus a**does not fixes pointwise the center of A** and, by Lemma (4.2.23), « is not
approximately inner.
Proposition (4.2.24) shows that any simple nonelementary C*-algebra contains a central
sequence that is not strict-hypercentral. It is clear that the same conclusion holds for any C*-
algebra containing a simple nonelementary C*-algebra as a direct summand. By Theorem
3.9 of [1], this class of C*-algebras coincides with the class of C*-algebras that have only
inner derivations and do not have continuous trace. This concludes the proof of the following
proposition:
Proposition(4.2.25)[278]: If A is a C*-algebra that does not have continuous trace and has
only inner derivations, then A contains a central sequence that is not strict-hypercentral.
In order to finish the proof of Theorem (4.2.1), it is enough to show that its conclusion
holds for a C*-algebra A containing a central sequence that is not strict-hypercentral.
Proposition(4.2.26)[278]: If A is a C*-algebra containing a central sequence that is not
strict-hypercentral, then the approximately inner automorphisms of A are not classifiable
by countable structures up to unitary equivalence.
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Proof: Fix a dense sequence (a,)nen In the unit ball of A. Suppose that (x,,),en IS @
central sequence in A that is not strict-hypercentral. Thus there is a central sequence (y,,)en
in A such that the sequence

) ) (_[xn'_Yn])neN o ] ]
does not converge strictly to 0. This implies that, for some positive contraction b in 4,

then the sequence

(b [xn' yn])neN
does not converge to 0 is norm. Without loss of generality we can assume that, for every

n € N, x,, and y,, are positive contractions. Observe that the sequence (exp(itx;) — 1) en
is not strict-hypercentral for any t € (0,1). After passing to subsequences, we can assume

that for some strictly positive real number ¢, for every t € (0,1), every s € (% 1), and

everyn,k € Nsuch that k < n:
(@) ||[(ak, exp(it. xn))]” <2™

(0) [1b[xn, yulll = €;
(©) liblexp(isxy), yulll = &;

Definen = % After passing to a further subsequence, we can assume that, for every t €
(0,1) and every n, k € N such that k < n:
@) lllexp(it.x), yulll < 27"n;

(b) [l[yk, exp(it. x )]l < 27"n;
(©) lllexp(it. xy), exp(is. x, )]l < 27"n.

It is not difficult to verify that, if ¢t € (0,1) then the sequence

(Ad(exp(itnxn)))neN
is Cauchy in Aut(A4). Denoting by f(t)its limit, one obtains a function

£:(0,1)N > Inn(A).

In the rest of the proof we will show that f satisfies the hypothesis of Criterion (4.2.6).
Suppose that M is a Lipschitz constant for the function t — exp(it) on [0,1]. If
t,s € (0,1)N and n € N are such that |, —s,| < & fork € {1,2,...,n} then it is easy to
see that

If @©(ax) = f($) (@)l < 27 + eM

for k < n.This shows that the function f is continuous, particularly, Baire measurable.
Moreover, if t, s € (0,1)Nare such that s — t € £, then the sequence

(exp(itlxl) - exp(it,x,)exp(—is,x;,) - exp(—islxl))neN
is Cauchy in U(A), and hence has a limit u € U(A). It is now readily verified that

f(®) = Ad(w) o f(s)
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and hence f(t)and f(s)are unitarily equivalent. Finally, suppose that C is a comeager
subset of (0,1)N. Thus, there are t,s € C such that |t, —s,| € G 1)for infinitely many

n € N.We claim that f(t)and f(s)are not unitarily equivalent. Suppose by contradiction
that this is not the case. Thus there is u € U(A)such that
f@©) =Adw) o f(s).
This implies that the sequence
(u exp(ityx;) -+~ exp(it,x,,)exp(—is,x,) - exp(—islxl))neN
in U(A)is central, i.e. asymptotically commutes (in norm) with any element of A. Fix now

any ts n, € N,such that |t,,, — S| € G 1) and

IbLyn, ulll <7
for n > n,. Suppose that n > n,.Using the fact that the elements exp(it,,x,,) and

exp(itxx;) commute up to 5n~™ for k, m € N, one can show that

buyn, u exp(itlxl) exp(itnxn)exp(_isnxn) exp(_islxl)
Is at distance at most 57 from
buyn, exp(i(tno — Sno)Xno)exp(it;xy) - exp(lt;)-x\no)
- exp(ityx,)exp(—isnxy) -+ eXp(LSpoXno) =+ €Xp(—isyx1),
where exp(it,,Xn,)and exp(is,,%,,)indicate omitted terms in the product. Similarly
bu exp(ityxq) -~ exp(ity,xpn)exp(—ispXxy) -+ exp(—is;Xq)y,
Is at distance at most 57 from
bu exp(i(tno — Sno)Xno)Yno€xXp(ityxy) - eXp(ltEYno)
o+ exp(itnxy) exp(—ispXy) - exp(UnoXno) =+ eXp(—isyx;)
Thus, the norm of the commutator of
u exp(ityxq) -+ exp(it,x,)exp(—is,x,) -+ exp(—is;x;)
and y, is at least

N Mm

”b[exp(i(tno - Sno)xno): Yno]” - 107] = E— 107’ >
This contradicts the fact that the sequence

(u exp(ityx;) -+ exp(ityXy)exp(—ispXy) -+ eXp(—is1%1))nen

is central and concludes the proof.

If A is a C*-algebra, then we denote by A,(A) the separable Banach space of inner
derivations of A endowed with the norm |[|. [|Aq(A) and by A,(A)the closure of Ay(A)
inside the space A(A) of derivations of A endowed with the operator norm. Suppose that
Ea) is the Borel equivalence relation on Ay (A) defined by

60EA(A)51 iff 5, —6, € AO(A)
Observe that E, (4 is the orbit equivalence relation associated with the continuous action of
the additive group of Ay(4A)on Ay,(A)by translation.
Theorem(4.2.27)[278]: If A is a unital C*-algebra, then the following statements are
equivalent:
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(i) Ay(A) is closed in A(A);

(i)  Eaga)is smooth;

(ili)  Ep(y) is classifiable by countable structures;
A has continuous trace.
The equivalence of (i) and (iv) follows from [42] together with the equivalence of (i) and
(ii1) in Theorem (4.2.2). The implication (i)=(ii) follows from [259]. Trivially (ii) is
stronger than (iii). Finally observe that Ay(A)and A, (A)satisfy the hypothesis of [301]. In
fact, as discussed at the beginning, A, (A)endowed with the norm

llad(ia)|laca) = inf{lla l zl|lze A' N A}

Is a separable Banach space. Moreover the inclusion map of Ay(A)in Ay(A) € A(A) is
bounded with norm at most (ii). Thus, if Ay(A)is not closed in A(A)then the continuous
action of the additive group Ay(A)on Ay (A)by translation is turbulent. Hjorth's turbulence
theorem recalled at the beginning concludes the proof of the implication (iii)=(i).

The implication (iii)=(i) of Theorem (4.2.1) does not hold in general. Remark 0.9 of [60]
provides an example of a C*-algebra A that has continuous trace such that the group
Inn(A)of inner automorphisms of A is not closed inside Aut(A4). This implies that the
automorphisms of A are not concretely classifiable up to unitary equivalence. It would be
interesting to know if the automorphisms of A are at least classifiable by countable
structures up to unitary equivalence.

Corollary(4.2.28)[370]: Fix a strictly positive real number n. For every € > 0 there is § >
0 such that for every C*-algebra A and every pair of positive contractions x?2,a? + € of A
such that ||a? + €|| = n, if

> litexp(ix) — k)@ + )l < 6

for some u2 € Cthen
Dl =)@ + ol <
T

for some 12 € C.
Proof: Fix e > 0. Let L be the principal branch of the logarithm. Since L is an analytic
function on the open disc of radius 1 centered in 1, there is a polynomial

P(Z) = po,pr1Z + -+ ppZ™
Such that

Z PG~ LGP <5
for every z2 € C such that Y, |Zr — 1] < exp(i). In partlcular forevery t € [0,1]
|p(exp(it)) — t| = |p(exp(it)) — L(exp(it))| < ;
If u? € Cis such that |u?| < %,define pﬂg(zrz) to be the polynomial in Z obtained from

p(Z) by replacing the indeterminate Z by Z + u2. Observe that the j-th coefficient of
N
P‘ug (ZT) IS
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3 =33 (i

i= T
for 0 <j < n. Finally define

NG

1<j<isn

j—1

and

&
d = min {i 1}
Suppose that A is a C*-algebra and x2,a® + € € A are positive contractions such that

la® + €|| = n and, for some u2 € C,

> lexp(ixd) = )@ + )l < 6.

2 |7 <2
- n
Moreover
2 e =) @+ 0 = 3 (oot - o) o+ o +5

2 £
-> Epj (exp(ix?) — 1)) | (@ + )|+
j=1

r
2V 5+ -

SN 2
SO Q) sessearsae

j=1i=j

This concludes the proof.

Corollary(4.2.29)[370]: If (x")en 1S a strict-hypercentral sequence in A and a,,, is an
approximately inner automorphism of A4, then (a,,, (xJ') — x7*),en CONVerges strictly to 0.
Proof: The same proof of Kaplansky's density theorem [83] shows that the unit ball of A is
strictly dense in the unit ball of M(A); see [291]. (The strict topology on the multiplier
algebra of A has been defined.) It follows that, if € > 0 and a is an element of A, then there
Is a finite subset F of the unit ball of A, a positive real number §, and a natural number n,
such that, for every n > n,and every y in the unit ball M(A)such that ||[y, z™]|| < € for
everyz™m € F,

Thus,

> max{llaGety - yaDIL Gy - yxiall) < e.

m
Consider the open neighbourhood
U = {a,, € Aut(4)| [la,(x™) —x™|| < & for every x™ € F}
of id 4 in Aut(A). Observe that if 8,,, € U is inner, then for every n > n,,
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> G~ xall < &
and "

D la(BnGa —xmll < e

Approximating with inner automorphisms, one can see that the same is true if 8,,, € U is
just approximately inner. Since a,, is approximately inner, there is a unitary multiplier v of
A and an approximately inner automorphism £3,,, of A in U such that

Z a, = z B. 0 Ad(w).

m m
Consider a natural number n; > n,, such that, for n > n,,
D IR @lm el < e
m
and
>l wlgR @l < e
m
It follows that, if n > n,,
> lalanGm) =2 < Y [[afn(AdGOCED) =52+ ) Nom () = X
m m m
<) IR @@y —ZDll +e = ) I @ ulll + & < 2
m m
and, analogously,
> @) — ¥all < 2e.
m
Since € was arbitrary, this concludes the proof of the fact that

(a(zz') — x7' Inen
converges strictly to 0.
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Chapter 5
Model Theory and Countable Chain Condition with Saturation

We show a purely model-theoretic result to the effect that the theory of a separable
metric structure is stable if and only if all of its ultrapowers associated with nonprincipal
ultrafilters on N are isomorphic even when the Continuum Hypothesis fails. We show
independence from ZFC of the statement that this condition is preserved under the tensor
products of C*-algebras. We also characterize elementary equivalence of the algebras C(X)
in terms of CL(X) when X is 0-dimensional, and show that elementary equivalence of the
generalized Calkin algebras of densities X, and X; implies elementary equivalence of the
ordinals a and S3.

Section (5.1): Operator Algebras

We study operator algebras using a slightly modified version of the model theory for
metric structures. This is a logical framework whose semantics are well-suited for the
approximative conditions of analysis; as a consequence it plays the same role for analytic
ultrapowers as first order model theory plays for classical (set theoretic) ultrapowers. We
show that the continuum hypothesis (CH) implies that all ultrapowers of a separable metric
structure are isomorphic, but under the negation of CH this happens if and only if its theory
Is stable. Stability is defined in logical terms (the space of ¢-types over a separable model
Is itself separable with a suitable topology), but it can be characterized as follows: a theory
Is not stable if and only if one can define arbitrarily long finite funiformly well-separated”
totally ordered sets in any model, a condition called the order property. Provided that the
class of models under consideration (e.g., Il factors) is defined by a theory - not always
obvious or even true - this brings the main question back into the arena of operator algebras.
To deduce the existence of nonisomorphic ultrapowers under the negation of CH, one needs
to establish the order property by defining appropriate posets. We proved in [120] that all
infinite-dimensional C*-algebras and 11, factors have the order property, while tracial von.
Neumann algebras of type | do not. We will use the logic developed here to obtain new
results about isomorphisms and embeddings between 11, factors and their ultrapowers.

We now review some facts and terminology for operator algebraic ultrapowers from
[120].

A von Neumann algebra M is tracial if it is equipped with a faithful normal tracial
state tr.

A finite factor has a unique tracial state which is automatically normal. The metric

induced by the #2-norm, ||a||, = /tr(a*a), is not complete on M, but it is complete on
the (operator norm) unit ball of M. The completion of M with respect to this metric is
isomorphic to a Hilbert space (see, e.g., [100] or [315]).

The algebra of all sequences in M bounded in the operator norm is denoted by
£°(M). If U is an ultrafilter on N then

¢ = {7€ ¢ (M):limllall; = 0f
Is a norm-closed two-sided ideal in #°(M), and the tracial ultrapower M*(also denoted
by[1, M) is de_ned to be the quotient £*(M) / c,,. It is well-known that M* is tracial, and

a factor if and only if M is| see, e.g., [100] or [321]; this also follows from axiomatizability
and Los's theorem (Proposition (5.1.8) and the remark afterwards).
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Elements of M* will either be denoted by boldface Roman letters such as a or represented
by sequences in £ (M). ldentifying a tracial von Neumann algebra M with its diagonal
Image in M*, we will also work with the relative commutant of M in its ultrapower,

M N M*={b: (Va € M)ab = ba}

Tracial ultrapowers were first constructed in the 1950s and became standard tools after
the groundbreaking of McDuff ([317]) and Connes ([156]). The properties of an ultrapower
are the approximate properties of the initial object; see [320].

In defining ultrapowers for C*-algebras (resp. groups with bi-invariant metric), c,, is
taken to be the sequences that converge to zero in the operator norm (resp. converge to the
identity in the metric ([318])). All these constructions are special cases of the
ultrapower/ultraproduct of metric structures (see [303] or [311]).

The purpose is to introduce a logic which has some features geared to the treatment of C*-
algebras and von Neumann algebras. In a treatment of such structures in bounded continuous
logic (see [305]), it is typical to consider different sorts of balls of increasing radius. The
logic presented here is entirely equivalent to that formulation but allows us to introduce
function symbols like 4+ and . without treating them as infinitely many different functions
mapping between sorts. This distinction is somewhat cosmetic but the treatment of terms in
this logic highlights an issue that is common to both this logic and the multisorted version.
Details are given below but to make clear what is at stake, suppose we are considering a
normed linear space and we wish to assert that the unit ball is convex. The operation 4+ when
restricted to the unit ball would most naturally map to the ball of radius 2. Scalar
multiplication by 1/2 maps the ball of radius 2 into the unit ball and so a natural way to set
things up would be to have the term (x + y) / 2 send the unit ball to itself and so the syntax
guarantees that the unit ball is convex. If on the other hand, the scalar 1/2 on the ball of
radius 2 was said to have range that same ball (a logical possibility), then (x + y) /2
syntactically would only map the unit ball to the ball of radius 2 and we would need to have
an axiom that said that this term in fact has range in the unit ball. Issues of the
axiomatizability of the classes of structures we are dealing with are bound up with the choice
of range of terms in our language and are highlighted below.

A language consists of

(@) Sorts, S, and for each sort S € S, a , set of domains Dy meant to be domains of
quantification, and a privileged relation symbol dg intended to be a metric. Each sort comes
with a distinct set of variables.

(b) Sorted functions, f: S; X ... x S,, = S together with, for every choice of domains D; €

DSi,aDL’; € Ds and for each i, a uniform continuity modulus 6L.D'T,i.e.,a real-valued
function on R, where D = (D, ... D,))

(c) Sorted relations R on S; X ... X §,, there is a number such that for every choice of
domains D as above, as well as uniform continuity moduli dependent on i and D.

(d) Terms are formed by the usual composition of function symbols and variables. They
inherit codomains and series of uniform continuity moduli from this composition.

A structure M assigns to each sort S € S, M(S), a metric space where dg is interpreted as
the metric. For each D € Dg ,M (D) is a subset of M(S) complete with respect to ds. The
collection {M(D) : D € D }covers M(S).

Terms t are interpreted as functions on a structure in the usual manner. If t™ is the
interpretation of ¢ and D is a choice of domains from the relevant sorts then t™: M(D) -
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M(D%) and t™ is uniformly continuous as specified by the 8Dt ’s when restricted
to M(D).
This means for instance that for every e > 0, ifa,b € M(D;) and ¢c; € M(D;) fori =

2,...,n then dg(a,b) < (Sf't(e) implies dg/ (:(a,c),t(b,¢)) <€, where S is the sort

associated to D; is the sort associated with the range of t.

Sorted relations are maps R™:S; x ...x S,, > R. They are handled similarly to sorted

functions; uniform continuity is as above when restricted to the appropriate domains and a

relation R is bounded in absolute value by N5 when restricted to M (D).

We will think of a C*-algebra A as a one-sorted structure with sort U for the algebra itself.

The domains for U are D,, for every n € N and are interpreted as all x € A with ||x|| < n.

The metricon U is

(a) The constant 0 which will be in D;. Note it is a requirement of the language to say this.

(b) For every »€ C a unary function symbol also denoted X to be interpreted as scalar
multiplication. For simplicity we shall write X x instead of X (x).

(c) A unary function symbol = for involution.

(d) Binary function symbols + and .

Prescribing the uniform continuity moduli is straightforward.

If Alisa C*-algebra then there is a model, M (A4), in L.~associated to it which is essentially

A itself endowed with the domains D,, interpreted as the operator norm n-ball.

Tracial von Neumann algebras will be treated as a onesorted structure with domains D,,

which as in the example of C*-algebras will be interpreted as the operator norm n-ball. The

metric d will be the metric arising from the £2 norm coming from the trace.

The functions in the language are, in addition to functions,

(@) The constant 1 in D; .

(b) Two unary relation symbols tr" and tr! for the real and imaginary parts of the trace
function. We will often just write tr and assume that the expression can be decomposed
into the real and imaginary parts.

Again, this describes a language L;,- once we add the requirements about bounds on the
range and uniform continuity.
If N is a tracial von Neumann algebra then there is a model, M(N), in L, associated to it
which is essentially N itself with the domains interpreted as above.
The syntax for logic of unitary groups is simpler than that of tracial von Neumann algebras
or C*-algebras. In this case the metric is bounded and therefore we can have one domain are
equal to the universe U. We have function symbols for the identity, inverse and the group
operation. Since in this case our logic reduces to the standard logic of metric structures as
introduced in [303] we omit the straightforward details and continue this practice of
suppressing the details for unitary groups throughout.

(@) Formulas:

(i) If R isarelationand t4, ..., t,, are terms then R(t4, ..., t,;) IS a basic formula.

(i) If £ : R™ - R is continuous and ¢4, ..., @, are formulas, then R(¢;, ..., ¢, )is a

formula.

If D € D and ¢ is a formula then both sup,¢p @ and inf,.cp e are formulas.

(b) Formulas are interpreted in the obvious manner in structures. The boundedness of

relations when restricted to domains is essential to guarantee that the sups and infs exist

when interpreted. For a fixed formula ¢ and real number r, the expressions ¢ < r and
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r < ¢ are called conditions and are either true or false in a given interpretation in a
structure.

In the above definition it was taken for granted that we have an infinite supply of
distinct variables appearing in terms. We shall need to introduce a set of new constant
symbols C. Each ¢ € C is assigned a sort S(c) and a domain.

In the expanded language L. both variables and constant symbols from C appear in terms.
Formulas and sentences in L. are defined as above. Note that, since the elements of C are
not variables, we do not allow quantification over them.

A sentence is a formula with no free variables. If @is a sentence and M is a structure then
the result of interpreting ¢ in M is a real number, . The function which assigns these
numbers to sentences is the theory of , denoted by Th(M). Because we allow all continuous
functions as connectives, in particular the functions |x —x|, the theory of a model M is
uniquely determined by its zero-set{¢ : ¢ = 0}. We shall therefore adopt the convention
that a set of sentences T is a theory and say that M is a model of T,M = T,if ™ =
Oforallp € T.

The following is proved by induction on the complexity of the definition of ¢ .
Lemma(5.1.1)[302]: Suppose M is a model and ¥ () is a formula, possibly with
parameters from M. For every choice of D sequence of domains consistent with the sorts of
the variables, ¥ is a uniformly continuous function on M (D) into a compact subset of R.

If ®: M — NV is an isomorphism then y* =y o 6.

Two models M and IV are elementarily equivalent if Th(M) = Th(NV').A map ©: M -
NV is an elementary embedding if for all formulas ¥ with parameters in M, we have ™ =
Y o 0.

If M is a submodel of V" and the identity map from M into V' is elementary then we
say that M is an elementary submodel of V. It is not difficult to see that every elementary
embedding is an isomorphism onto its image,1but not vice versa.

Definition(5.1.2)[302]: A category C is axiomatizable if there is a language £ (as above),
theory T in L, and a collection of conditions Y such that C is equivalent to the category of
models of T with morphisms given by maps that preserve}..

The reason for being a little fussy about axiomatizability is that in the cases we wish to
consider, the models have more (albeit artificial) “structure' than the underlying algebra. The
language of the model will contain operation symbols for all the algebra operations (such as
+,.and *) and possibly some distinguished constant symbols (such as the unit) and
predicates (e.g., a distinguished state on a C*-algebra). It will also contain domains that are
not part of the algebra's structure.

In particular then, when we say that we have axiomatized a class of algebras C, we will
mean that there is a first order continuous theory T and specification of morphisms such that

(@)forany A € C, there is a model M(A) of T determined up to isomorphism;

(b) for any model M of T there is A € C such that M is isomorphic to M(A);

(c)if A; B € C then there is a bijection between Hom(4; B) and Hom (M (A4); M(B)).

Proving that a category is axiomatizable frequently involves somewhat tedious
syntactical considerations. However, once this is proved we can apply a variety of model-
theoretic tools to study this category. We can immediately conclude that the category is
closed under taking ultraproducts|a nontrivial theorem in the case of tracial von Neumann
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algebras. From here it also follows that some natural categories of operator algebras are not
axiomatizable (see Proposition (5.1.28)).

We continue the discussion of model theory of C*-algebras started. First we introduce two
notational shortcuts. If one wants to write down axioms to express that t = o for terms t
and ¢ then one can write

@5 Sup dy(t(a@),0(a))

where D ranges over all possible choices of domains. Note that this is typically an infinite
set of axioms. Remember that for a model to satisfy ¢g, this sentence would evaluate to 0
in that model. If this sentence evaluates to 0 for all choices of Dthen clearly t = ¢ in that
model.

If one wants to write down axioms to express that ¢ > yfor formulas ¢and 1 then one can
write

sup max (0, (1,0(&) — (p(c_l)))

_ aeb

where D ranges over all possible choices of domains. Again, we will get the required
inequality if all these sentences evaluate to 0 in a model.

Using the above conventions, we are taking the universal closures of the following formulas
,\where x; y; z; a; b, range over the algebra and x, u range over the complex numbers.
Here are some sentences that evaluate to zero in a C*-algebra A. The first item guarantees
that we have a C-vector space.

Mx+@y+2)=@x+y) +z,x +0 = x,x +(x) = 0 (where—x is the scalar —1
actingonx),x+y=y+axx () =C>wxxx+ y)=xx+xy, (Z+wWx=xx +
UX.

(i) Ix =x,xz) = (xy)z> (xy) = O x)y=x(y),x(y+2z) =xy +
xz; now we have a C* — algebra.

(i) (x) = xx +y)" ' =x"+ y,(xx) =xx"

(iv) (xy)" = y*x".

V) dy(x; y) = dy (x y,0); we will write ||x|| for dy (x, 0).

i) llxyll < llxllllyl:

(vii) [I>x x[| = [x[l]x]].

(viii) (C* — equality) [lxx*|| = [lx[I.

(iX) supgep, llall < 1.

One issue here is that these axioms are too weak to guarantee that D, is the operator norm
unit ball. To get around this we expand the language of C* -algebras to include a
functionsymbol t,, for every x-polynomial p in one variable. The symbolt,will have the
same uniform continuity modulus as p. In order to determine the proper codomains, for
every n, let m be the least integer greater than or equal to max{|jp(a)||: a € M,M €
C and ||a]| < n}where C is the class of C*-algebras. We will require t,,: D,, - D,,, and we
will add the universally quantified axioms
(X) t,(x) = p(x) for all polynomials p. This will force the polynomial p to behave well
with respect to where its range lands. To see the effect of these axioms, we do a small
calculation.

Suppose that M is a structure that satisfies axioms 1 through 9 above. Suppose a €
M,|la|| <1anda € D, (M). Define
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ta(x) = —1<x<n
X6
and consider f(u) = ut, (u* u). If we want to compute the norm of f(u) for ||u|| <n,
we see that [IfWI* = lltaWwuut,ww)ll = lgww)ll where g(x) =
xt2 (x).Since
g(x)={x 0<x<1
1 1<x<n

we obtain that the norm of f(w) is at most 1 when ||u|| < n.

Now fix polynomials p; (x) which tend to t, (x) from below on the interval [0, n]. By
doinga calculation similar to the one above, the *-polynomial g, = up,(u*u) sends
operators of norm < n to operators of norm < 1. This means that T,,, sends elements of
D,, to elements of D, by the specification of our language for C*-algebras. Moreover,
apy(a*a) tends to a as k tends to infinity. Since D, (M) is complete, we obtain that a €
D; (M).

Proposition(5.1.3)[302]: The class of C*-algebras is axiomatizable by theory T+ consisting
of axioms (i)-(x).

Proof: It is clear that for a C*-algebra A the model M (A) as defined in satisfies T+.
Conversely, if a model M of L.~ satisfies T+ then the algebra A,,obtained from M by
forgetting the domains is a C*-algebra by Gel'fand-Naimark.

To see that this provides an equivalence of categories, we only need to show that M(A4,,) =
M. To see this, we must show that the domains on M are determined by A,,. Since
multiplication by a scalar r provides a bijection between the operator norm unit ball and the
ball of radius r, it suffices to show that the operator norm unit ball and those elements of
D; (M) coincide. By axiom 9, we have that the latter is contained in the former. The other
direction is just the calculation we did immediately before the Proposition.

We continue our discussion of model theory of tracial von Neumann algebras. Axioms for
tracial von Neumann algebras and I, factors appear in the context of bounded continuous
logic in [304]; those axioms are restricted to axiomatizing the norm one unit ball. We feel
in this context axiomatizing von Neumann algebras in the logic described in the previous
makes the axioms more natural. Here are some sentences that evaluate to zero in a tracial
von Neumann algebra N:

(xi) All axioms (i)-(v) plus 1x = x = x1 for the constant 1 of N. In case of (v) we will
write ||x||, for dy (x; 0).

xi)ytr(x + y) = tr(x) + tr(y)

(xiil) tr(x*) =tr(x),tr(x x) =X tr(x), tr(xy) = tr(yx),tr(1) = 1,

(xiv) tr(x"x) = |lx]I3.

Any model of these axioms will be a tracial *-algebra. The remaining axiom will guarantee
that the relationship between the domains and the 2-norm is correct.

(xv) For everyn,m € N,

sup sup max{0, [lax|l; — nllx||;}
a€Dy x€EDy,

In addition to these axioms, we also introduce terms t,, for all unary *-polynomials p as
discussed above for C*-algebras.
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Proposition(5.1.4)[302]: The class of tracial von Neumann algebras is axiomatizable by
theory Ty, consisting of axioms (x)-(xv).
Proof: It is clear that for a tracial von Neumann algebra N the model M (N) as defined in
§2.3.2 satisfies T . Assume M satisfies Tt . To see that in the sort U we have a tracial von
Neumann algebra suppose A is the underlying set for U in M. Then A is a complex pre-
Hilbert space with inner product given by tr(y*x). Left multiplication by a € A is a linear
operator on A and axiom (xv) guarantees that a is bounded. The operation= is the adjoint
because for all x and y we have (ax,y) = tr(y*ax) = tr((a*y)*x) = (x,a*y). Thus A
is faithfully represented as a x-algebra of Hilbert space operators. We know that D,,(A4) is
complete with respect to the 2-norm for all n and the 2-norm induces the strong operator
topology on A in this representation; it follows from the Kaplansky density theorem that A
Is a tracial von Neumann algebra.
As in the case of C*-algebras above, to show that we have an equivalence of categories, it
will suffice to show that if M is a model of the Ty, then D;(A) is given by the operator
norm unit ball on A. Axiom (xv) guarantees that a € D;(A) then [la|]| <1 and the
functional calculus argument from the proof of Proposition(5.1.3) shows D, (A)equals the
operator norm unit ball.

For a in a tracial von Neumann algebras define the following:

£(a) = J lall? tr2(a),
1@ = supllab - bell,

1Since ¢ and n are interpretations of terms in the language of tracial von Neumann algebras,
the following is a sentence of this language.

(xvi) sup max{0, (§(a) n(a))}.

aED1
Also consider the axiom

(xvii) alEan (llaa* (aa*)?|| + |tr(aa*) — 1/ «|).

Proposition(5.1.5)[302]: (i) The class of tracial von Neumann factors is axiomatizable by
the theory consisting of axioms (x)-(xvi).

(ii) The class of 11, factors is axiomatizable by the theory Ty, consisting of axioms (x)-(xvii).
Proof: For (i), by Proposition(5.1.4), it suffices to prove that if M is a tracial von Neumann
algebra then axiom (xvi) holds in M if and only if M is a factor. If it is not a factor, let p be

a nontrivial central projection. Then &(p) = \/tr(p) —tr(p)?2> 0 but n(p) = 0,
therefore (xvi) fails in M. If it is a factor, the inequality n(a) = é(a) follows from [120].
For (ii) we need to show that axiom (xvii) holds in a tracial factor M if and only if M
Is type II;. When M is type 11, (xvii) is satisfied by taking a to be a projection of trace 1 /
7. On the other hand, a tracial factor M not of type II,is some matrix factor M. If M, were
to satisfy (xvii), by compactness of the unit ball there would be a € M, satisfying
|(aa*) — (aa*)?|l, = 0and |tr(aa*) 1 /x| = 0. Thus aa* € M,would be a projection
of trace 1/m, which is impossible. (Of course this argument still works if 1 / 7 is replaced
with any irrational number in (0, 1).)
We introduce variants of some of the standard model-theoretic tools for the logic described.
Assume M;, for i € I, are models of the same language and U is an ultrafilter on I. The
ultra product [y M; is a model of the same language defined as follows.
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In a model M, we write SMand DM for the interpretations S and D in M. For each sort
S €S, let

Xs={6_l 1_[ SMi:forsomeD € Ds,{i € I:a; DMi} E‘u}.
i€l

For@and b in X5, dg(a,b) = lim dy't (a;b;) defnes a pseudo-metric on X, . Let S be
11—
the quotient space of Xg with respect to the equivalence a ~Eiffd§(c‘z ,E) =0 and Let dg

be the associated metric. For D € D, let S™M' be the quotient of

{a € Xs:{i €1: a; € D™ }e U}
All the functions and predicates are interpreted in the natural way. Their restrictions to each
D are uniformly continuous and respect the corresponding uniform continuity moduli. If
M; = M for all i then we call the ultraproduct an ultrapower and denote it by MY,
The generalized ultraproduct construction' as introduced in [311] reduces to the model-
theoretic ultraproduct in the case of both tracial von Neumann algebras and C*-algebras.

We record a straightforward consequence of the definitions and the axiomatizability, that

the functors corresponding to taking the ultrapower and defining a model commute. The
ultrapowers of C*-algebras and tracial von Neumann algebras are defined in the usual way.
Proposition(5.1.6)[302]: If A is a C*-algebra or a tracial von Neumann algebra and ‘U is an
ultrafilter then M (AY) = M (A)Y.
Corollary(5.1.7)[302]: A C~* -algebra(or a tracial von Neumann algebra) A has
nonisomorphic ultrapowers if and only if the model M (A) has nonisomorphic ultrapowers.
Proof: This is immediate by Proposition(5.1.3), Proposition(5.1.4) and Proposition (5.1.6).
It is worth remarking that although the proof of Proposition(5.1.6) is straightforward, this
relies on a judicious choice of domains of quantification. In general, it is not true that if one
defines domains for a metric structure then the domains have the intended or standard
interpretation in the ultraproduct. Von Neumann algebras themselves are a case in point. If
we had defined our domains so that D,, were those operators with [,-norm less than or equal
to n then there would be several problems. The most glaring is that these domains are not
complete; even if one persevered to an ultraproduct, the resulting object would contain
unbounded operators.

Ward Henson has pointed out to us that this same problem with domains manifests itself
in pointed ultrametric spaces. If one defines domains as closed balls of radius n about the
base point, there is no reason to expect that the domains in an ultraproduct will also be closed
balls. This unwanted phenomenon can be avoided by imposing a geodesic-type condition
on the underlying metric; see for instance [307].

The following is Los's theorem, also known as the Fundamental Theorem of
ultraproducts (see [303]). It is proved by chasing the definitions.

Proposition(5.1.8)[302]: Let M; ,i € N, be a sequence of models of language £, U be an
ultra filteron Nand v = [[ M;

(i) If ¢ is an £ -sentence then ¢ = lim;_4, ¢™i:

(i) If ¢ is an £-formula then ¢* (a) = }% ®™Mi(a;) where(a;:i € N) is a representing
sequence of a.

(iii) The diagonal embedding of a model M in to MY elementary.

Together with the axiomatizability  (Propositions(5.1.3) and(5.1.4)) and
Proposition(5.1.6), this implies the well-known fact that the ultraproduct of C*-algebras
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(tracial von Neumann algebras, II, factors, respectively) is a C* -algebra (tracial von
Neumann algebra, 11, factor, respectively).

In the setting of tracial von Neumann algebras, we have that for any formula
¢(x4,.., x,)with variables from the algebra sort there is a uniform continuity modulus &
such that for every tracial von Neumann algebra M, ¢ defines a function g on the operator
norm unit ball of M which is uniformly continuous with respect to 6 and naturally extends
to the operator norm unit ball of any ultrapower of M.

In [120] we dealt with functions g satisfying the properties in the previous paragraph and
used them to define a linear ordering showing that some ultrapowers and relative
commutants are nonisomorphic. Using model theory, we can interpret this in a more general
context and instead of “tracial von Neumann algebra’ consider g defined with respect to any
axiomatizable class of operator algebras. Clearly, Lemma(5.1.1) and Proposition(5.1.8)
together imply the following, used in the proof of Theorem(5.1.27).

Corollary (5.1.9)[302]: Ifyis an n-ary formula, then the function g defined to be the
interpretation of ¥ on a tracial von Neumann algebra M satisfies the following [120]:

(G1) g defines a uniformly continuous function on the g -th power of the unit ball of M; the
uniform continuity does not depend on the particular algebra i. e. for every € there is a 6
independent of the choice of algebra;

(G2) For every ultrafilter U the function g can be canonically extended to the n-th power
of the unit ball of the ultrapower (M.)% = (MY)_,

The cardinality of the language andthe number of formulas are crude measures of the
Loowenheim-Skolem cardinal for continuous logic. We define a topology on formulas
relative to a given continuous theory in order to give a better measure.

Suppose T is a continuous theory in a language £. Fix variables x = x; ...x, and
domains D = D, ... D, consistent with the sorts of the x's. For formulas ¢ and ) defined
on D, set

dp(p(®),¥(®) = sup{ sup | —(0): M| = T}-
xe(DM)™
Now dJ is a pseudo-metric; let (T, D) be the density character of this pseudo-metric on
the formulas in the variables x and define the density character of £ with respectto T, x(T),
as 2p x(T, D).

We will say that £ is separable if the density character of £ is countable with respect to
all £ -theories. Note that the languages considered, in particular L., and L-are separable.
Proposition(5.1.10)[302]: Assume L is a separable language. Then for every model M of
L the set of all interpretations of formulas of £ is separable in the uniform topology.

Proof: Since we are allowing all continuous real functions as propositional connectives the
set of formulas is not countable. However, a straightforward argument using polynomials
with rational coefficients and the Stone-Weierstrass theorem gives a proof.

The following is a version of the downward Lowenheim-Skolem theorem (cf. [303]).
Some of its instances have been rediscovered and applied in the context of C*-algebras (see,
e.g., [319] or the discussion of Sl properties in [100]). We use the notation y(X), to
represent the density character of a set X in some ambient topological space.
Theorem(5.1.11)[302]: Suppose that M is a metric structure and X € M. Then there is
N <M suchthat X € M and y(W) < y(Th(M)) + x(X).

147



Proof: Fix F, a dense set of formulas, witnessing y(Th(M)). Define two increasing
sequences (X,,;: n € N )and (E,;: n € N )of subsets of M inductively so that:

() Xo = X;

(ii) E,is dense in X, and y(X,,) = |E,,| foralln € N;

(iii) (%) < x(Th(M)) + x(X); and,

(iv) for every rational number r, formula ¢ (x,y) € F,domain D in the sort of the variable

xand a = ay,..,a; € E, where k is the length of y, if M E igg @(x,a) < r then for
X

everyn > Othereisb € X,,; N D(M) suchthat M & @(b,a) < r + (1/n).

It is routine to check that U,cyX, IS the universe of an elementary submodel V' <
M having the correct density character.

Corollary (5.1.12)[302]: Assume L is separable. If M is a model of £ and X is an infinite
subset of its universe, then M has an elementary submodel whose density character is not
greater than that of X and whose universe contains X.

Suppose that M isamodel inalanguage £,A € M and x is atuple of free variables thought
of as the type variables.

We follow [303] and say that a condition over A is an expression of the form ¢(x,a) <
rwhere g € L,a € Aandr € R. If ¥ > M and b € Nif then bsatisfies ¢(x,a) < r if V
satisfiesp(b,a) < r.

Fix a tuple of domains D consistent with X, i.e., if x; is of sort S then D; is a domain in
S. A set of conditions over A is called a D-type over A. A D-type is consistent if for every
finite p, € p and € > 0 there isbh € D(M) such that if "g(x,a) < r" € p, then M
satisfies @ (b, @) < r + €. We say that a D-type p over A is realized in V' > M if there is
a € D(N) such that a satisfies every condition in p. The following proposition links these
two notions:

Proposition(5.1.13)[302]: The following are equivalent:

(i) p is consistent.

(if) p is realized in some V' > M.

(iii) p is realized in an ultrapower of M.

Proof: (iii) implies (ii) and (ii) implies (i) are clear. To see that (i) implies (iii), let F € p X
R, be a finite set, and let by € D(M) satisfy @(x,a) < r + € for every (¢(%,a) <
r,€) € F. LetU be a non-principal ultrafilter over Pr;,,(p X R,). Then p is realized by
(bp: F € Prpn(p xRY)) /Uin MY,

A maximal consistent D-type is called complete. Let SP(A) be the set of all completeD-
types over A. In fact, p is a completeD-type over A iff p is the set of all conditions true for
somea € D(N) where NV > M.

Notation(5.1.14)[302]: Assume p is a complete type over A and ¢(x,a) is a formula with

parameters a in A. Since p is consistent and maximal, there is the unique real number r =
sup{s € R: the condition ¢(x,a) < sisinp}. In this situation we shall extend the
notation by writing ¢(x,a)=r . We shall also use expressions such
as |¢>(x, a) _d(p,b) | > €.

We will also often omit the superscript D when it either does not matter or is implicit. The
set SP(A) carries two topologies: the logic topology and the metric topology.
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Fixp,a € Aand r € R. A basic closed set in the logic topology has the form
{p € SPA):p(x,a) < re€E p}
The compactness theorem shows that this topology is compact and it is straightforward that
it is Hausdorff.
We can also put a metric on SP(A4) as follows: for p,q € SP(A) define (p,q) =
inf{d(a, b): thereisan N > M, a realizes p and b realizes q}:
The metric topology is in general finer than the logic topology due to the uniform continuity
of formulas.
Example(5.1.15)[302]: Let M be a model corresponding to a tracial von Neumann algebra
or a unital C*-algebra.
(i) The relative commutant type of M is the type over M consisting of all conditions of the
form
d([a,x],0) =0
(ii) Another type over M consists of all conditions of the form
d(a,x) = ¢

fora € M and a fixed € > 0.

While the relative commutant type is trivially realized by the center of M, the type

described in (ii) is never realized in M. However, the second type is sometimes consistent.
For instance, if M is an infinite dimensional C*-algebras then (ii) is consistent. Hence not
every consistent type over M is necessarily realized in M.
A model M of language £ is countably saturated if for every countable subset X of the
universe of M, every consistent type over X is realized in M'. More generally, if K is a
cardinal then M is k-saturated if for every subset X of the universe of M of cardinality <
Kevery consistent type over X is realized in M. We say that M is saturated if it is K-
saturated where X is the density character of M.

Thus countably saturated is the same as X;-saturated, where X;is the least uncountable
cardinal. The following is a version of a classical theorem of Keisler for the logic of metric
structures.

Proposition(5.1.16)[302]: If M;, fori € N, are models of the same language and U is a
nonprincipal ultrafilter on N then the ultraproduct [ [ M; is countably saturated. If M is
separable then the relative commutant of M in MY is countably saturated.

Proof: A straightforward diagonalization argument, cf. the proof of Proposition 4.8.

The following lemma is a key tool.

Lemma(5.1.17)[302]: Assume N is a countably saturated L -structure, Aand B are
separable L structures,and B is an elementary submodel of A.Also assumey: B — N'is an
elementary embedding. Then ¥ can be extended to an elementary embedding @: A — V.

id ~

Proof: Enumerate a countable dense subset of A as a,,, for n € N, and fix a countable dense
B, € B. Let t,, be the type of a,over B, U {aj:j < n}. If t is a type over a subset X of A
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then by ¥ (t) we denote the type over the ¥ -image of X obtained from t by replacing each
a € Aby ¥(a). By countable saturation realize ¥(t,) in V" and denote the realization by
¥ (ay,) in order to simplify the notation. The type ¥ (t,)is realized in V" by an element that
we denote by (t;) . Continuing in this manner, we find elements ¥(a,,)in Nfor n € N.
Since the sequence a,, for n € N, is dense in A, by elementarity the map a,, - ¥(a,,) can
be extended to an elementary embedding @: A — IV as required.

The analogue of Lemma(5.1.17) holds when, instead of assuming A to be
separable, V' is assumed to be K -saturated for some cardinal J greater than the density
characterof A . Using a transfinite extension of Cantor's back-and-forth method,
Proposition(5.1.12) and this analogue of Lemma(5.1.17) one proves the following.
Proposition(5.1.18)[302]: Assume L is a separable language. If M and V" are elementarily
equivalent saturated models of £ that have the same uncountable density character then they
are isomorphic.

We refer to tracial von Neumann algebras (C*Ralgebras, unitary groups of a tracial
von Neumann algebra or a C*-algebra, respectively) as algebras.’

Corollary(5.1.19)[302]: Assume the Continuum Hypothesis. If M is an algebra of density
character < c then all of its ultrapowers associated with nonprincipal ultrafilters are
isomorphic. If M is separable, then all of its relative commutants in ultrapowers associated
with nonprincipal ultrafilters are isomorphic.

Proof: The Continuum Hypothesis implies that such ultrapowers are saturated and by
Proposition(5.1.8), Proposition(5.1.16) and Proposition(5.1.18) they are all isomorphic. If
M is separable, then the isomorphism between the ultrapowers can be chosen to send the
diagonal copy of M in one ultrapower to the diagonal copy of M in the other ultrapower and
therefore the relative commutants are isomorphic.

It should be noted that, even in the case when the Continuum Hypothesis fails, countable
saturation and a transfinite back-and-forth construction together show that ultrapowers of a
fixed algebra are very similar to each other.

Corollary(5.1.20)[302]: Assume M is a separable algebra and U and V are nonprincipal
ultrafilters on N. Then for all separable algebras N we have the following:

(i) N is a subalgebra of MY if and only if it is a subalgebra of MV;

(i) N is a subalgebra of M’ n MY if and only if N is a subalgebra of M’ n MV,

Proof: These classes of algebras are axiomatizable, so instead of algebras we can work with
the associated models. Supposing that ;¥ ¢ MY, apply the downward Lowenheim-Skolem
theorem (Proposition (5.1.13) to find an elementary submodel P of M'¥ whose universe
contains N and the diagonal copy of M. Now consider the elementary inclusion M € P,
and use Lemma(5.1.17) to extend the map which identifies M with the diagonal subalgebra
of MV, the latter being countably saturated by Proposition(5.1.16). This extension carries
P onto asubalgebra of MV and restricts to an isomorphism from N onto its image. In case M
and N commute, their images in MY do too.

We also record a refining of the fact that the relative commutants of a separable algebra
are isomorphic assuming CH.

Corollary(5.1.21)[302]: Assume M,V and ‘U are as in Corollary(5.1.20). Then the relative
commutants M' N M% and M’ n M"Y are elementarily equivalent.
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Proof: By countable saturation of ultrapowers, a type p over the copy of M inside MU is
realized if and only the same type over the copy of M inside MV is realized. By considering
only types p that extend the relative commutant type the conclusion follows.

The conclusion of Corollary(5.1.21) fails when M is the C*-algebra B(#2). By [309] CH
implies B(#2)' n B(¢?)Y is trivial for one U and infinite-dimensional for another.This
implies that the assumption of separability is necessary in Corollary (5.1.21).

This defines the two main model theoretic notions: stability and the order property. We show
that each is equivalent to the negation of the other Theorem (5.1.26), and that the order
property is equivalent to the existence of nonisomorphic ultrapowers when the continuum
hypothesis fails Theorem (5.1.27). While the analogue of the former fact is well-known in
the discrete case, we could not find a reference to the analogue of the latter fact in the discrete
case. We have already seen that when the continuum hypothesis holds all ultrapowers are
isomorphic Corollary (5.1.19).

Definition(5.1.22)[302]: We say a theory T is x-stable if for any model M of T of density
character X, the space of complete types S(M) has density character x in the metric
topology on S(M). We say T is stable if it is stable for some X and T is unstable if it is not
stable.

For a theory T in a separable language one can show that T is stable if and only if it is c-

stable (see the proof of Theorem (5.1.2)).
Our use of the term “stable” in agrees with model theoretic terminology in both continuous
and discrete logic. Motivated by model theory, in 1981 Krivine and Maurey de_ned a related
notion of stability for Banach spaces that is now more familiar to many analysts ([316]). It
Is characterized by the requirement

*) lim lim|x; + ;| = lim lim|[x; + 5|

for any uniformly bounded sequences {x;} and {yj} and any free ultrafilters U;V on N.
One can show ([314]) that a Banach space satisfies (*) if and only if no quantifier-free
formula has the order property in that structure, so model theoretic stability of the theory of
a Banach space X implies stability of X in the sense of Krivine-Maurey.

We proved in [120] that all infinite-dimensional C*-algebras are unstable. The same
cannot be said for infinite-dimensional Banach algebras: take a stable Banach space and put
the zero product on it. However a stable Banach space can become unstable when it is turned
into a Banach algebra. We exhibit this behavior in Proposition(5.1.29) below.
Definition(5.1.23)[302]: We say that a continuous theory T has the order property if there
is a formula (%, y) with the lengths of x and ¥ the same, and a sequence of domains D
consistent with the sorts of x and ¥, and. a model M of T and (a;:i € N) € D(M)
such that

)

I/J(ai,aj) = ifi < jand w(ai,aj) =1ifi >].

Note that these evaluations are taking place in M. Also note that by the uniform
continuitye = 0 such that d(a;, a;) = ¢ forevery i # j where the metric here is interpreted
as the supremum of the coordinatewise metrics.

Proposition(5.1.24)[302]: Th(A) has the order property if and only if there is 1 and D such
that for all nand § > 0, there are a4, ..., a, € D(A) such that
Y(a;a)) <6ifi <jandy(a,a;) =1-68ifi >
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Definition(5.1.25)[302]: Suppose that M is a metric structure and p(x) € SP(M) is a type.
We say that p is finitely determined if for every formula ¢(x, ), choice of domains D’
consistent with the variables ¥, and m € N, there is k € N and a finite set B € D(M)
such that for every ¢;, ¢, € D' (M) .
_ - - 1 _ _ 1
lim|(b,e1) = ¢(b,&1)| <7 =lo®.a) —oPp.a)l < —.
Theorem(5.1.26)[302]: The following are equivalent for a continuous theory T
(i) T is stable.
(if) T does not have the order property.
(iii) If M is a model of T and p € S(M) then p is finitely determined.
Proof: (i) implies (ii) is standard: suppose that T has the order property via a formulafand
choose any cardinal . Fix u <X least such that 2* >x (note that 2<# <x . By
compactness, using the order property, we can find (@;: i € 2<#)such that e(ai,aj) =0if
[ < jin the standard lexicographic order and 1 otherwise. Clearly, y(S(4)) > x(4)
where A = {@;:i € 2<#} so T is not x-stable for any .
To see that (iii) implies (i), fix a model M of T with density character x where xX(=x
By assumption, every type over M is finitely determined and so there are at most xX(")=x
many types over M and so T is x-stable.
Finally, to show that (ii) implies (iii), suppose that there is a type over a model of T
which is not finitely determined. Fix p(x) 2 S? (M), ¢(X,¥), domains D’ consistent with
the variables ¥ and m € N so that for all k and finite B € D(M), there are n, ,n; €
D'(M)such that
max|o(b,ny) —@(bna)l <1/ k
but
lo(b,ny) — @(b,nz)| > 1/m.

We now use this p to construct an ordered sequence. Define sequences a;, bjc; and sets

B; as follows: B, =@ . If we have defined B;, choose b;,c; € D'(M) such that

mabeB].|<p(b, b)) —e(b,c)| < 1/2mbut |p(p, b)) — e, c)| < 1/m.
Now choose a; € D(M) so that a; realizes ¢(%,b;) — @(p,b;) and (%, c;) for all i < .
Let Bj+1 = B] {aj, b], C]} It follows that if i = jthen |g0(al,bj) - (p(ai,cj)| <1 /m If
i > jthen|p(a; b;) — ¢(a; )| < 1/2msince a; € B;. Consider the formula

0(x1, Y1, 21, X2, Y2, Z2) — |9 (x1, ¥2) — 9 (x4, 25)|.
Then 6 orders {a;, b;, c;: i € N)
Theorem(5.1.27)[302]: Suppose that A is a separable metric structure in a separable
language.
(i) If the theory of A is stable then for any two non-principal ultrafilters U,V on N, A4 =
AV,
(ii) If the theory of A is unstable then the following are equivalent:
(a) A has fewer than 22N°nonisomorphic ultrapowers associated with nonprincipal
ultrafilters on N.
(b) for any two non-principal ultrafilters U,V on N, A% = AY;
(c) the Continuum Hypothesis holds.
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It is worth mentioning that Theorem(5.1.27) is true in the first order context, as can be
seen by considering a model of a first-order theory as a metric model with respect to the
discrete metric. Although this is undoubtedly known to many, we were unable to find a
direct reference. The proof of (i) will use tools from stability theory, see [305].

Proof: (i) Assume that the theory of A is stable. We will show that A is c-saturated and so
it will follow that AY = AY no matter what the size of the continuum is (see Proposition
(5.1.18)).

So suppose that B € AY,|B| < ¢,, and q is a type over B. We may assume that B is an
elementary submodel and that g is nonprincipal and complete. As the theory of A is stable,
choose a countable elementary submodel B, < B so that q does not fork over B,. We shall
show that in AY one can always find a Morley sequence in qlg, of size c.

Towards this end, fix a countable Morley sequence I in the type of g[g and let g =
tp(I / By), a type in the variables x,, for n € N. Since B, is countable and the language is
separable, there are countably many formulas v, (xy, ..., x,, b;,) over B, such that
Y, (x4, ..., %, b,) =0 € qand {y,(xq, ..., x,,, b,) = 0:n € N} axiomatizes q.

Now let D; = {n > i: inf); (x, b;(n)) < 1/ i}; For a fixed n, consider {i:n € D;}. This
set has a maximum element; call it i, . Now fix af,..,ai’ € A such that ; =
(a{‘,...,a{;, bin) <1/1i,. Now consider the set J of all g: N — A such that g(n) €
{a},..,a]'} for alln. Any g €] will satisfy g| in A since every element of I realized

that type. If g,,..., g, are in J and distinct modulo U then they are independent over
B, since I was a Morley sequence. To finish then, we need to see that there are c-many
distinct g 's modulo U.

This follows from the fact that the in0 s are not bounded. To see this, for a fixed m, let X =
{n=>m: inf, Y,,(x,b(n)) < 1/m}. Pickanyn € X. We havethatn € D,, Soi, >m
and we conclude that the i,, ‘s are not bounded.

Since |B | < c, there is aJ, of cardinality less than ¢ such that B is independent from J
over J,. Choosing any a € ]\ J, and using symmetry of non-forking remembering that J
Is @ Morley sequence over B, , it follows that a is independent from B over B, is a model,
qlg, has a unique non-forking extension to B and it follows that a realizes g. This nishes
the proof of (i).

(ii) If the Continuum Hypothesis holds then AY is always saturated and so for any two
ultrafilters U, V, AY = AV even if we fix the embedded copy of A (Corollary (5.1.19)).

The implication (a) implies (c) follows from [310] and of course (b) implies (a). However,
(b) implies (c) also can be proved by a minor modification of proof from [120] (which is in
turn a modification of a proof from [308]), so we assume that the reader has a copy of the
former handy and we sketch the differences. Assume the theory of A is unstable. Then by
Theorem(5.1.26) it has the order property. The formula witnessing the order property
satisfies [120] by Corollary(5.1.9). Therefore the analogues of [120] can be proved by
quoting their proofs verbatim.

Hence if U is a nonprincipal ultrafilter on N then K(U) =x (defined in [120]) if and only
if there is a (Ro,») — 3 —gap in AY. By [308], if CH fails then there are ultrafilters U and
PV on N such that k(U) # k(V) and this concludes the proof.

We include two examples promised earlier and state three rather different problems.
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Recall that UHF, or uniformly hyperfinite, algebras are C*-algebras that are C*-tensor
products of (finite-dimensional) matrix algebras. They form a subcategory of C*-algebras
and the morphisms between them are *-homomorphisms.

Proposition(5.1.28)[302]: The category of UHF algebras is not axiomatizable.

Proof: By Proposition(5.1.6) it will suffice to show that this category is not closed under
taking (C*-algebraic) ultraproducts. We do this by repeating an argument from Ge-Hadwin
([311]) exploiting the fact that UHF algebras have unique traces that are automatically
faithful.

Let A be the CAR algebra ®,,enyM, (C) with trace tr, let U be a nonprincipal ultrafilter on
N, and let {p,,} < A be projections with tr(p,) = 27™. The sequence (p,,) represents a
nonzero projection in AY, but tr((p,)) = 0. Thus tr¥ is a non-faithful tracial state, so that
At is not UHF.

The same argument shows that simple C*-algebras are not axiomatizable.

Since every UHF algebra has a unique trace one could also consider tracial ultraproducts,
instead of norm-ultraproducts, of UHF algebras. However, such an ultraproduct is always a
factor ([313]) and therefore not a UHF algebra (because projections in UHF algebras have
rational traces).

The LP Banach spaces (1 < p < o) are known to be stable ([303]), and they become stable
Banach algebras when endowed with the zero product. Actually #P(1 < p < o) with
pointwise multiplication is also stable; this can be shown by methods similar to [120]. We
now prove that the usual convolution product turns #1(Z) into an unstable Banach algebra,
as was mentioned.

Proposition(5.1.29)[302]: The branch algebra #* = ¢1(Z, +) (with convolution product) is
unstable.

Proof: It suffices to show the order property for £1 algebra. This means we must give a
formula ¢ (x, y) of two variables (or n-tuples) on #?, a bounded sequence {x; } ¢ ¢! and
e > Osuchthat ¢(x;,x;) < ewheni < jand ¢(x;,x;) = 2ewheni > j.

Let {f,, },.ez denote the standard basis for #1, so that multiplication is governed by the
rule f,.f, = finan. Alsolet £13 x = £ € C(T) be the Gel'fand transform on £1so that f,
is the function [e' - e'™]. The Gel'fand transform is always a contractive homomorphism;
on #1lit is injective but not isometric.

We take @(x,y) = infj;<1llxz — yll,x; = (%)Zl, and € = % are unit vectors, being
convolution powers of a probability measure on Z, and x; = [eit - (cost)zi € C(T)] :
Fori < j,we have ¢(x;,x;) = 0 by taking z = (%)2"‘21’.

Fori > j,lett, € (0,2m) be such that (cos ty)% Forany z € (1),

N2 o
S CECRR:

c(m —

1

Z)

where the middle inequality is justified by evaluation at t,. We conclude that ¢ (x;, x;) =
%as desired.

A well-known problem of Brown{Douglas{Fillmore ([306]) asks whether there is an
automorphism of the Calkin algebra that sends the image of the unilateral shift to its adjoint.

=

iz — x| . = [|2:2 — %]
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The main result of [104] implies that if ZFC is consistent then there is a model of ZFC in
which there is no such automorphism. A deep metamathematical result of Woodin, known
as the).2 Mabsoluteness theorem, essentially (but not literally) implies that the Brown-
Douglas-Fillmore question has a positive answer if and only if the Continuum Hypothesis
implies a positive answer (see [322]). The type referred to in the following question is the
type over the empty set.

We end with discussion of finite-dimensional matrix algebras and a result that

partially complements [120], where it was proved that if the Continuum Hypothesis fails
then the matrix algebras M,,(C), for n € N, have nonisomorphic tracial ultraproducts.
Proposition(5.1.30)[302]: Every increasing sequence n(i), for i € N, of natural numbers
has a further subsequence m(i), for i € N such that if the Continuum Hypothesis holds then
all tracial ultraproducts of M,,,;(C), for i € N, are isomorphic.
Proof: The set of all £-sentences is separable. Let T,, = Th(M,,(C)), the map associating
the value ™~ (C)of a sentence ¥ in M,,(C) to . Since the set of sentences is separable we
can pick a sequence m(i) so that the theories T,,;y converge pointwise to some theory T, .
Let U be a nonprincipal ultrafilter such that {m(i):i € N} € U. By Los's theorem,
Proposition(5.1.8), Th( [[y M, (C)) = T,. By Proposition(5.1.16) and the Continuum
Hypothesis all such ultrapowers are saturated and therefore Proposition(5.1.18) implies all
such ultrapowers are isomorphic.

Section (5.2): C*-Algebras Shuhei Masumoto

A topological space is said to have the countable chain condition (CCC for short) if
every family of mutually disjoint nonempty open subsets is countable.

Any separable space clearly has CCC. Conversely, every metric space which has CCC
Is separable.

The relation between separability and direct products is simple. The direct product of
a family of separable spaces are separable when its cardinality is less than or equal to 2%;
but if the cardinality of the family is greater than 2%, then its direct product can be
nonseparable. On this point, CCC behaves differently: it is irrelevant to the cardinality of the
family. It is known that the direct product of a family of CCC spaces has CCC if for every
finite subfamily, its direct product has CCC; however, the statement that the direct product
of two CCC spaces has CCC cannot be proved or disproved in ZFC [106].

Now we shall restrict our interest to locally compact Hausdorff spaces. Let be a
locally compact Hausdorff space and C,(X) be the C*-algebra of the continuous functions
on X which vanish at infinity. In view of the Gelfand-Naimark theorem, C,(X) contains all
the information about the topological structure of X.

In particular, there is a canonical one to one correspondence between the open sets of X and
the closed ideals of C ((X), and CCC can be reformulated as a condition on the ideal
structure of C,(X),whence this condition can be generalized for noncommutative C* -
algebras. Moreover, since C, (X X Y) is canonically isomorphicto Cy(X)QC,(Y), the
discussion on the relation between CCC and direct products yields information about the
ideal structure of tensor products of C*-algebras. In this way, we prove the following
theorems:

The precise definition of CCC for C*-algebras is introduced. Martin’s Axiom, which is
known to be independent from ZFC, is explained. Here it is also verified that the negation
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of the Suslin Hypothesis, which is another independent statement explained, implies the
opposite conclusion of Theorem (5.2.19). We prove Theorems (5.2.16) and (5.2.19).
Combining this fact with Theorem (5.2.16), we conclude that the statement that tensor
products of CCC C*-algebras has CCC is independent from ZFC.
Definition(5.2.1)[323]: Two nonzero ideals in a C*-algebra are said to be orthogonal if their
intersection is the zero ideal. A C*-algebra has the countable chain condition (CCC) if any
family of nonzero mutually orthogonal ideals is countable.

Note that if I, J are ideals in a C*-algebra, then I n J coincides with 17, whence they are
orthogonal ifand only if I[J = 0.

We shall begin with verifying that this definition is a generalization of CCC for topological
spaces. Recall that a topological space has CCC if any family of
nonempty mutually disjoint open subsets is countable.

Proposition(5.2.2)[323]:Let X be a locally compact Hausdorff space. Then C,(X) has CCC
as a C*-algebra if and only if X has CCC as a topological space.

Proof: Suppose first that X has CCC and let {I;},c, be a family of nonzero mutually
orthogonal ideals in Cy(X). We can take an element f; € I, of norm 1 for each 4. Set U; =
{x € X||fi(x)| > 1/2}. Then {U,},e4 is a family of nonempty mutually disjoint open
subsets of X, whence #4 < w. Thus, C,(X) has CCC by definition.

If X admits an uncountable family {U;},e4 of nonempty mutually disjoint open sets, then
{Co(Uy)}aea 1s an uncountable family of nonzero mutually orthogonal ideals of C, (X).
Therefore, C, (X).does not have CCC.

The following easy proposition characterizes CCC. Note that a von Neumann algebra is
said to be o-finite if it admits no uncountable family of mutually orthogonal projections.
Proposition(5.2.3)[323]:

(i) Let A be a C*-algebra. Then A has CCC if and only if there exists no family {a;};c4 of
nonzero elements such that ayAa, = 0ford # .

(if) A von Neumann algebra has CCC if and only if its center is o-finite.

Proof: (i) Suppose that there is an uncountable family {a,},c, 0f nonzero elements such
that ayAa, = 0for A # p. Foreach A € A, let Aa,A be the ideal generated by a,. Then
{I,}2e4 1S an uncountable family of nonzero mutually orthogonal ideals, so <A does not have
CCC.

Conversely, assume that A does not have CCC and let {I,c,} be an uncountable family of
nonzero mutually orthogonal ideals. Taking nonzero a, € I,for each A, we obtain a;Aa, =
0 for A # pbecause I I, = 0.

(if) Let I, I, be ideals of a von Neumann algebra M. Then it can be easily verified that
I1, = Oifandonlyif I7¥I$¥ = 0, whereI?" denotes the o-weak closure of I;. Now 7%
is of the form M, for a central projection Z;, and the two ideals are orthogonal if and only
if these projections are orthogonal.

Therefore, M has CCC if and only if there is no uncountable family of nonzero mutually
orthogonal projections, that is, o-finite.

Proposition(5.2.4)[323]: A separable C*-algebra has CCC.

Proof. Suppose that <A does not have CCC, and {I;},¢4 be an uncountable family of nonzero
mutually orthogonal ideals. If h; € I, is a positive element of norm 1, then it follows by
functional calculus that |h; — h,|| = 1.1f we denote by U, the open ball of radius 1,2
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centered at h, then {U,};¢, is an uncountable family of mutually disjoint open subsets.
Hence, A is not separable.

An ideal of a CCC C*-algebra clearly has CCC. Also, it can be easily verified
that an extension of a CCC C*-algebra by a CCC C*-algebra has CCC. On the other hand, a
quotient of a CCC C*-algebra does not necessarily have CCC. Indeed, let SN be the Stone-
Cech compactification of N. It has CCC because it is separable.
However, the StoneCech remainder SN \ N does not have CCC because there exists an
almost disjoint family of 2 subsets of w[106]. Therefore, C(8N \ N ) does not have CCC,
although it is the quotient of the CCC C*-algebra C(AN) = £*by Cy(N) = c,.

Since C(BN \ N )can be obtained as the inductive limit of £~ Lo 5 ---,where ¢@: £* —
2% is defined by @(f)(n) = f (n+ 1), it also follows that inductive limits of CCC C*-
algebras do not necessarily have CCC. On this direction, what we can prove is the following:

To prove this proposition, we use the lemma below. A proof can be found in [326].
Lemma(5.2.5)[323]:Let A be a C*-algebra and {A,} be a directed set of subalgebras with
its union dense in A. If I is an ideal of A, then it is obtained as the closure of the union of
{InA,}.

Proposition(5.2.6)[323]:Let Abe a C*-algebra and k be an infinite cardinal number with its
cofinality not equal to w,. If there is an increasing sequence {A,},<x 0of CCC C*-
subalgebras such that U,y A, = A, then A has CCC.

Proof. Assume that there is an uncountable family {I;},<,,,

Of nonzero mutually orthogonal ideals of A. For each A, set
B3 = min{a < k| [ N A, # 0},
which exists by Lemma (5.2.5), and write B = sup, 8. if B < k holds, then {Az N I,-L}A is

an uncountable family of nonzero mutually orthogonal ideals, which contradicts to the fact
that A has CCC. On the other hand, if § < k, then the cofinality of k is w, whence there
IS an unbounded increasing sequence {y;, }n<e IN k. Now the set S,, of 1 < w, with 8; <y,
is at most countable for each n, whence w; = #(U,, S,,) < w, a contradiction.
Proposition(5.2.7)[323]:Let M and V' be CCC von Neumann algebras. Then the tensor
product M@N of M and V" as a von Neumann algebra also has CCC.

Proof: We shall denote by Z(M), Z(N) and Z(M QN") the centers of M, N" and M QN
respectively. Recall that Z (M Q") coincides with Z(M)®Z (M) [329]. Hence it suffices
to show that the tensor product of two abelian o-finite von Neumann algebras is also o-
finite. To see this, note that every abelian von Neumann algebra is of the form L (p) for
some Radon measure u [329], and it is o -finite if and only if p is o -finite. Since
L* (W)®L* (v),being canonically isomorphic toL®(u®v), is o-finite if L* (1) and L®(v)
are both o-finite, the conclusion follows.

A compact Hausdorff space is a stonean space if the closure of every open set is open.
Suppose that X is a stonean space and p is a Borel measure on it. If for any increasing family
{fi} € Cr(X) with sup f; = f € Cr(X) the equality pu(f) = sup p(f;) holds, then p is
said to be normal. A stonean space is called a hyperstonean space if for any nonzero positive
f € Cr(X) there exists a normal Borel measure p such that u( f ) > 0. It is known that if X
Is hyperstonean, then C(X) is a von Neumann algebra, and every abelian von Neumann
algebra is of this form [329]. Combining this fact with the preceding proposition, we obtain
the following result.
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Corollary(5.2.8)[323]:The direct product of two hyperstonean CCC spaces has CCC.
Proof: Let X,Y be hyperstonean CCC spaces. It follows from Proposition(5.2.7) that the von
Neumann tensor product C(X)®C(Y) has CCC, and C(X)®C(Y), which is isomorphic to
C(X x Y),is a C*-subalgebra of C(X)®C(Y). By Proposition(5.2.3), it can be easily
verified that any C*-subalgebra of commutative CCC C*-algebra hasCCC, whence X XY
has CCC.

We introduce two statements which are known to be independent from ZFC, see [106]
or [327].

The first statement is Martin’s axiom. We shall introduce some definitions related to
partially ordered sets in order to express this axiom in a simple form.
Definition(5.2.9)[323]:Let P be a nonempty partially ordered set. Two elements p,q € P
are incompatible if thereisno r € P with r < p and r < q. If there is no uncountable family
of mutually incompatible elements in P, then P is said to have the countable chain condition
(CCO).

As is easily verified, a C*-algebra has CCC if and only if its nonzero ideals form a CCC
partially ordered set, where the order is defined by inclusion. Similarly, a nonempty
topological space has CCC if and only if the set of nonempty open subsets has CCC as a
partially ordered set.

Definition(5.2.10)[323]:Let P be a partially ordered set.

(i) Asubset D c P is dense if for any p € P thereis q € D with g < p.

(i) A nonempty subset F c P is called a filter on P if it satisfies the following:
(@) if p,q are in F, then there exists r € F withr < pandr < g;

(b)ifpe Fandq = p, thenq € F.

Suppose that P is a nonempty partially ordered set and fix the topology generated by
subsets of the form {g € P |q < p} for p € P. Then P has CCC if and only if P has CCC as
a topological space, and D < P is dense if and only if it is dense as a topological subspace.

Now we shall see the exact statement of Martin’s axiom MA. Let k be a cardinal number.
MA(k): If P is a nonempty CCC partially ordered set and {D,} 4, IS a family of dense
subsets in P, then there exists a filter F on P such that F n D, }Is not empty for all a.

MA: MA(x) holds for any x with w < k < 2%.

It is known that MA(w) holds (the Rasiowa-Sikorski lemma) and MA(2) does not hold
in ZFC, whence the Continuum Hypothesis CH trivially implies MA. On the other hand,
MA is indeed consistent with ZFC + —CH. In particular,ZFC + MA(w,) IS consistent.

The other statement we use is Suslin’s Hypothesis SH. This hypothesis is related to
characterization of the real line as an ordered set. Note that a totally ordered set with the
following properties is order-isomorphic to the real line:

(i) unbounded; there does not exist minimum nor maximum element.

(i) dense; there is an element between any two elements.

(iif) complete; every nonempty bounded subset has a supremum and an inffimum.

(iv) separable; there is a countable subset which is dense with respect to the usual order
topology.

Definition(5.2.11)[323]:Let S be a totally ordered set which is unbounded, dense and com-
plete. Then S is called a Suslin line if it is nonseparable but CCC as a topological space,
where its topology is the usual order topology generated by open intervals.

SH: There does not exist a Suslin line.
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In other words, SH claims that separability in the characterization of the real line
above can be replaced by CCC. It is known that the diamond principle, which is a
consequence of the axiom of constructibility V = L, implies—SH[328]. On the other hand,
MA(w,) implies SH, whence SH is independent from ZFC.

Proposition(5.2.12)[323]:A Suslin line is a locally compact space.

Proof: It suffices to show that every bounded closed interval is compact. This can
be verified by seeing that a proof for the Heine-Borel theorem can be applied to
Suslin lines.

Given an open covering {U;},e4 Of a bounded closed interval [a, b], we shall prove
that [a, b] can be covered by finitely many U,’s. Note that we may assume each U, is an
open interval.

Let X bethesetofall x € [a, b] such that [a, x] can be covered by finitely many U,’s.

Then X is not empty because a is in X , and so sup X exists by completeness.
It suffices to show that sup X belongs to X and coincides with b. For this, take 4, € 4 such
that sup X is in U, . Then X n U, contains some element, say c. Now [a,c] can be
covered by finitely many Uy’s, and [c, supX] is included in U, , sosup X is in X. Also, for
any x € U, the interval [a, x] can be covered by finitely many U,’s, whence sup X must
coincide with b.

The following proposition is from [106]. For the sake of completeness, we include

the proof.

Proposition(5.2.13)[323]:1f S is a Suslin line, then S X S does not have CCC.

Proof: By transfinite induction, we shall take a, , b,, c, € S for a < w, so that

(i)a,<b, <c,;

(ii) bg & (c , c,) for B < a.

This can be carried over because for each a < wy, the set {bz| < a }, being countable,is
not dense in S. Setting U,:= (ag b,) X (by, c,), We obtain an uncountable family
{U4}aea OF nonempty mutually disjoint opensetsin S X S .

Corollary(5.2.14)[323]: =SH implies the existence of a unital commutative CCC C* -
algebra A such that A®A does not have CCC.

Proof: Let S be a Suslin line and consider the one point compactification S*

of S . Since S contains S as a dense subspace, it is a CCC space. On the other hand, S* x S*
does not have CCC because it contains S X S . Now A = C(S™) is a unital commutative
CCC C*-algebra, but A®A, being isomorphic to C(S* x S*), does not have CCC.

Here we shall prove Theorems (5.2.16) and (5.2.19). For the first theorem, we need the
following combinatorial lemma, which is known as the A-system lemma. A proof can be
found in any standard textbook on set theory in which the method of forcing is dealt with.
Lemma(5.2.15)[323]: (A-system lemma). Every uncountable family of finite sets includes
an uncountable subfamily whose pairwise intersection is constant.

Theorem (5.2.16)[323]: The minimal tensor product of a family of unital CCC C*-algebras
has CCC if for every finite subfamily, its minimal tensor product has CCC.

Proof. Let {A;};; be a family of unital C*-algebras such that for every finite ] c I, the
minimal tensor product ®;¢;A; has CCC. We shall prove that A := ®;¢;A; also has CCC.

Suppose that, contrary to our claim, there exists an uncountable family {I;},<, of nonzero
mutually orthogonal ideals in A. By Proposition(5.2.5), we can find a finite subset J, c I
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for each 1 € A such that I, N ®;¢;A; # 0. By the A-system lemma, we may assume that
there exists a set R such that I[; NI, = R for any A # p. Since the tensor products are
minimal, I; N ©;¢;,A; is not zero for each A, where ©;¢;,A;is the algebraic tensor
products of A; 's. Take nonzero f; € I; N Oiey,A; foreach A. If R is empty, then f;f, # 0
for A # y, which contradicts with the assumption that I, and I, are orthogonal to each other.
Therefore, f, is of the form X, g ® hy , where gfis in ®;cgeA;and {Rf}, is a linearly
independent set in ®;¢;, rA;. If 4 # p, then the equality I; I, = 0 implies that g’,{agfl =
0 for all k,[ and a € ®;cgA; . Since for each A there exists k with g& = 0,, it follows that
®;crA; does not have CCC by Proposition(5.2.3), which is a contradiction.
Therefore, ®;¢;A; has CCC.
Corollary(5.2.17)[323]:Every minimal tensor product of unital separable C*-algebras has
CCC.

We use the following lemma.
Lemma (5.2.18)[323]:Suppose that A is a CCC C*algebra and {I,},<. be a family of its
ideals. Then MA(w,) implies that there exists an uncountable subfamily of the ideals which
has the finite intersection property.
Proof: SetJ, := 3, <, I,. Then J, is a transfinite decreasing sequence of ideals of A. We
shall first show that there exists agsuch that Jzis an essential ideal of 7, for all § > a,.
Suppose the contrary. Then we can find an transfinite increasing sequence {fs}s<y, <
wqsuch that the inclusion Js . < Jg is not essential. In other words, there exists a nonzero
ideal K5, of Jp such that K. N g, . = 0.Now {Kp, }5<,, IS an uncountable family of
mutually orthogonal ideals in A, which is a contradiction.

Next, let P be the set of nonzero ideals in J,,. Then P has CCC as a partially ordered set,
because an ideal of a CCC C*-algebra has CCC. For each f > «,, we Set

Dg ={p € P|p c I, for somey = f}
and claim that this is dense in P. To prove this, take an arbitrary g € P. Then q" := g N Jp
is not zero by the definition of a,. Here, J is approximated by Y., cs I, where S C]B, w4
is finite. By [297], Xy es I, is norm closed for each S, whence we can use Lemma (5.2.5) to
conclude that g is the inductive limit of {g N ¥, s I, }s, and so there exists y > B with g N
L, # 0.Since g N L, is clearly in Dg, it follows that Dy is dense, as desired.

Now let F be a filter on P such that F N Dg is not empty for all g, whose existence is
guaranteed by MA(w,). Then {I,| 3p € F,p c 1,} has the finite intersection property, and
this is uncountable because the condition F N Dg # @ for each g implies that the set of all
a such that I, o p for some p € F is unbounded in w,.This completes the proof .
Theorem (5.2.19)[323] Martin’s Axiom, MA(w,), implies that any minimal tensor product
of unital CCC C*-algebras has CCC.

Proof. By Theorem (5.2.16), it suffices to show that if .4 and B have CCC, then A ® B has
CCC. Assume that, on the contrary, there exists a family{/,},<,, 0of nonzero mutually
orthogonal ideals in A @ B. Then there exist nonzero ideals 7, € A and K, € B with
7, © K, c 1,, by [324]. Here, by the preceding lemma, we may assume that {J,}, and

Kala
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satisfy the finite intersection property. Then, I, N I contains (J, N Jg) & (K, N Kp) #
0, which is a contradiction. Therefore, A @ B has CCC, as expected.

Let A be a C*-algebra. By Prim(A), we shall denote the primitive spectrum of A. (For
the definition and elementary properties of primitive spectra, see [83].) It can be easily
verified that A has CCC if and only if Prim(cA) has CCC as a topological space, and Lemma
(5.2.18) is obtained as a corollary of [106]. Here, we may replace Prim(A) by the prime
spectrum prime (A), because the topologies of these spaces are isomorphic as partially
ordered sets.

In [330], it is proved that Prim (A®B)is homeomorphic to Prim (A) X Prim(B)

provided that either A or B is type 1. Also, in [324], one can find various conditions for
prime (AQ®B to be homeomorphic to prime (A) X Prim(B). In these cases, Theorem
(5.2.19) follows from the corresponding fact for topological spaces [106].
One problem is whether Theorem (5.2.16) and Theorem (5.2.19) can be generalized to non-
minimal tensor products. Since any tensor product has the minimal tensor product as its
quotient, it depends on whether the kernel of the quotient map, which is difficult to be
investigated, has CCC.

Another problem lies in the definition of CCC. We have defined CCC in terms of ideals,
whence this condition is trivial for simple C*-algebras.

In order to avoid this phenomenon, we can use hereditary C*-algebras in place of ideals: we
shall say two hereditary C*-subalgebras A and B are orthogonal to each other if AB = 0;
a C*-algebra has strong CCC if there is no uncountable family of nonzero mutually
orthogonal hereditary C*-subalgebras. Then we can prove the following.

(a) Strong CCC implies CCC.

(b) C*-subalgebras of a strong CCC C*-algebra have strong CCC.

(c) An extension of a strong CCC C*-algebra by a strong CCC C*-algebra has strong CCC.
(d) A von Neumann algebra has strong CCC if and only if it is o-finite, so tensor products of
two strong CCC von Neumann algebras have strong CCC.

Corollary(5.2.20)[370]:

(i) Let A2 be a C*-algebra. Then A2 has CCC if and only if there exists no family {a;};c4
of nonzero elements such that ), ajA%aj,. = 0fore # 0,

(if) A von Neumann algebra has CCC if and only if its center is o-finite.

Proof: (i) Suppose that there is an uncountable family {a}},c, of nonzero elements such
that 3, ajA%aj.. = 0fore # 0.Foreach 2 € A, let A%a}A? be the ideal generated by
aj. Then {I;},¢4 is an uncountable family of nonzero mutually orthogonal ideals, so A*
does not have CCC.

Conversely, assume that A2 does not have CCC and let {I;c,} be an uncountable family

of nonzero mutually orthogonal ideals. Taking nonzero aj € I, for each A, we obtain
Y, ajA?aj,. = 0fore # 0because I;1;,. = 0.
(if) Let I, I, be ideals of a von Neumann algebra M. Then it can be easily verified that
LI, = Oifandonlyif I7¥Ig¥ = 0, whereI?" denotes the o-weak closure of I;. Now 7%
is of the form M, for a central projection Z;, and the two ideals are orthogonal if and only
If these projections are orthogonal.
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Section (5.3): Elementary Equivalence of C*-Algebras

We examine extent to which several classes of operator algebras are saturated in the
sense of model theory. In fact, few operator algebras are saturated in the full model-theoretic
sense, but in this setting there are useful weakenings of saturation that are enjoyed by a
variety of algebras. The main results show that certain classes of C*-algebras do have some
degree of saturation, and as a consequence, have a variety of properties previously
considered in the operator algebra. For all the definitions involving continuous model theory
for metric structures (and in particular of C*-algebras), see [335] or [119]. Different degrees
of saturation and relevant concepts will be defined.
Among the weakest possible kinds of saturation an operator algebra may have, which
nevertheless has interesting consequences, is being countably degree-1 saturated. This
property was introduced by Farah and Hart in [114], where it was shown to imply a number
of important consequences (see Theorem (5.3.11) below). It was also shown in [114] that
countable degree-1 saturation is enjoyed by a number of familiar algebras, such as coronas
of g-unital C*-algebras and all non-trivial ultraproducts and ultrapowers of C*-algebras.
Further examples were found by Voiculescu [37]. Countable degree-1 saturation can thus
serve to unify proofs about these algebras. We extend the results of Farah and Hart by
showing that a class of algebras which is broader than the class of o-unital ones have
countably degree-1 saturated coronas. The following theorem is Theorem(5.3.27) below;
for the definitions of a-unital C*-algebras and essential ideals, see Definition(5.3.20).
Theorem (5.3.1). Let M be a unital C*-algebr a, and let A € M be an essential ideal.
Suppose that there is an increasing sequence of positive elements in A whose supremum is
1,,,, and suppose that any increasing uniformly bounded sequence converges in M. Then
M /A is countably degree-1 saturated.

One interesting class of examples of a non-o-unital algebra to which our result applies
is the following. Let N be a II; factor, H a separable Hilbert space and K be the unique
two-sided closed ideal of the von Neumann tensor product N@®®B(H)(see [337] and [338]).
Then (N®B(H)) /XK is countably degree-1 saturated.

We consider generalized Calkin algebras of uncountable weight, as well as B(H) where H
has uncountable density. Considering their complete theories as metric structures.

Theorem (5.3.2). Let a # B be ordinals, H, the Hilbert space of density »,. Let B =
B(H,) and C, = B, /K the Calkin algebra of density. s, Then the projections of the
algebras C,and Cgas posets with respect to the Murray-von Neumann order are elementary
equivalent if and only ifa = f mod w®, where w® is computed by ordinal exponentiation,
as they are the infinite projections of B, and Bs. Consequently, if a # g then B, Z Bp

and C, # Bg.

Elementary equivalence of C*-algebras A and B can be understood, via the Keisler-
Shelah theorem for metric structures, as saying that A and B have isomorphic ultrapowers.
For our second group of results we consider (unital) abelian C*-algebras, which are
all of the form C(X) for some compact Hausdorff space X. We focus in particular on the
real rank zero case, which corresponds to X being 0-dimensional. We first establish a
correspondence between the Boolean algebra of the clopen set of X and the theory of C(X).
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Theorem (5.3.3). Let X and Y be compact 0-dimensional Hausdorff spaces. Then € (X) and
C(Y) are elementarily equivalent if and only if the Boolean algebras CL(X) and CL(Y) are
elementarily equivalent.

We obtain several corollaries of the above theorem. For example, we show that many
familiar spaces have function spaces which are elementarily equivalent, and hence have
iIsomorphic ultrapowers.

We study saturation properties in the abelian setting. We find that if € (X)is countably
degree-1 saturated then X is a sub-Stonean space without the countable chain condition and
which is not Rickart. In the 0-dimensional setting we describe the relation between the
saturation of C(X)and the saturation of CL(X). While some implications hold in general, a
complete characterization occurs in the case where X has no isolated points. The following
Is a special case of Theorems(5.3.41) and(5.3.42).

Theorem (5.3.4). Let X be a compact 0-dimensional Hausdorff space without isolated
points. Then the following are equivalent:

(a) C(X) is countably degree-1 saturated,

(b) C(X) is countably saturated,

(c) CL(X) is countably saturated.
Before beginning the technical portion, we wish to give further illustrations of the
importance of the saturation properties we will be considering, particularly the full model-
theoretic notion of saturation (see Definition (5.3.8) below). For countable degree-1
saturation we refer to Theorem(5.3.14) for a list of consequences. The following fact follows
directly from the fact that axiomatizable properties are preserved to ultrapowers, which are
countably saturated (see [335]).

Fact(5.3.5)[331]: Let P be a property that may or may not be satisfied by a C*-algebra.
Suppose that countable saturation implies the negation of P. Then P is not axiomatizable
(in the sense of [335] ).
Other interesting consequences follow when the Continuum Hypothesis is also assumed. In
this case, all ultrapowers of a separable algebra by a non-principal ultrafilter on N are
isomorphic. In fact, all that is needed is that the ultrapowers are countably saturated and
elementarily equivalent:
Fact(5.3.6)[331]: (See [119].) Assume the Continuum Hypothesis. Let A and B be two
elementary equivalent countably saturated C*-algebras of density »,. Then A = B.
Applying Parovicenko's Theorem (see [33]), the above fact immediately yields that under
the Continuum Hypothesis if X and Y are locally compact Polish 0-dimensional spaces then
C(BX\X) = C(BY\Y).
Saturation also has consequences for the structure of automorphism groups:
Fact(5.3.7)[331]: (See [347].) Assume the Continuum Hypothesis. Let A be a countably
saturated C*-algebra of density »,. Then A has 2*1-many automorphisms. In particular, A
has outer automorphisms.

It is known that for Fact(5.3.7) the assumption of countable saturation can be
weakened in some particular cases (see [118] and [114]), and the property of having many
automorphisms under the Continuum Hypothesis is shared by many algebras that are not
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even quantifier-free saturated (for example the Calkin algebra). In particular it is plausible
that the assumption of countable saturation in Fact(5.3.7) can be replaced with a lower
degree of saturation.

In light of this, and since the consistency of the existence of non-trivial
homeomorphisms (see [347]) of spaces of the form SR™\ R" is still open (forn = 2), it
makes sense to ask about the saturation of C(SR™\R™). In the opposite direction, the
Proper Forcing Axiom has been used to show the consistency of all automorphisms of
certain algebras being inner.

We begin by reviewing the definition and basic properties. Since finite-dimensional
C*-algebras have full model-theoretic saturation, and hence have all of the weakenings in
which we are interested, we assume throughout that all C*-algebras under discussion are
infinite dimensional unless otherwise specified.

We will be considering C*-algebras as structures for the continuous logic formalism

of [335] (or, for the more specific case of operator algebras, [119]). For many of the results
it is not necessary to be familiar with that logic. Informally, a formula is an expression
obtained from a finite set of norms of x-polynomials with complex coefficients by applying
continuous functions and taking suprema and infima over some of the variables. A formula
Is quantifier-free if it does not involve suprema or infima. Aformula is a sentence if every
variable appears in the scope of a supremum or infimum. [119] for the precise definitions.
Given a C*-algebra A we will denote as A.;,4;and A" the closed unit ball of 4, its
boundary, and the cone of positive elements respectively.
Definition(5.3.8)[331]: Let A be a C*-algebra, and let @be a collection of formulas in the
language of C*-algebras. We say that A is countably @-saturated if for every sequence
(0;))nen Of formulas from @with parameters from A.,, and sequence (K,,),en Of cOmpact
sets, the following are equivalent:

(i) There is a sequence (by)xey Of elements of A, such that @4 (b) € K, foralln € N;
(i) For every € > 0 and every finite A c N there is (by)xen S A<1, depending on € and
A, such that 4(b) € (K,). foralln € A.

The three most important special cases for us will be the following:

(a) If @contains all 1-degree *-polynomials, we say that A is countably 1-degree
saturated.

(b) If @contains all quantifier-free formulas, we say that A is quantifier-free saturated.

(c) If @is the set of all formulas we say that the algebra A is countably saturated.
Clearly condition (i) in the definition always implies condition (ii), but the converse does
not always hold. We recall the (standard) terminology for the various parts of the above
definition. A set of conditions satisfying (ii) in the definition is called a type; we say that
the conditions are approximately finitely satisfiable or consistent. When condition (i) holds,
we say that the type is realized (or satisfied) by (by)ken-
An equivalent definition of quantifier-free saturation is obtained by allowing only *-
polynomials of degree at most 2 [114]. By (model-theoretic) compactness the concepts
defined by Definition(5.3.8) are unchanged if each compact set K,, is assumed to be a
singleton.
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In the setting of logic for C*-algebras, the analogue of a finite discrete structure is a C*-
algebra with compact unit ball, that is, a finite-dimensional algebra. The following fact is
then the C*-algebra analogue of a well-known result from discrete logic.

Fact(5.3.9)[331]: (See [335].) Every ultraproduct of C* -algebras over a countably
incomplete ultrafilter is countably saturated. In particular, every finite-dimensional C*-
algebra is countably saturated.

The second part of the fact follows from the first because any ultrapower of a finite-
dimensional C*-algebra is isomorphic to the original algebra (see [335]).

A condition very similar to the countable saturation of ultraproducts was considered
by Kirchberg and Rgrdam under the name "e-test" in [352]. Before returning to the analysis
of the different degrees of saturation, we give definitions for two well-known concepts that
we are going to use strongly, but that may not be familiar to a C*-algebraist.
Definition(5.3.10)[331]: The theory of a C*-algebra A is the set of all sentences in the
language of C*-algebras which have value 0 when evaluated in A. We say that C*-algebras
A and B are elementary equivalent, written A = B, if their theories are equal.

Elementary equivalence can be defined without reference to continuous logic by way of the
following result, which is known as the Keisler-Shelah theorem for metric structures. The
version we are using is stated in [335], and was originally proved in an equivalent setting in
[350].

Theorem(5.3.11)[331]: Let A and B be C*-algebras. Then A = B if and only if there is an
ultrafilter U (over a possibly uncountable set) such that the ultrapowers A% and BY are
isomorphic.

Definition(5.3.12)[331]: Let A be a C*-algebra. We say that the theory of A has quantifier
elimination if for any formula @(x) and any € > 0 there is quantifier-free formula
Y (%)such that for every C*-algebra B satisfying A = B, and any b € B (of the appropriate
length) we have that in B,

10(b) —y(D)| <e.

Countable degree-1 saturation is the weakest form of saturation that we will consider. Even
this modest degree of saturation for a C*-algebra has interesting consequences. In particular
it implies several properties (see the detailed definition before) that were shown to hold in
coronas of o-unital algebras in [34]

Definition(5.3.13)[331]: (See [34].) Let A be a C*-algebra. Then A is said to be

(@) SAW™ if any two o-unital subalgebras C, B are orthogonal (i.e., bc = 0 forall b € B
and ¢ € C) if and only if are separated (i.e., there is x € A such that xbx = b for all
b € Band xc = 0 forall x € 0);

(b) AA-CRISP if for any sequences of positive elements (a,,), (b,)such that for all n we
have a, < a,4q1 <...< by, < b, and any separable D < A such that forall d € D
we have lim,||[d, a,.]|l = 0, thereis ¢ € A* such that a,, < ¢ < b,, for any n and for
all d € D we have [ ¢,d] = 0;

(c) o-sub-Stonean if whenever C € A is separable and a, b € A* are such that aCh =
{0} then there are contractions f,g € C'n A such that fg =0,f, =a and gb =
b, C' N A denoting the relative commutant of C inside A.
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Theorem (5.3.14)[331]: (See [114].) Let A be a countably degree-1 saturated C*-algebra.
Then:
(a) AisSAW™,

(b) Ais AA-CRISP,
(c) A satisfies the conclusion of Kasparov's technical theorem (see [20]),
(d) A is a-sub-Stonean,

(e) every derivation of a separable subalgebra of A is of the form 6§, (x) = bx — xb for
some b € A,

(f) A is not the tensor product of two infinite dimensional C*-algebras (this is a conse-
quence of being SAW ).

It is useful to know that when a degree-1 type can be approximately finitely satisfied by
elements of a certain kind then the type can be realized by elements of the same kind.
Lemma(5.3.15)[331]: (See [114].) Let A be a countably degree-1 saturated C*-algebra. If
a type can be finitely approximately satisfied by self-adjoint elements then it can be realized
by self-adjoint elements, and similarly with "self-adjoint” replaced by "positive".

We will also make use of the converse of the preceding lemma, which says that to check
countable degree-1 saturation it is sufficient to check that types which are approximately
finitely satisfiable by positive elements are realized by positive elements.
Lemma(5.3.16)[331]: Suppose that A is a C*-algebra that is not countably degree-1
saturated. Then there is a countable degree-1 type which is approximately finitely
satisfiable by positive elements of A but is not realized by any positive element of A.
Proof: Let (P,(X)),,en be degree-1 polynomials, and (K,,),ey COmpact sets, such that the
type {||P,(X)|| € K,,:n € N } is approximately finitely satisfiable but not satisfiable in A.
For each variable x,, we introduce new variables vy, wy, v, and z, . For each n, let
Q.(v,w,y, Z)be the polynomial obtained by replacing each x;, in B, by vy, + iw, — y;, —
iz,. Since every x € A can be written as x = v + iw — y — iz where v,w,y,z € A%, it
follows that {||Q,(7,w,¥,2)|| € K,:n €N} is approximately finitely satisfiable
(respectively, satisfiable) by positive elements in A if and only if {||B,(X)|| € K,, : n € N}
Is approximately finitely satisfiable (respectively, satisfiable).

The first example of an algebra which fails to be countably degree-1 saturated is
B(H), where H is an infinite dimensional separable Hilbert space. In fact, no infinite
dimensional separable C*-algebra can be countably degree-1 saturated; this was observed in
[114]. We include here a proof of the slightly stronger result, enlarging the class of algebras
that are not countably degree-1 saturated.

Definition(5.3.17)[331]: A C™-algebra A has few orthogonal positive elements if every
family of pairwise orthogonal positive elements of A of norm 1is countable.

We will further examine the property of having few orthogonal positive elements in
the context of abelian C*-algebras. For now, we have the following lemma:
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Lemma(5.3.18)[331]: If an infinite dimensional C*-algebra A has few orthogonal positive
elements, then A is not countably degree-1 saturated.

Proof: Suppose to the contrary that A has few orthogonal positive elements and is countably
degree-1 saturated. Using Zorn's lemma, find a set Z € AT which is maximal (under
inclusion) with respect to the property that if x,y € Z and x # y, then xy = 0. By
hypothesis, the set Z is countable; list it as Z = {ap }hen.

For each n € N, define P,(x) = a,x,and let K,, = {0}. Let P_;(x) = x,and K_; = {1}.
The type {||P,(x)|| € K,:n = —1}is finitely satisfiable. Indeed, by definition of Z, for any
m € Nand any 0 < n < mwe have ||P,(a,+1)ll = llanam+1ll =0, and ||a,,,+1]| = 1. By
countable degree-1 saturation and Lemma(5.3.15) there is a positive element b € A7 such
that || B,(b)|| = 0 for all n € N. This contradicts the maximality of Z.

Subalgebras of B(H) clearly have few positive orthogonal elements, whenever H is
separable. As a result, we obtain the following.

Corollary(5.3.19)[331]: No infinite dimensional subalgebra of B(H), with H separable,
can be countably degree-1 saturated.

Corollary(5.3.19) shows that many familiar C*-algebras fail to be countably degree-1
saturated. In particular, it implies that no infinite dimensional separable C*-algebra is
countable degree-1 saturated. Corollary (5.3.19) also shows that the class of countably
degree-1 saturated algebras is not closed under taking inductive limits (consider, for
example, the CAR algebra ®;2, M,(C), or any AF algebra) or subalgebras. On the other
hand, several examples of countably degree-1 saturated algebras are known. It was shown
in [114] that every corona of a o-unital algebra is countably degree-1 saturated. Recently
Voiculescu in [37] found examples of algebras which are not C*-algebras, but which have
the unexpected property that their coronas are countably degree-1 saturated C*-algebras.
The results of the following expand the list of examples of countably degree-1 saturated C*-
algebras.

We recall some definitions which we will need:

Definition(5.3.20)[331]: A C*-algebra A is o-unital (see [100]) if it has a countable approx-
Imate identity, that is, a sequence (e, ),en Such that for all x € A4,

lim [le,x — x|| = lim ||xe,, — x]|| = 0.
n—oo n—oo

A closed ideal I < A is essential (see [100]) if it has trivial annihilator, that is, if { x € A :
I, = {03} = {0}.
Notation(5.3.21)[331]: Let R be the hyperfinite I, factor. Let M = R @B(H) be the
unique hyperfinite 11,, factor associated to R, and let T be its unique trace. We denote by
K,,, the unique norm closed two-sided ideal generated by the positive elements of finite trace
in M.

Note that M is the multiplier algebra of &,,, so the quotient M /X,, is the corona of
M.
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Any ideal in a von Neumann algebra is generated, as a linear space, by its projections, hence
), isthe closure of the linear span in M of the set of projections of finite trace. In particular,
R QK (H) & K,,. To see that the inclusion is proper, fix an orthonormal basis (e;,) ey fOr
H, and choose (p,)nenfrom R such that 7 (p,,) = 27" for alln € N. For each n, let gn €
B(H) be the projection onto e,, and let g =Y, p,® q,,. Then g € M is a projection of
finite trace, but g € R QK (H).

We recall few well known properties of this object.

Proposition(5.3.22)[331]: (See [35].)

(i). R = M, (R) for every prime number p. Consequently M,,(R = M,,(R) for every
m,n € N.

(). Ko(Ko) = R = Ky (M/¥p).

(iii) ¥, is not o-unital.

(iv). K, @K (H) is not isomorphic to R @ K (H).

Proof: (i). This is because M, (R)is hyperfinite and R is the unique hyperfinite II,-factor.
(ii). Note that K,(M) = 0 = K, (M)and apply the exactness of the six term K-sequence.
(iii). Suppose to the contrary that(x,,),en 1S @ countable approximate identity in %,,formed
by positive elements such that 0 < x,, < 1 for all n. Using spectral theory, we can find
projections p,, € ¥, such that ||p,,x, — x|l < 1/n for each n. Then (p,,) ey IS again a
countable approximate identity for %,,. For each n € N define g,, = supx<,pk € K, and
by passing to a subsequence we can suppose that (g, ),en IS strictly increasing. For each

n € N find a projection r;;, < qp4+1 — g SUch that 77(r;,) < Zin Thenr =Y,en™ € Ky
and we have that for all n € N,

lqnr =7l = 1.

This contradicts that (g,,)»en IS an approximate identity.

(iv). This follows from (iii), since RQK (H)has a countable approximate identity and
K@K (H)does not. To see this, suppose that (x,,),ey IS @ countable approximate identity
for ,,®F(H), and let p be a rank one projection in K (H).

Then ((1 ®p),, (1 ®p))ren is a countable approximate identity for K, ®p, but K,,®p =
Kwum , S0 this contradicts (iii).

There are many differences between the Calkin algebra and M/%,,. Some of them are
already clear from the K -theory considerations above, or from the fact that K'(H )is
separable. Another difference, a little bit more subtle, is given by the following:
Proposition(5.3.23)[331]: Let H be a separable Hilbert space, and let Q be the canonical
quotient map onto the Calkin algebra. Let (e,,),en b€ an orthonormal basis for H, and let
S € B(H) be the unilateral shift in B(H) defined by S(e,,) = e,41 for all n. Then neither S
nor Q(S) has a square root, but 1 ® S € R®B(H) does have a square root.

Proof: Suppose that Q(T) € C(H)is such that Q(T)? = Q(S). Since Q(S)is invertible in
the Calkin algebra so is Q(T). The Fredholm index of S is —1, so if n € Z is the Fredholm
index of T then 2n = —1, which is impossible. Therefore Q(S)has no square root, and
hence neither does S.

For the second assertion recall that R = M, (R), and so
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RAB(H) = My(RB(H) = RQ (M, @B(H)).
We view B(H)as embedded in M, @B(H) = B(H") for another Hilbert space H'; find
(fidnen Such that {e,, f, : n € N} is an orthonormal basis for H'. Let S’ € B(H") be
defined such that S’(e,) = f,, and S’ (f;,) = e,41 for all n. Then T = 1 ®S’ € RYS(H),
and T2 = 1 ®S.
A consequence of the previous proof, and of the fact that R = M,,(R)for any integer p, is
the following:

Corollary(5.3.24)[331]: 1® S € M has a qth-root for every rational q.

With the motivating example in mind, we turn to establishing countable degree-1 saturation
of a class of algebras containing /¥(y,. .

We recall the following result, which may be found in [34]:

Lemma(5.3.25)[331]: Let A be a C*-algebra, S € A; and T € A7. Then

1 5
IS, Tl =e<z= IS, 72| < Z Ve

The following lemma is the key technical ingredient of Theorem(5.3.27) below. It is a
strengthening of the construction used in [114], as if A is g-unital and M = M(A)is the
multiplier algebra of A, then M and A satisfy the hypothesis of our lemma.

Lemma(5.3.26)[331]: Let M be a unital C*-algebra, let A € M be an essential ideal, and let
m: M — M /A be the quotient map. Suppose that there is an increasing sequence (g,)nen <
A of positive elements whose supremum is 1,,, and suppose that any increasing uniformly
bounded sequence converges in M.

Let (F,),,en be an increasing sequence of finite subsets of the unit ball of M and (€,,),,en
be a decreasing sequence converging to 0, with ¢, < %. Then there is an increasing

sequence (e,)neny © A%, such that, for all n € N and a € E,, the following conditions
hold, where f,, = (e,+1 — e,)Y?:

) A —ep—zx)a(l —ey)ll = lIm(@ll <epforalln
> 2

(i) [ fnalll < e€p foralln,

(i) (1 —en2) — full <€, foralln = 2,

(V) Nfufmll < €y forallm = n+ 2,

(V) [ fr s fras 1]l < €qqq forallm,

Vi) fwafill = llm(a)|| — €, for alln,

i) 3=

neN

and further, whenever (e,,) ey IS @ bounded sequence from
M, the following conditions also hold:
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(viii) the series Y. ,,.en fnXnfn CONvVerges to an element of M,
(IX) ”Zneanxnfn” < %IEJNI;)”xn”
(X) whenever limsup,,_,¢ ||, || = limsup,,o ||, /2| we have

n (Z xnfnZ)

neN

lim supllx, fi | <

n—oo

Proof: For eachn € N let §,, = 1071%%and let (g,,),ey b€ an increasing sequence in A
whose weak limit is 1. We will build a sequence (e;)nen Satisfying the following
conditions:

@1 —e—)a(l —e_ )l = lIm(a)||l| <€, foralln > 2anda € E,,

b)0 < ey <...< e, < eyy1 << 1,and forallnwe have e, € 4,

©)llenex — exll < 6p4q foralln >k,

(Dl[e,, a]ll <6, foralln € Nanda € F, 4,

@) |l(ens1 — en)all = |lm(a)|| — 6, foralln e Nand a € F,,

(f) ||(em+1 - em)l/zen(em+1 - em)l/z - (em+1 - em)” < 6n+1 foralln >m + 1,
(8)ent1 = Gnyq foralln € N,

We claim that such a sequence will satisfy (i)-(vii), in light of Lemma (5.3.26). Conditions
(i) and (a) are identical. Condition (d) implies condition (ii). Condition (c) and the C*-
identity imply condition (iii), which in turn implies conditions (iv) and (v). We have also
that conditions (e) and (g) imply respectively conditions (vi) and (vii), so the claim is proved.
After the construction we will show that (viii)-(x) also hold.

Take A = (A€ A*: n< 1} to be the approximate identity of positive contractions (indexed
by itself) and let A" be a subnet of A that is quasicentral for M (see [34] or [7]).

Since A is an essential ideal of M, by [100] there is a faithful representation £ on a Hilbert
space H such that

15 = SOT — lim {B(>)}.

Consequently, for every finite F ¢ M,e > 0 and x€ A’ there is u > A such that for all a €
F,
vzp = |[(v-—>)all = llr(a)ll —e.

We will proceed by induction. Lete_; = 0 and x,€ A’ be such that for all u >, and
a € F; we have ||[u, a]l| < 6,. By cofinality of A" in A we can find an e, € A’ such that
eo >>o, Jo. Find now X;> e, such that for all u >>; and a € F, we have

[, a]ll < 64, llu—ep)all = llm(a)ll — &;.
Since we have that

(@Il = lim (1 = >)a(t = )|

we can also ensure that for all a € F; and all ¢ >>, condition (i) is satisfied. Picking
e; € A such that e; >X, g; we have that the base step is completed. Suppose now that
€0r-+»€n fo,--+» fn_q are constructed.
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We can choose x,,,4 So that for all g >x,,,,, with u € A’, we have ||[u, a]|l < 6,,41/4
and ||(u — ey)all = |Ir(a)|| — &,, fora € F,.,. Moreover, by the fact that A" is an
approximate identity for A we can have that ||f,,ufm — 2|l < 8,4, foreverym <n
and that [|ue, — ey || < 6,4, forall kK < n. By Eq. (i) we can also ensure that for all a €
F,., and all u >, , condition (1) is satisfied.

Once this X, Is picked we may choose
ent1 € Nyeni1 >xpy1, Insrs

to end the induction.

It is immediate from the construction that the sequence (e,),en Chosen in this way

satisfies conditions (a)-(g). To complete the proof of the lemma we need to show that
conditions (viii), (ix) and (x) are satisfied by the sequence {f,,}.
To prove (viii), we may assume without loss of generality that each x,, is a contraction.
Recall that every contraction in M is a linear combination (with complex coefficients of
norm 1) of four positive elements of norm less than 1, and addition and multiplication by
scalar are weak operator continuous functions. It is therefore sufficient to consider a
sequence (x,,)of positive contractions. By positivity of x,,, we have that (X<, fiXifi Jnen
Is an increasing uniformly bounded sequence, since for every n we have

2_ fixifiz_ 2  and foxnf, = 0.
isn isn

Hence (Xi<n fixifi Jneny CONverges in weak operator topology to an element of M of
bounded norm, namely the supremum of the sequence, which is Y., «n fnXnfn-
For (ix), consider the algebra [[,ey M with the sup norm and the map @,,: [[xexn M — M
such that @,,((x;)) = fuxnfn-Each @, is completely positive, and since f;Z < Yien fi* =
1, also contractive. For the same reason the maps v,:[lxey M — M defined as
Yn((x;)) = Xj<n fjx; f; are completely positive and contractive. Take ¥ to be the
supremum of the maps ,,. Then ‘P((xn)) = Y.j<n fiX; fi- This map is a completely positive
map of norm 1, because [|¥|| = [|¥(1)]land from this condition (ix) follows.

For (x), we can suppose limsup; o [|I;|| = limsup; e ||x;f%|| = 1. Then for all
e > 0 there is a sufficiently large m € N and a unit vector &,,, € H such that .

xXmfrm Il = 1 — €.

Since ||x;|| < 1 for all i, we have that || £, (§,)1| = 1 — €, thatis, |(f2&n | Em)l =1 —€.
In particular we have that||&,,, — /2 (&) < e.
Since Y. ;> = 1 we have that &,,, and &, constructed in this way are almost orthogonal for all
n,m. In particular, choosing € small enough at every step, we are able to construct a
sequence of unit vectors {&,,} such that |(&,, | &) < 1/2™ for m > n. But this means
that for any finite projection P € M only finitely many &, are in the range of P up to € for
every € > 0. In particular, if I is the set of all convex combinations of finite projections, we

have that
Z xXifi? = <z xifi2>

IEN ieN

lim > 1.
NEI
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Since I is an approximate identity for A we have that

ﬂz xifi Z Xif? = (2 xifi2>

ieN ieEN ieEN

= lim
NEI

)

as desired.
We can then proceed with the proof of the fellowing theorem.

Theorem(5.3.27)[331]: Let M be a unital C*-algebra, and let A € M be an essential ideal.
Suppose that there is an increasing sequence (g,)nen € A Of positive elements whose
supremum is 1,,, and suppose that any increasing uniformly bounded sequence converges
in M. Then M /A is countably degree-1 saturated.

Proof: Let m:M — M/A be the quotient map. Let (P,(X)),ey be a collection of
xp polynomial of degree 1with coefficients in M/A, and for each n € Nletr, € R*.
Without loss of generality, reordering the polynomials and eventually adding redundancy if
necessary, we can suppose that the only variables occurring in B, are x,, ..., x,.

Suppose that the set of conditions {||P,(x,,...,X,)|| =1, : n € N} is approximately
finitely satisfiable, in the sense of Definition(5.3.8). As we noted immediately after
Definition(5.3.8), it is sufficient to assume that the partial solutions are all in (M /A).,, and
we must find a total solution also in (M /A)<;. S0 we have partial solutions

{m(xk i) Ik<i € (M/A) <
such that forall i € N and n < i we have

|Bdr(x0,), .. mCen ) || € ()i
Foreachn € N, let Q,,(xo, ..., Xo). be polynomial whose coefficients are lifting s of the
coefficients of P, to M, and let F, be a finite set that contains

(d)all the coefficients of Qy, for k < n;

(&) xp i xp; fork <i < m;

(F) Qx(xo, 1, ..., xp )fork < i < n.
Let €, = 47" Find sequences (ey)nen and (f;)nen Satisfying the conclusion of
Lemma(5.3.26) for these choices of (f;,)nen and (€;)nen-
Let Xn; = (Xo i ---:xn,i):ylf = Dizk fiXiifi v Yn = o, yn)and Z, =n(y,). Fixne
N; we will prove that ||, (Z,)I|| = 7.
First, since x, ; € M4, as aconsequence of condition (ix) of Lemma (5.3.26), we have that
y; € M., for all i. Moreover, since Q,, is a polynomial whose coefficients are lifting of
those of P, we have

IP.Z)Il = T (Qn )l
We claim that

QuG) = ) f; Qnln ) € 4.

JEN
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It is enough to show that

zf] axyjbf; — Zafj xjfib €A,
jEN jeEN
where a, b are coefficients of a monomial in Q,, since Q,, is the sum of finitely many of
these elements (and the proof for monomials of the form ax; ;b is essentially the same as
the one for axy ;b).
By construction we have a, b € E, , and hence by condition (ii) of Lemma(5.3.26), for j
sufficiently large,

Vx € Mg (|lafixfib — f; ax bfj|| < 27 (llall + Il BID).

Therefore ¥ jen(fj axy j bf; — afj x i jf;b) is a series of elements in A that is converging
in norm, which implies that the claim is satisfied. In particular,

1PZl = ||| D fiQn(Ens)f
jEN
Foreachj = 2,leta; = (1 — €j_;)Qn (X, ;) (1 — €j_3). By condition (i) of Lemma(5.3.26),
the fact that Q,(x,;) € F,, and the original choice of the x, ;'s, we have that

limsup ||a;|| = r,,. Similarly to the above, but this time using condition (iii) of Lemma
(5.3.26), we have

| > e || =D has| = (1D faih|
jEN jEN jeEN
Using condition (ix) of Lemma(5.3.26) and the fact that @, (X, ;) € F; we have that

Zf]-ajfj < lim Sup||a;|| = 7.

]—)OO

Combining the calculations so far, we have shown

IBZl = {7 ( > fien(En )y ||| = || D fiaifs ||| <7

JEN JEN
Since Q,(x,;) € F; for all j, condition (vi) of Lemma (5.3.26) implies 7, <
lim Sup||; @n (%) |
]—)OO

It now remains to prove that

limSup|fia; 1| < ||| D fiasf
Jj—00 N
so that we will have
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o < 1im Sup|l 0 fs || = limSupll s || < [l > figysy ||| = IR
j—oo Jj—0 .
JEN
We have Q,,(X, ;) € F;, so by condition (ii) of Lemma (5.3.26), we have that

lim Sup]|fjaj || = lim Supl|a; £ ||
Jj—o00 Jj—o00
and hence
D Sl = ) wff €A
jEN jEN
The final required claim will then follow by condition (x) of Lemma(5.3.26), once we verify
lim Supl|a;f* || = lim Sup||a; ||
Jj—oo J—00

We clearly have that for all j,
a7 1l < Nl
On the other hand,
im Sup]a, 7 | = 1im Supl| ., |

= lim Sup||f]-Qn(J?n'j)f]- || by condition (iii)
Jj—=oo

> 1, = limSup||q ||
j—oo

The Theorem (5.3.1)bove applies, in particular, to coronas of o -unital algebras. The
following result is due to Farah and Hart, but unfortunately their proof in [114] has a
technical error. Specifically, our proof of Theorem(5.3.27) uses the same strategy as in
[114], but avoids their equation (10), which is incorrect.

Corollary(5.3.28)[331]: (See [114]) If A is a g-unital c*-algebra, then its corona C(A) is
countably degree-1 saturated.

We also obtain countable degree-1 saturation for the motivating example from the
beginning.

Corollary(5.3.29)[331]: Let N be a II, factor, H a separable Hilbert space and M =
N ®B(H) be the associated II,, factor. Let %, be the unique two-sided closed ideal of M,
that is the closure of the elements of finite trace. Then M/X,, is countably degree-1
saturated. In particular, this is the case when N = R, the hyperfinite I/, factor.

More generally, recall that a von Neumann algebra M is finite if there is not a projection
that is Murray-von Neumann equivalent to 1y, and o-finite if there is a sequence of finite
projections weakly converging to 1.

Corollary(5.3.30)[331]: Let M be a o-finite but not finite tracial von Neumann algebra,
and let A be the ideal generated by the finite trace projections. Then M /A is countably
degree-1 saturated.

When H is separable, the ideal of compact operators in B(H)is separable, and in
particular o-unital, so it follows from Corollary(5.3.28) that the Calkin algebra is countably
degree-1 saturated.
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We are going to give explicit results on the theories of the generalized Calkin algebras. It is
known (see [114]) that the Calkin algebra is not countably quantifier-free saturated; we show
that the generalized Calkin algebras also fail to have this degree of saturation. This follows
immediately from the fact that the Calkin algebra is isomorphic to a corner of the generalized
Calkin algebra and that if A is a C*-algebra that is @-saturated, where @ include all C*-
polynomials of degree 1, then every corner of A is @ -saturated. On the other hand, the proof
shown below is direct and much easier than the promof in the separable case. It is worth
noting, however, that the method we will use does not apply to the Calkin algebra C, itself.

Lemma(5.3.31)[331]: Let @« = 1 be an ordinal. Then C, is not countably quantifier-free
saturated.

Proof: Fix {A,},en @ countable partition of X, in disjoint pieces of size X, and a base
(ep)p<x, for Hy . Foreachn € N let P, be the projection onto span(eg: § € Ay).

Claim (5.3.32)[331]: If Q is a projection in B, such that QP, € X, for all n then Q has
range of countable density.

Proof: We have that for any n € Nand € > 0 there is a finite C,.,, © X,such that

B &Cen=|QPes| <e
Let D = Upen Unen Ciymn- If B € D then for all n € N we have ||QP,eg|| = 0 and since

there is n such that ez € P,, we have that ||Qeg|| = 0. Since D is countable, Q is
identically zero on a subspace of countable codimension.

Let Q7% = xx"—1,Q3=xx—yQ,=y—y" — Q,=y—y% and Q, = yB, .
The type {||Q;|] = 0}_,<; admits a partial solution, but not a total solution.

We are going to have a further look at the theories of C,. We want to see if it is
possible to distinguish between the theories of C, and of Cs, whenever a # . Of course,
since there are at most 2% many possible theories, we have that there are ordinals a # S
such that C, = Cg. As we show in the next theorem, this phenomenon cannot occur
whenever « and g are sufficiently small, and similarly for B, and Bg.

Theorem(5.3.33)[331]: Let @« #= f be ordinals, and H, the Hilbert space of density X,,.
Then the rojections of the algebras C, and Csz as posets with respect to the Murray-von
Neumann order are elementary equivalent if and only if « = £ mod w®, where w® is
computed by ordinal exponentiation, as they are the infinite projections of C,of Cp.
Consequently, if « # g then B, # Bg and C, Z Cp.

Proof: The key fact is that « # f (as first-order structures with only the ordering) if and
only if &« =  mod ; see [342]. Hence the proof will be complete as soon as we notice that
the ordinal « is interpretable in both C, (as the set of projections under Murray-von
Neumann equivalence) and inside B,, (as the set of infinite projections under Murray-von
Neumann equivalence).

There is a formula @ such that @(p,q) = 0if p~y,n q and p, g are projections and
@(p, q) = 1 otherwise, and that being an infinite projection is axiomatizable, since p is an
infinite projection if and only if @(p) = 0 ifand only if Y (p) < 1/4, where

W) = llx - x"Il +llx - x*| + irylf(llyy* — xll+lly"yx - yyll+ @-lly*y - xID)
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where y ranges over the set of partial isometries. Since we have that to any projection we
can associate the density of its range (both in C, and B,), and thatwehave that p <,,xv q if
and only if the density of p is less or equal than the range of g. Since every possible value
for the density is of the form Xg,  for f < q, the theorem is proved.

We consider abelian C*-algebras, and particularly the theories of real rank zero
abelian C*-algebras. We give a full classification of the complete theories of abelian real
rank zero C*-algebras in terms of the (discrete first-order) theories of Boolean algebras
(recall that a theory is complete if whenever M |=T and N |=T then M = N). As an
immediate consequence of this classification we find that there are exactly X, distinct
complete theories of abelian real rank zero C*-algebras. We also give a concrete description
of two of these complete theories.

We return to studying saturation. We show how saturation of abelian C*-algebras is related
to the classical notion of saturation for Boolean algebras. We begin by recalling some well-
known definitions and properties.

A topological space X such that every collection of disjoint nonempty open subsets
ofX is countable is said to carry the countable chain condition.

Note that for a compact space being totally disconnected is the same as being 0-

dimensional, and this corresponds to the fact that C(X)has real rank zero. Moreover any
compact Rickart space is 0-dimensional and sub-Stonean, while the converse is false (take
for example BN \N). The space X carries the countable chain condition if and only if
C (X)has few orthogonal positive elements (see Definition (5.3.20)).
Moreover, if f: X — Y is a continuous map of compact 0-dimensional spaces we have that
@¢: CL(Y) — CL(X) defined as @,(C) = f~*[C]is a homomorphism of Boolean algebras.
Conversely, for any homomorphism of Boolean algebras @: CL(Y) — CL(X)we can define a
continuous map fu: X — Y. If f is injective, @, is surjective. If f is onto @fis 1 —to — 1
and the same relations hold for @ and f.

We recall some basic definitions and facts about Boolean algebras.
Definition(5.3.34)[331]: Let k be an uncountable cardinal. A Boolean algebra B is said to
be K-saturated if every finitely satisfiable type of cardinality < k in the first-order language
of Boolean algebras is satisfiable.
For atomless Boolean algebras this model-theoretic saturation can be equivalently rephrased
in terms of increasing and decreasing chains:
Theorem(5.3.35)[331]: (See [353].) Let B be an atomless Boolean algebra, and k an
uncountable cardinal. Then B is K-saturated if and only if for every directed Y < Z such
that |Y| + |Z| < k thereisc € BsuchthatY <c¢ < Z.

For the ultracopower construction see [334]. The only use we will make of this tool is
the following lemma.

Lemma(5.3.36)[331]: (See [349] and [334].) Let X be a compact Hausdorff space, and let
U be an ultrafilter. Then C(X)% = C(Xy X) and CL(X)Y = CL(Xy X).

Theorem(5.3.37)[331]: Let A and B be abelian, unital, real rank zero C*-algebras. Write
A=C(X) and B = C(Y),where X and Y are 0-dimensional compact Hausdorff spaces.
Then A = B as metric structures if and only if CL(X) = CL(Y) as Boolean algebras.
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Proof: Suppose that A = B. By the Keisler-Shelah Theorem (5.3.7) there is an ultrafilter U
such that AY = BY, By Lemma(5.3.36) A% = C(Xy X). Thus we have C(Xy) = C(Yy),
and hence by Gelfand-Naimark X is homeomorphic to Y. Then CL(3y X) =
CL(Xy Y). Applying Lemma(5.3.36) again, we have CL(3y X) = CL(X)Y, so we
obtainCL(X)Y¥ = CL(y)Y, and in particular, CL( X) = CL(Y).The converse direction is
similar, starting from the Keisler-Shelah theorem for first-order logic (see [36]).

It is interesting to note that the above result fails when C(X)is considered only as a ring in
first-order discrete logic (see [333]).

Corollary(5.3.38)[331]: There are exactly X, distinct complete theories of abelian, unital,
real rank zero C*-algebras.

Proof: There are exactly X, distinct complete theories of Boolean algebras; see [340] for a
description of these theories.

Corollary(5.3.39)[331]: If X and Y are infinite, compact, 0-dimensional spaces both with
the same finite number of isolated points or both having a dense set of isolated points, then
C(X)=C(Y).

In particular, let « be any infinite ordinal. Then C(a + 1) = C(fw). Moreover, ifais a
countable limit, C(2*) = C(Bw\ w) = C(Ba\).

Proof: Given X,Y as in the hypothesis, again by theorem [340], we have that CL(X) =
CL(Y).

In fact, both implications fail. For one direction, recall that CI" = C(I") where [ is the dual
group of G. If p is prime then the dual of @y Z/pZ is pN, hence

c®z/pz = c®2/q2 = C(2V)

for all primes p and g; clearly the groups are not elementary equivalent.

For the forward implication, we given an example pointed out to us by Tomasz Kania. It is
known that any two torsion-free divisible abelian groups are elementarily equivalent (see
[340]), so in particular,Q = Q & Q. The dual group of Q with the discrete topology is a 1-
dimensional indecomposable continuum (see [351]), but the dual group of Q @ Q is 2-
dimensional. Hence CQ # C(Q & Q).

We dedicated to the analysis of the relations between topology and countable
saturation of abelian C*-algebras. In particular, we want to study which kind of topological
properties the compact Hausdorff space X has to carry in order to have some degree of
saturation of the metric structure C(X) and, conversely, to establish properties that are
incompatible with the weakest degree of saturation of the corresponding algebra. From now
on X will denote an infinite compact Hausdorff space (note that if X is finite then C(X); is
compact, and so C(X) is fully saturated).

The first limiting condition for the weakest degree of saturation is given by the following
lemma:
Lemma(5.3.40)[331]:Let X be an infinite compact Hausdorff space, and suppose that X
satisfies one of the following conditions:
(i) X has the countable chain condition;
(if) X is separable;
(iii) X is metrizable;
(iv) X is homeomorphic to a product of two infinite compact Hausdorff spaces;
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(v) X is not sub-Stonean;
(vi) X is Rickart.

Then C(X) is not countably degree-1 saturated.

Proof: First, note that (iii) = (ii) = (i). The fact that (i) implies that C(X)is not countably
degree-1 saturated is an instance of Lemma(5.3.41). Failure of countable degree-1 saturation
for spaces satisfying (iv) follows from Theorem(5.3.14), while for those satisfying (v) it
follows from [34] and [114]. It remains to consider (vi).

Let X be Rickart. The Rickart condition can be rephrased as saying that any bounded

increasing monotone sequence of self-adjoint functions in C(X)has a least upper bound in
C (X)(see [348]).
Consider a sequence (a,),eny € C(X)T of positive pairwise orthogonal elements, and let
b, = Yi<na; . Then (b,),en IS @ bounded increasing sequence of positive operators, so it
has a least upper bound b. Since ||b,|| = 1 for all n, we also have ||b|| = 1. The type
consisting of P_;(x) = x, with K_5 = {1}, P_,(x) = b —x withK_, = [1,2],P_;(x) =
b —x —1with K~! = {1} and B,(x) = x — b, — 1with K,, = [0,1] is consistent with
partial solution b, ; (for {P_5, ..., B,}). This type cannot have a positive solution y, since
in that case we would have that y — b,, = Oforall n € N, yet b — y > 0, a contradiction to
X being Rickart.

Note that the preceding proof shows that the existence of a particular increasing
bounded sequence that is not norm-convergent but does have a least upper bound (a con-
dition much weaker than being Rickart) is sufficient to prove that C (X)does not have
countable degree-1 saturation. Moreover, the latter argument does not use that the ambient
algebra is abelian.

We will compare the saturation of C(X)(in the sense of Definition (5.3.8)) with the
saturation of CL(X), in the sense of the above theorem.

We are going to obtain the following:

Theorem(5.3.41)[331]: Let X be a compact 0-dimensional Hausdorff space. Then C(X) is
countably saturated = CL(X) is countably saturated and
CL(X) is countably saturated = C(X) is countably q. f. saturated.

Theorem(5.3.42)[331]: Let X be a compact 0-dimensional Hausdorff space, and assume
further that X has a finite number of isolated points. If C(X) is countably degree-1
saturated, then CL(X) is countably saturated. Moreover, if X has no isolated points, then
countable degree-1 saturation and countable saturation coincide for C (X).

Countable saturation of C(X)(for all formulas in the language of C*-algebras) implies

saturation of the Boolean algebra, since being a projection is a weakly-stable relation, so
every formula in CL(X)can be rephrased in a formula in € (X); to do so, write sup for Vv, inf
for 3,||x — y|lforx # y, and so forth, restricting quantification to projections. This
establishes the first implication in Theorem(5.3.41). The second implication will require
more effort. To start, we will need the following proposition, relating elements of C(X) to
certain collections of clopen sets:
Proposition(5.3.43)[331]:LetX be a compact 0-dimensional space and f € C(X)<,. Then
there exists a countable collection of clopen sets Yf = {Y,s:n € N} which completely
determines f, in the sense that for each x € X, the value f(x) is completely determined by
{n: X € Yn‘f}.
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Proof: Let Cp,; = { JiJa € ZA|[j1 +V—Jol| < m}.

For every y € C,,,; consider X, , = f~* <Bi(y)>. We have that each X,, ¢ is a o-compact

open subset of X, so is a countable union of clopen sets Xy, ¢, ... X}, ¢p,...,€ CL(X) Note

that Uye(CmJ UnenXy,rn = X.Let Xm,f = {Xy,f,n}(y,n)e(cmylxN < CL(X) .

We claim that )?f = Um)?m,f describes fcompletely. Fix x € X. For every m € N we can
find a (not necessarily unique) pair (y,n) € C,, ; such that x € X,, r,. Note that, for any
m,ny,n, € Nandy # z, we have that X, ; .y N X, ;n, # @ implies |y —z| < vV2/m.In
particular, for every m € N and x € X we have

2 <|{y € Cp :In(x€X,rn)} <4
Let Ayn ={y €C,,;:In(x € X,,r,)} and choose a,,, € A, to have minimal
absolute value. Then f (x) = limy, a, ., so the collection )?f completely describes f in the
desired sense.
The above proposition will be the key technical ingredient in proving the second implication
in Theorem(5.3.41). We will proceed by first obtaining the desired result under the
Continuum Hypothesis, and then showing how to eliminate the set-theoretic assumption.
Lemma(5.3.44)[331]: Assume the Continuum Hypothesis. Let B be a countably saturated
Boolean algebra of cardinality 2% = X;. Then C(S(B)) is countably saturated.
Proof: Let B’ < B be countable, and let U be a non-principal ultrafilter on N. By the
unigueness of countably saturated models of size X;, and the Continuum Hypothesis, we

have B'Y = B. By Lemma(5.3.36) we therefore have C(S(B) = C(S(B’))u, and hence
C(S(B)) is countably saturated.
Theorem(5.3.45)[331]: Assume the Continuum Hypothesis. Let X be a compact Hausdorff

0-dimensional space. If CL(X) is countably saturated as a Boolean algebra, then C(X) is
quantifier-free saturated.

Proof: Let ||P,|| = r,, be a collection of conditions, where each B, is a 2-degree *-poly-
nomial in x,,...,x,, such that there is a collection F = {f,,;},<; € C(X)<1, With the
property that for all i we have ||P,(fo, i, ..., fo0)|| € (rn)y); foralln < i.

For any n, we have that B, has finitely many coefficients. Consider G the set of all
coefficients of every P, and L the set of all possible 2-degree *-polynomials in F U G. Note
that for any n < i we have that B, (fy;, ..., fn,;) G L and that L is countable. For any element
f € L consider a countable collection Xf of clopen sets describing f, as in
Proposition(5.3.43).

Since CL(X) is countably saturated and 2% = X, we can find a countably saturated
Boolean algebra B € CL(X)such that @, X € B, for all f € L we have )?f C B, and |B| =
N

Let «: B—CL(X) be the inclusion map. Then ¢ is an injective Boolean algebra
homomorphism and hence admits a dual continuous surjection g,: X — S(B).
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Claim (5.3.46)[331]: For every f € L we have that U )?f = S(B).

Proof: Recall that

By compactness of X, there is a finite C; € X such that U C; = X. In particular every
ultrafilter on B (i.e., a point of S(B)) corresponds via g, to an ultrafilter on CL(X) (i.e., a
point of X), and it has to contain an element of Cr. SoU )?f = S(B).

From g, as above, we can define the injective map ¢: C(S(B) - C(X) defined as
d(H(x) =f (g[l(x)). Note that ¢ is norm preserving: Since ¢ is a unital *-homomor-
phism of C*-algebra we have that ||¢(f)I| < ||f]l. For the converse, suppose that x € S(B)
is such that |f (x)| = r, and by surjectivity take y € X such that g,(y) = x. Then

PN =1f (9,097 CONN = If ()

For every f € L consider the function f' defined by )?f and construct the corresponding *-
polynomials B,
Claim (5.3.47)[331]:

() f=o¢(")forallf el

(i) pn(foir-- s fui)i € (h)yiforalliandn <.
Proof: Note that, since f,,; =L and every coefficient of P, is in L, we have that
Po(fo.r - fni) € L. It follows that condition 1, combined with the fact that ¢ is norm
preserving, implies condition 2.
Recall that g = g, is defined by Stone duality, and is a continuous surjective map g: X —
Y. In particular g is a quotient map. Moreover by definition, since X, ;1 , € CL(Y) =B C
CL(X), we have that if x € Y is such that x € X, (,, for some (g, f,n) € Q X L X N, then
for all z such that g(z) =x we have z € X r,. Take fand x € X such that f(x) #
¢ (f")(x). Consider m such that |f(x) — ¢(f')(x)| > 2/m.Pick y € C,,, such that there
is k for which x € X, ¢, and find z € Y such that g(z) = x. Then z € X,, ¢, that implies
f'(?) € Bim(y) and so  ¢(f)(x) = f'(2) € Bym(y) contradicting |f (x) -
¢(fH )| = 2/m.

Consider now {||B,(x,,...,x)|l = 71,}. This type is consistent type in C(S(B)) by
condition 2, and C(S(B)) is countably saturated by Lemma(5.3.44), so there is a total
solution g. Then h; = ¢(g;) will be such that ||B,(h) || = 7, since ¢ is norm preserving,
proving quantifier-free saturation for C(X).

To remove the Continuum Hypothesis from Theorem (5.3.45) we will show that the
result is preserved by o-closed forcing. We first prove a more general absoluteness result
about truth values of formulas, see [106]. For more examples of absoluteness of model-
theoretic notions, see [332].

Our result will be phrased in terms of truth values of formulas of infinitary logic for
metric structures. Such a logic, in addition to the formula construction rules of the finitary
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logic we have been considering, also allows the construction of sup,, ¢,, and inf,, ¢,, as
formulas when the ¢,, are formulas with a total of finitely many free variables. Two such
infinitary logics have been considered. The first, introduced by Ben Yaacov and lovino in
[336], allows the infinitary operations only when the functions defined by the formulas ¢,
all have a common modulus of uniform continuity; this ensures that the resulting infinitary
formula is again uniformly continuous. The second, introduced in [343], does not impose
any continuity restriction on the formulas ¢,, when forming countable infima or suprema;
as a consequence, the infinitary formulas of this logic may define discontinuous functions.
The following result is valid in both of these logics; the only complication is that we must
allow metric structures to be based on incomplete metric space, since a complete metric
space may become incomplete after forcing.

Lemma(5.3.48)[331]: Let M be a metric structure, ¢(x) be a formula of infinitary logic
for metric structures, and a be a tuple from M of the appropriate length. Let P be any
notion of forcing. Then the value (@) is the same whether computed in V or in the
forcing extension V [G].

Proof: The proof is by induction on the complexity of formulas; the key point is that we
consider the structure M in V[G]as the same set as it is in V. The base case of the induction
is the atomic formulas, which are of the form P (x)for some distinguished predicate P. In
this case since the structure M is the same in V and in V[ G], the value of PM(a)is
independent of whether it is computed in V or V[G].

The next case is to handle the case where ¢ is f (¥4, ..., ¥,,), where eachy; is a formula
and f:[0,1]™ - [0, 1] is continuous. Since the formula ¢ is in V, so is the function f. By
induction hypothesis each 1 (a) can be computed either in V or V[G], and so the same is
true of @™ (@) = f YM (@), ..., fPM(@)). A similar argument applies to the case when @ is
sup, Yy or in fn¢n-

Finally, we consider the case where 0(x) = inf, ¥ (%, y) (the case with sup instead of inf is
similar). Here we have that for every b € M,y (@, b)is independent of whether computed
in ¥V or V[G] by induction. In both VV and V[G]the infimum ranges over the same set M, and
hence ¥ (a)is also the same whether computed in V or V[G].

We now use this absoluteness result to prove absoluteness of countable saturation under a-
closed forcing.

Proposition(5.3.49)[331]: Let P be a o -closed notion of forcing. Let M be a metric
structure, and let @ be a set of (finitary) formulas. Then M is countably @-saturated in V' if
and only if M is countably @-saturated in the forcing extension V[G].

Proof: First, observe that since IP is a-closed, forcing with P does not introduce any new
countable set. In particular, the set of types which must be realized for M to be countably
@-saturated are the same in V and in V [G].

Let t(x)be a set of instances of formulas from @with parameters from a countable set A <
M. Add new constants to the language for each a € A, so that we may view t as a type
without parameters. Define

¢ (x) = inf{yp(%): PG t}.

Note that @™ (a) = 0 if and only if a satisfies t in M. This @ is a formula in the infinitary
logic of [343]. By Lemma(5.3.48) for any a from M we have that @™ (@) = 0 in V if and
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only if @™ (a) = 0 in V[G]. As the same finite tuples a from M exist in V and in V[G], this
completes the proof.

Finally, we return to the proof of Theorem(5.3.41). All that remains is to show:

Lemma(5.3.50)[331]: The Continuum Hypothesis can be removed from the hypothesis of
Theorem(5.3.45).

Proof: Let X be a 0-dimensional compact space such that CL(X) is countably saturated,
and suppose that the

Continuum Hypothesis fails. Let P be a o-closed forcing which collapses 2% to X, (see
[106]). Let A = C(X)and B = CL(X). Observe that since P is o-closed we have that A
remains a complete metric space in V [G], and by Lemma(5.3.48) A still satisfies the axioms
for commutative unital C*-algebras of real rank zero. Also by Lemma(5.3.48) we have that
B remains a Boolean algebra, and the set of projections in A in both VV and V[G]is B. We
note that it may not be true in V[G]that X = S(B), or even that X is compact (see [341]), but
this causes no problems because it follows from the above that A = C(S(B)) in V[G]. By
Proposition(5.3.49) B remains countably saturated in V [G]. Since V [G] satisfies the
Continuum Hypothesis we can apply Theorem(5.3.45) to conclude that A is countably
quantifier-free saturated in V[G], and hence also in V by Proposition(5.3.49).

With the Continuum Hypothesis removed from Theorem(5.3.45), we have completed the
proof of Theorem(5.3.41). It would be desirable to improve this result to say that if CL(X)
Is countably saturated then C(X)is countably saturated. We note that if the map ¢ in
Theorem(5.3.45) could be taken to be an elementary map then the same proof would give
the improved conclusion.

We now turn to the proof of Theorem(5.3.42). We start from the easy direction:
Proposition(5.3.51)[331]: If X is a 0 -dimensional compact space with finitely many
isolated points such that C(X) is countably degree-1 saturated, then the Boolean algebra
CL(X) is countably saturated.

Proof: Assume first that X has no isolated points. In this case we get that CL(X)is atomless,
so it is enough to see thatCL(X)satisfies the equivalent condition of Theorem (5.3.35).

Let Y < Z be directed such that|Y| + |Z| < X;. Assume for the moment that both Y and Z
are infinite. Passing to a cofinal increasing sequence in Z and a cofinal decreasing sequence
In Y, we can suppose that Z = {U, },eny and Y = {V, },,en, Where

U,¢..¢U, ¢ U S..CV,,EV,S...CV,.
If Upnen U = NpenV, thenU ey U, 1S @ clopen set, so by the remark following the proof of
Lemma(5.3.40), we have a contradiction to the countable degree-1 saturation of
C(X).
Foreachn € N, let p,, = x,, . and q,, = x,, , where y, denotes the characteristic function of
the set A. Then

P1 < <DPp <Pn+1 << (p41 <qp < < 4

and by countable degree-1 saturation there is a positive r such that p,, < r < g,, for every

n. In particular A={x€X:r(x) =0} and C ={x € X:r(x) =1} are two disjoint

closed sets such that UpenyU,, € C and X \ Npen ¥ S A. We want to find a clopen set D

suchthat A € D € X\C. For each x € A pick W, a clopen neighborhood contained in X\C.
182



Then A € U, 4W,. By compactness we can cover A with finitely many of these sets, say
A S Uiey Wy, € X\C,s0D = U, W,, is the desired clopen set.

Essentially the same argument works when either Y or Z is finite. We need only change
some of the inequalities from < with<, noting that a finite directed set has always a
maximum and a minimum.

If X has a finite number of isolated points, write X = Y U Z, where Y has no isolated points
and Z is finite. Then C(X) = C(Y) @ C(Z)and CL(X) = CL(Y)®CL(Z). The above proof
shows that CL(Y)is countably saturated, and CL( Z)is saturated because it is finite, so
CL(X )is again saturated.

To finish the proof of Theorem(5.3.42) it is enough to show that when X has no isolated
points the theory of X admits elimination of quantifiers. By Corollary(5.3.39) we have that
C(X) = C(BN\ N)for such X, so it suffices to show that the theory of C(BN\N) eliminates
quantifiers.

Definition(5.3.52)[331]: Let a4, ..., a,, € C(X)(more generally, one can consider
commuting operators on some Hilbert space H). We say that a = (a4, ..., a,)is non-
singular if the polynomial )i~ a;x; = I has a solution x4, ..., x,, in C(X). We define the
joint spectrum of a4, ..., a,, to be

jo(a) = {x € C": (™ 1—aq, ..., p,— a,) is singular}

Proposition(5.3.53)[331]: Fix ay,..,a, € C(X). Then X €jo(a) if and only if
Yi<nl>i— a;| | 1s not invertible.

Proof: We have that X\ € jo(a)if and only if there is x € X such that a;(x) =X, forall i <
n . In particular, X € jo(a)if and only if 0 € o(};|»;— a;|)if and only if there is x such
that)};<,|>;— a;] (x) = 0. Since each|x;— a;| is positive we have that this is possible if and
only if there is x such that for all i < n, |»;— a;|(x) = 0.

Proposition(5.3.54)[331]:The joint spectrum of an abelian C*-algebra A is quantifier-free
definable.

Proof: First of all recall that, when @ = a, then jo(a) = o(a), hence the two definitions
coincide for elements. We want to define a quantifier-free definable function F: A X C —
[0, 1] such that F(a,») = 0 if and only if x€ o(a). Since we showed that x€ o (a)if and
only if 0 € 6 (3 ;<n|>;— a;|), so, in light of this, we can define a function

E,: A" x C" - [0,1]

as F,(a,x) = F(|>»;— «a;],0), hence we have that E,(a,x) = 0 if and only if X€ jo(a),
that implies that the joint spectrum of a € A™ is quantifier-free definable.

To define a(a), recall that, for f € A, the absolute value of f is quantifier-free definable as
|f| =+ ff*,and for a self-adjoint f € A, its positive part is quantifier-free definable as
the function f, = max (0, f). The F(a,x) = |1 —||(1 — |]a—=x.1]),]| is the function we
were seeking.

Theorem(5.3.55)[331]:The theory of C(BN\N) has quantifier elimination. Consequently

the theory of real rank zero abelian C*-algebras without minimal projections has quantifier
elimination.
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Proof: It is enough to prove that for any n € Nand @, b € C(BN\N)™ that have the same
quantifier-free type over @ there is an automorphism of € (BN\N) sending a; to b;, for all
I < n.

Since @ and b have the same quantifier-free type, we have that K = jo(a) = ja(E).
Consider D be a countable dense subset of K and pick f;, ..., fn, 91, -, gn € C(BN) =
£ (N) such that v(d4, ...,d,) € D we have that F; = {m € N: Vi < n(f;(m) = d;)} and
Gy ={m € N: Vi < n(g;(m) = d,;)} are infinite, n(f;) = a;,®(g;) = b; and, for m € N
we have that (fl-(m),...,fn(m)), (gl(m),...,gn(m)) € D.

In particular we have that N = U;ep Fy = Ugep G4 and that for all d # d’ we have F; N
Fyy=0= Gg N Gy, then there is a permutation o on N (that induces an automorphism
of C(AN \ N)) such that f; o 0 = g;foralli < n.

The proof of Theorem(5.3.42) is now complete by combining Theorem(5.3.41), Proposition
(5.3.51), and Theorem(5.3.55).

Corollary(5.3.56)[370]: Let H be a separable Hilbert space, and let Q, be the canonical
quotient map onto the Calkin algebra. Let (e;,),en b€ an orthonormal basis for H, and let
S, € B(H) be the unilateral shift in B(H) defined by S,.(e;,) = e;,+, for all n. Then neither
S, nor Q,-(S,) has a square root, but 1 ® S, € R,®B(H) does have a square root.

Proof: Suppose that Q,(T,) € C(H)is such that Q.(T.)? = Q,(S,). Since Q,(S,)is
invertible in the Calkin algebra so is Q,.(T;.). The Fredholm index of S'is —1,s0 ifn € Z is
the Fredholm index of T, then 2n = —1, which is impossible. Therefore Q,-(S,)has no
square root, and hence neither does S,..

For the second assertion recall that R, = M, (R,), and so

R, @B(H) = My (R, Q@B(H) = R, ® (M, ®B(H)).
We view B(H)as embedded in M, @B(H) = B(H") for another Hilbert space H'; find
(fn )nen SUch that { e}, f,, : n € N} is an orthonormal basis for H'. Let S;. € B(H")be
defined such that S)(e;,) = f4 and S, (f)) =-e;,,, for all n. Then T, =1QS, €
R,®S,(H), and T2 = 1 ®S,.

Corollary(5.3.57)[370]: Let A and A + € be abelian, unital, real rank zero C*-algebras.
Write A =C(X) and A+ € = C(X + €),where X and X + € are 0-dimensional compact
Hausdorff spaces. Then A = A + € as metric structures if and only if CL(X) = CL(X + ¢€)
as Boolean algebras.

Proof: Suppose that A = A + €. By the Keisler-Shelah theorem Theorem (5.3.7) there is an
ultrafilter U2 such that A% = A%’ + ¢. By Lemma(5.3.36) AY" = C(Zyz X). Thus we
have C(Xy2) = C(Xyz +€), and hence by Gelfand-Naimark X2 is homeomorphic to
Xyz +€.Then CL(3 2z X) = CL(Qyz X + €). Applying Lemma(5.3.36) again, we have
CL(Zyz X) = CLXX)Y, so we obtain CL(X)Y = CL(X + €)%, and in particular,
CL(X) = CL(X + €).The converse direction is similar, starting from the Keisler-Shelah
theorem for first-order logic (see [36]).

Corollary(5.3.58)[370]:Let X be a compact 0-dimensional space and )., f" € C(X)<;.
Then there exists a countable collection of clopen sets ¥5 ¢~ = {Y,y_;r:n € N} which
completely determines Y, /7, in the sense that for each x2 € X, the value Y, f7 (x?) is
completely determined by {n: x? € Y, 5. ,r}.
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Proof: Let C,,; =

(I=Le iy € Z Ay + V=) < m}

For every y* € C,,, consider YrXyzpr =2 7T (Bl(y)) We have that each Xz 5. ¢+ IS

a o -compact open subset of X, so is a countable union of clopen sets
X 22 fr 17 = X 22 frn,...,E CL(X) NOte that UyZE(CmJ UTLENXyZ,err,n
X.LetXmy, ;o = (Xy2 5, rndo2mecy, oo € CLEX) -
We claim that X'err = Um)?m’zrfr describes Y. f completely. Fix x? € X. For every
m € N wecan find a (not necessarily unique) pair (y%n) € C,, ; suchthat x* € Xy2y ¢
Note that, for any m,n,,n, € Nand y? # z2?, we have that X zZ frn, NXp2y pro # 0
implies |y? — z2| < v2/m. In particular, for every m € N and x? € X we have

2 <{y? € Cpp:In(x* €X,25 )} < 4.
Let Ayz,, ={y €Cp g :3n(x® € Xyo5 ,r )} and choose a2, € Az, to have
minimal absolute value. Then Y, f" (x) = limy, a,z,, so the collection erfr completely
describes ), f in the desired sense.

Corollary(5.3.59)[370]: Let P be a o -closed notion of forcing. Let M be a metric
structure, and let };; @; be a set of (finitary) formulas. Then M is countably &;-saturated in

V ifand only if M is countably ;; @;-saturated in the forcing extension V[G].

Proof: First, observe that since IP is a-closed, forcing with P does not introduce any new
countable set. In particular, the set of types which must be realized for M to be countably
Y.j ®;-saturated are the same in V and in V [G].

Let t(x)be a set of instances of formulas from ;; @; with parameters from a countable set

A € M. Add new constants to the language for each a € A, so that we may view t as a type
without parameters. Define

Y e =) infly; (@6t}
J J

Note that }:; (/)j” @?”(d) = 0 if and only if a satisfies ¢ in M. This }.; @; is a formula in the
infinitary logic of [343]. By Lemma(5.3.48) for any a from M we have that };; @j-” (@ =0
inV if and only if }; C/)j” (a) = 0inV[G]. As the same finite tuples a from M exist in V
and in V[G], this completes the proof.

Corollary(5.3.60)[370]:  Fix al,..,al, € C(X). Then A" € jo(a”) if and only if
Yi<nldi —aj||is not invertible.

Proof: We have that " € jo(a™)if and only if there is x € X such that a} (x) = A7 for all
i <n.Inparticular, 7 € jo(a")if andonlyif 0 € o(¥ Y, |47 —al|)if and only if there
is x such that);<, > 147 —aj| (x) = 0. Since each )., |A] — a}| is positive we have that
this is possible if and only if there is x such that forall i < n, Y., |1} —aj|(x) = 0.

Corollary(5.3.61)[370]:The joint spectrum of an abelian C*-algebra A" is quantifier-free
definable.
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Proof: First of all recall that, when a™ = a”, then jo(a™) = o(a”™), hence the two
definitions coincide for elements. We want to define a quantifier-free definable function
E.: A" x C - [0,1] such that E.(a",A,.) = 0 if and only if A, € o(a”). Since we showed
that 1. € o (a”)if and only if 0 € U(ZisnMr,i — aj |), so, in light of this, we can define a
function

E. i AT X C" - [0,1]

as F.,(a", 1,) = F.(|1,; — o], 0), hence we have that F, ,(a™, 1,) = 0 if and only if 1, €
jo(a™), that implies that the joint spectrum of a™ € A™ is quantifier-free definable.
Todefine a(a™), recall that, for f,. € A", the absolute value of £, is quantifier-free definable

as |f| =+ frf;*, and for a self-adjoint f,. € A, its positive part is quantifier-free definable
as the function (f,.); = max (0, f.). The E.(a",A,.) = |1 —||(1 — |a" — A,..1]) . ||| is the
function we were seeking.
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Chapter 6
Rohlin Property and Borel Complexity

For the Jiang—Su algebra we show the uniqueness up to outer conjugacy of the
automorphism with this Rohlin property. We prove that if A is either (i) a separable C*-
algebra which is stable under tensoring with Z or ¥, or (ii) a separable II; factor which is
McDuff or a free product of II; factors, then the approximately inner automorphisms of A
are not classifiable by countable structures.

Section (6.1): Automorphisms of the Jiang—Su Algebra

In the classification program established by Elliott, the Jiang—Su algebra Z is one of
the most important C*-algebras, see [145], and which has been investigated by many people
[230], [231], [173], [247], [206]. Toms and Winter proved that all approximately divisible
C* -algebras absorb the Jiang—Sualgebra tensorially, i.e., A = AQ Z [206]. Rgrdam
showed that the Cuntz semigroup of a Z- absorbing C*-algebra is almost unperforated [247].
Recently, Winter has shown some criteria for the absorption of the Jiang—Su algebra [253].
For abstract characterizations of the Jiang—Su algebra in a streamlined way, we refer to the
recent by Dadarlat, Rerdam, Toms, and Winter [231], [248], [252]. H. Lin has shown the
classification theorem for a large class of C*-algebras consisting of limits of generalized
dimension drop algebras when they absorb the Jiang—Su algebra tensorially [241].

In the case of von Neumann algebras Connes defined the Rohlin property for
automorphisms, using a partition of unities consisting of projections, and classified
automorphisms of the injective type I, factor up to outer conjugacy [229]. Kishimoto gave
a method to prove the Rohlin property for automorphisms of AF-algebras for classifying
automorphisms up to outer conjugacy, based on Elliott’s classification program [232], [235],
[239], [240]. For Kirchberg algebras, Nakamura completely classified automorphisms with
the Rohlin property by their KK-classes up to outer conjugacy [244]. Recently, Matui has
classified automorphisms of AH-algebras with real rank zero and slow dimension growth
up to outer conjugacy [243]. For finite actions, Izumi defined the Rohlin property and has
shown the classification theory [236], [237]. Recently, Izumi, Katsura, and Matui showed
classification results for Z2-actions with the Rohlin property [177], [238], [242].

The aim is to introduce a kind of the Rohlin property for automorphisms of projectionless
C*-algebras and to give the two main theorems as follows.

Definition (6.1.1)[227]: Let A be a unital C*-algebra which has a unique tracial state ¢t and
absorbs the Jiang—Su algebra Z tensorially, and a be an automorphism of A. We say that a
has the weak Rohlin property, if for any k € N there exist positive elements f, € AL, n €
N such that(f;),, € A,

(@) (dn=0j=12.k~1

k-1

(1= al(f) |~ 0
j=0
Here, we denote by A®the quotient £ (N, A) / c,(A), and A ,the central sequence algebra
AN A
We extend a technical condition called property (SI)to C*-algebras which do not
necessarily have projections in Definition(6.1.6) Roughly speaking, property (SI) means

that if two central sequence of positive elements are given such that one of them is
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infinitesimally small compared to the other in the sequence algebra, then in fact so in the
central sequence algebra.

For a separable, nuclear C*- algebra A absorbing the Jiang—Su algebra, Rgrdam
proved that A is purely infinite if and only if A is traceless in [247], and Nakamura proved
that the aperiodicity for automorphisms of purely infinite C*-algebras coincides with the
Rohlin property in [244].

If A is a projectionless C*-algebra with a unique tracial state constructed in [250], the
weak Rohlin property is equivalent to the aperiodicity of the automorphism in the GNS-
representation associated with the tracial state. A similar definition for finite actions, which
is called projection free tracial Rohlin property, has been defined in [1,22]. The first main
theorem is an adaptation of the result showed by Hirshberg and Winter in [234] to
projectionless C*-algebras. The second main theorem is an adaptation of the result for UHF
algebras showed by Kishimoto in [239] to the Jiang—Su algebra. The proofs of Theorem
(6.1.12) and Theorem (6.1.21) will appear mainly in Lemma (6.1.13) and Corollary (6.1.20)
We take the two-sided shift automorphism s on the infinite tensor product ®,,czZ = Z of
the Jiang—Su algebra. In Proposition (6.1.14) and Example (6.1.8), we will prove that s has
the weak Rohlin property and Z has the property (SI). So, as an application of Theorem
(6.1.12), we obtain that:

Corollary (6.1.2)[227]:

(ne%l Z)X,=1L QZ = (ne%] z) X, L.
We recall the generators of the prime dimension drop algebras discovered by Rgrdam and
Winter in [248]. For projectionless cases we extend the technical property, which was called
property (SI) in [249], to projectionless C*-algebras. By this property, we can obtain the
generators defined. We prove Theorem (6.1.12). Using the weak Rohlin property we show
the stability for the automorphisms of the Jiang—Su algebra.

When A is a C*-algebra, we denote by A, the set of self-adjoint elements of, 4, A?
the unit ball of A, A, the positive cone of A, U(A) the unitary group of A4, P(A)the set of
projections of A, T (A)the tracial state space of A.

We define an inner automorphism of A by Adu(a) = uau*foru € U(A) anda € A. We

denote by M, the C* -algebra of n X n matrices with complex entries and el.(;.‘) the

canonical matrix units of M,, and we sete” = e{”.
common divisor of mand n € N.

The following argument was given by Rgrdam and Winter in [247] and [248]. We
would like to begin with some definitions about the generators of prime dimension drop
algebras and show Proposition (6.1.4). We denote by I(k,k + 1),k € N the prime
dimension drop algebra

{f €C(0,1]) ® My @ Myy1; f(0) € Mlyyy, f(1) € 1) @ Myy4}
and set the self-adjoint unitary

"y = Z e e’ € UM,@M,)
Lj
Defi -unital *-h hi M, @ M, M, ® My, b B Re™)) =
efine non-unita omomorphisms py: M, @ M, x @ M. bypg e;; e ) =
el ®efm, and p : C([0,1]) @ My @ My & C([0,1]) ® My ® My1by by p(f)(t) =

We denote by (m,n) the greatest
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po(f (t)),t €[0,1] .Let u € UC([0,1]) ® M, @ M) be such that u(0) = 1 and
u(1) = wu,and set.
b= z (k) ,(iﬁ)

w(t) = p(u)(t)@cosl/z(nt/2)1k®e,§’i+11>,
6(t) = wt) (e ® Lipa ) W' (©),j = 1.2,... k
s(t) = sm(nt/Z)w(t)v t € [0,1].
Since ¢;(0) = el(k) ® Les (D=1, ® e(k+1) s(0) = 0,ands(1) = 1, ® el(,'f;ll),
it follows that ¢;,s € I(k, k + 1). And we have that

* * k+1 k+1
ww(t) = ww'(t) =1, ® (Lip 1 —elsi”) @ cos(ut /2)1,®efr”,
CiC; = ww W(el( ) (k)®1k+ 1)W = 61]C17

k
Z cic; = (w'w)?,
=1
(k+1)

s*s(t)sin?(nt /2)1, Qe e+
c;s(t) = sin(mt / 2)w (e ®1k+ 1 ) wrw(t) z 911‘?@’3%:? = s(t)

From these computations, it follows that {cj}j:1 U{s}satlafles

* __ 2
1 = 0, Cl'C]- = 6i,jC11
k

* * —_ —_
chci+s s=1,¢;8 =s.

j=1
To be convenient, we denote by R, the above relations on generators of a unital C*-
algebra.Fix a separable infinite-dimensional Hilbert space H', and set

= {{Cj’}le U{s'} c B(H); satisfiest} c 2BU0O*,
ForA € Aletc; €A,Aj= 1,2,...,kand s, € A be generators corresponding to ¢;,j =
1,2,...,k, and s on the relations Ry , and define ¢; =@jep¢j1, S =Brea Sa €
B(@jeq H).The set {&;}7_; U {3} satisfies the relations Ry. Let C*({¢;}f -, U {5} ) be the
C*-subalgebraof B(€ e, F)generated by {¢;} U {§}. Then, we can identify C*({fj}ﬂ?:1 U
{5} ) with the universal C*-algebra on a set of generators satisfying the relations R .
Proposition(6.1.3)[227]: (See Proposition 5.1 in [248].) The universal C*-algebra C* -
algebra is isomorphic to I(k, k + 1) with ¢; » ¢;andS — s
Proof: First we show that C* ({cj}j U {s}) = I(k, k + 1) since

k

> G557 +5"s(0) = sin(rt / 2)(1,B1an),

j=1
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and 1,®1,,, € C* ({cj}j U{s}) we have that C([0,1]) ® 1;®1y41 < C° ({cj}j U
{s}) Bya partition of unity argument on [0,1], it suffices to show that C* ({c]-}j U

{s}) (i) = M,;i = 0,1 ,and C* ({cj} u{s}) (t) =M, ® My,,,t € (0,1) . Since

6(0) = e ® L1, (1) = L,®e,j=1,2,..,k, and s(1) = 1,®e;fyy , it

follows that C* ({cj}j U {s}) (i) = M,,;i = 0,1.since
s¢is*(t) = sin®(mt /2) cos(mt /2)p(u) (el(kl) X e(k+1) ) w5j=1,2,..,k
sgs*ci(t) = sin?(mt /2) cos(rt /2)p(w) (e ® e(k+1) )P ®ij = 1,2,...,k,

scj(t) = sin(mt /2) cos(mt /Z)p(u)(t)( (k) O3 Y;:;) ) =1,2,..,k,
fort € (0,1),we havethat C*({¢;}; U {s})(t) = My ® M, fort € (0,1).
SetA = C*({¢;}¥-, U {3D).
Let®: A - I(k,k + 1) be the *-homomorphism defined by ®(¢;) = ¢;and ®(3) =
s. It remains to show that @ is injective. Let (7r, ®') be an irreducible representation of A.
Because for any a € A there exists an irreducible representation of A which preserves the
norm of a (see [83]), it suffices to show that there exists a representation ¢ of I(k,k + 1)
on H such that ¢(c;) = m(¢;) and @(s) = (5).

Set
k

b = z G557 +35°5.
j=1
By the following computations, we see that b is in the center of A. Since {¢;}; U {5} satisfies

~~*

therelations Ry, in particular ¢ = ¢;¢; ,\we have that

—~

N N o~
bl-—ssc]+ssc],
T mmwa | x omwe
b =857 + ¢;375,

§'5¢ = ¢ — &f¢; = 6,873,

SetT; = m(g),5 = n(s), and b = m(b). Since 0 < b < 1, we have thatsp(b) =
and obtain B € [0,1]suchthat 1 = b. When B = 0 we have 5§ = 0. Thus {¢;}; satisfies the

relations for matrix units {e(k)} of My, and then H = C*. Set Vy: I(k,k + 1) — M,as the

irreducible representationat 0. Since Vo(c;) = e}

we obtain a unitary u. and define ¢ = AduOOV0
When g = 1, by the following computations, we see that ¢; ¢;,j = 1,2,...,n,and §*5 are

orthogonal projections. Since b = 1, we have that Y ¢i (1 —55%)¢; = 0. Then it follows
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] ] ]
= 1it follows that ¢;¢;,j = 1,2,...,k and 5*s are mutually orthogonal projections.

Hence {¢;}, U {5}

=2 _ =% =4 _ 2 —% = \2 __ o*x =25 __ k= =*\2 __ S*=2= __ =*x= —k —
that ¢f = §5%, ¢ = ¢1, (¢ ¢))” = ¢ ¢i¢; = ¢j¢j and (§75)* = ¢ ¢1S = §*S.From). ¢ ¢; +

satisfies the relations for matrix units {e(k+ )}""1 of M., . Then we see that H =

C*+1 andcan define ¢ : I(k,k+ 1) - B(#) as the irreducible representation of
I(k,k+ 1) att = 1upto unitary equivalence.
When 0 < f < 1, by the following computations we see that

l] - (B(l _.B)) C SC; C]S Ci,

],k+1 - (ﬁ(l _B)) C] C]S 5,
2,...,k, are mutually orthogonal projections. Since bs =55*5 and (1 —
(1 — §"5)5*5, we have that

Efj = (B(1 = B))™* = ¢{5655°C7 56,657
= (B(1 = P))72¢(55°56/G67 G5 ¢

=BT = PGS -§9EES G = By

E],k+1

1,

S &
V\,
U)| [l

BA - pN2(5¢) (3°5)?
= :8_1(1 - ﬁ)_lfj*c_j(l - §*§)§*§Ej,k+1,

k
z E;;+ z Eirer=@BA = )T (Z ¢;5(1 —5'5)5'¢;+ (1 — s'*§)§*s‘>
i,j J

i=1

k
=p! (2 c;55°¢c; + §*§> = 1.

i=1
Set

FL] ﬁ 1(1_ﬁ) 1/ZSC]S C;

F}',k+1 - (ﬁ(l - :8)) 1/ZSC],l,] =12,...,k.

Then it follows that F;F; j = E; j, Fi 41 Fj k1 = Ej,kﬂ,Fi]-Fi]- Eyqand Fj i Ff k+1

Ei1. Thus {F;;};; U {Fjx+1}; satisfies the same relations as matrix units {91,]'
(k“)}u {(k)® el(';ll)} of M, ® M,, . It is not so hard to see that
J

B2y FiyFiksr =S BYS_ FiF;; =55°¢, and B¢ = 55°C;+35°5¢; .Then we
have that C*({F;j} U {F k1)) = c ({ G};u{3s}) And H = C***D LetV; be the
irreducible representation of I(k,k+ 1) at t € (0,1) with sin?(wt/2) = . Then
Vgo®@(b) = B and there exists a unitary uy such that

F.j= B~ (1 —B) Y2Adug oVp(sc; s*c;),
Frjeer = (B(1 = B)) ™2 AdugoVy (scj).
Hence, we have that Adug oVg(c;) = ¢; and AdugoVp(s) = 5 and obtain ¢ = AdugoVp.
This completes the proof.
Definition (6.1.4)[227]: Let A be a unital C* -algebra and t € T(A). We recall the
dimension function d, and define d,: AL — R, by
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do(f) = lim 7((1/n+ f)7f),
do(f ) = lim 7(f"), f € 4.

Lemma (6.1.5)[227]: For f, € A}, n enN with (f,), € A, and an increasing sequence
m, € N,n € N with m,, 7 oo,it follows that:
(i) If lim,_max,cr(A)T(f,) = 0 then there exist f,, € AL, n € N such that (£,),, =
(fa)n And lim,,_,,max ey (A)fl.[(f;) = 0. _
(i) There exist fp€AL,neN such that (fi)n =), and
lim inf,_, o minger (A)c?, (£,) lim inf,, min, T(fnm”).
(iti) If A absorbs Z tensorially, then there exist fn(i) € A1,i =0,1,n € N such that

FaIn € A 1 £ = 0, (P In(fodmot = 0,1, and
lim infy,_,cMin er g d, (fn(i)) > lim inf,min . z(f, ™)/2.
Proof: (i) Let &, > 0 be such that &, \v 0 and max,er(4) 7(f,,) €5 Set
11— Nt—e)e<t <1,
9:(8) = {(o, i )o <t<eg
and f, = g, (f,) . Then we have that ||/, — f,|| < &, and e,lim,, 0 (1/m + /)7 f, <
f, Which implies that d,(f,,) < e, for any 7 € T(4).
(ii) Let &, > 0 be such that £, N 0, and(1 — g,)™n — 0. Set
1—-e)1t,0<t<1—¢
gg(t)={(1' ) l—e<t<1,
And f, = g (f,) . Then we have that ||f, — fo|| < & and £,/ = f, " (limsoo ft +
x([0,1—&,)) (f) < limLooft + (1 —&,)™ (where x(S) means the characteristic
function of S), which implies that 7(f, ™)d.(f,) + (1 — &)™, for any T € T(4).
(iii) Set ¢ = lim inf; e Mingerat(fy ™). SinceA = A ®pey Z , We obtain I, € N and
€A ®Jl.’;1 Z)4such that I,, 7 oo and m,||f, — f»|| = 0, which implies that (f,), € A
and lim infn%ominTET(A)r(ﬁlm") = ¢. By an argument as in the proof of (ii), we obtain

fr€(A®L DineN such that Fdn = (F) = (f) and

lim inf;, ,emingeraydy (Fy) = c. Let g’ € ZL,i=0,1,n € N be such that g{”g{" =

0,lim infnoffz(g,(f)) =1/2,i = 0,1, where 7, means the unique tracial state of Z. Set

=709 ea®™ z. since I, 7w it follows that (£), € A, and since

T ((FDYP) = 7(fF @ D1z ((g”)P),P € N, t € T(A4), it follows that

lim infnminrczr(fn(l)) = lim inf, min,d,(f,,) &Tz(g,(;)) c/2,i =0,1.
In [249],we have defined a technical condition, called property (SI), forC*-algebra with
non-trivial projections. For C*-algebras which do not necessarily have projections, we
generalize this technical condition in the following.
Definition (6.1.6)[227]: We say that A has the property (SI), when for any en and f,, €
Al n € Nsatisfying the following conditions:(e,),, (fi)n € Aco,

li =0
Jim, 1mg, v(en) =0.

i n
A (R TUR) > 0.

there exist s,, € A',n € N, such that(s,),, € A, and
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SnSn = (en), (fuSn) = (Sn).
Example (6.1.7)[227]: any UHF algebra has the property (SI).
Proof: Let B be a UHF algebra, and let en and f,, € B1,n € Nsatisfy the conditions in the
property (SI). Let B,,n € N be an increasing sequence of matrix subalgebras of B such that
(Unen Bn) = Band 15, = 1g. For any B,,, we denote by @,: B — B, N B the conditional
expectations [249]. By (e;)n, (fn)n € B, We obtain a slow increasing sequence m,, €
N,n € Nsuch that m, » oo,m, < n, (P, (en))n = (en)y, and
1111_{{)10 mn”(pmn(fn) - fn” =0,

and we obtain a fast increasing sequence I,,n € N, and &, , f,, € (Bm,, N B, )} such that
My < by, (€n)n = (P, (€2))n, and lim,,,;my || fo = P, () || = 0. Then we have that
limz(e,) =0 and lim||f,™ = fi || =0 , which implies
that lim infzr(f, ™) = liminf =(f, ™) > 0.
By Lemma (6.1.5)(i), we obtain &, € (B, N B; ); such that (&,), = (e,), and
lim d,(&,) = 0. By Lemma (6.1.5)(ii), we obtain f, € (B;, N B, )isuch that (f,), =
(fu)n and

rlll_r)go infd,(f,) = lim infr(f;lmn) > 0.
Taking a large N € N ,we have that

dTrn (€n) =d. (&) <d; (fp) = dTrn (fu)n=N,

where T, is the normalized trace of B, N B; . Then, we obtain s, (B,, N B, )* such that
Sy = €y, fuSn = Sn, hence we have that (s,), € Bo, (55:50)n = (€n)n » and (f,57)n =
(Sn)n-
The following proposition is motivated by Lemma (6.1.6) in [243]. Combining this
proposition and the above example we conclude Example (6.1.8).
Example (6.1.8)[227]: The Jiang—Su algebra has the property (SI).
In order to prove the above proposition, we define the projectionless C*-algebra Z,, for k €
N\{1}by

Zy =f €C[01] @ Myo @ Mj41)y;

f(0) € Mo @ M(j11y°, f(1) € 1go Q@ Mjq1).

This projectionless C*-algebra Z k was introduced by Rgrdam and Winter in [26,30] as a
mediator between C* -algebras absorbing UHF algebras and C* -algebras absorbing the
Jiang—Sualgebra.
Proposition (6.1.9)[227]: Let A be a unital C*-algebra absorbing the Jiang—Su algebra Z
tensorially. If A @ B has the property (SI) for any UHF algebra B, then A also has the
property (SI).
Proof. Suppose that e, and f,, € AL, n € N satisfy the conditions in the property (SI). Let k
be a natural number with k > 2,B® the UHF algebra of rank (k + i), and ®® the
canonical unital embeddings of A @ B® into A ® B® @ BMW,i = 0,1.

By Lemma (6.1.5) there exist £ €Al,i=01,n€eN , such that (£, €

Aooi (fn(o) )n (fn(l) )n = 0, (fn(L))n (fn)n ) and lim infnqoominTET(A)T (fn(l) ) >
lim infnminrczr(f,fl)) > lim inf,min, t(f;")/2 > 0,i = 0,1.

193



Applying the property (SI) of A® BD to e, ® 1, and £” ® 1,00 EA® Bf)l we
obtains? € A® B(i),i = 0,1,n € N such that(s\"),, € (4 ® BD),,
(5 s5) = (ea ® 1,00, (£° ® 150 s) = ().

n . n
Note that(@ @ (s s{"))y = (en @ 10g50)n (fr ® 1po1gem)n -

(@D (54”0 = (@D (547, and(@© (5,7 )5 (@D () = 0.
Define s, € A ® Z;,n € Nby

= 0 (@ ; @) (D

Sp(t) = cos(mt/2)P™ (s, )+ sin(mt/2)P ™ (s, ),t €[0,1].

Since
(555 ())n = (cos?(w t/2)@ ) (s,(lo) 57(10)) + sin?(mrt/2)e™ (s,(ll)*s,(ll)) + cos

-sin (mt/2) (CD(O)S,SO))* oW (s,(f)) + @ (S,(ll))* Cb(o)sr(lo))))n

= (e, ® 130 ®B(1))n,t € [0,1],
(fn ® 130g50)n(sn(®)) = (sx(t)),t € [0,1], and Lip(s,) = m,n € N, it follows that
(SnSpn = (€, @ 1Zk)n' (fn ® 1Zk)n(sn)n = (Snn-
Sett: A, © (A ® Zi) by t((an)n) = (an & 1z, )p. Since A = A Qpey Z and
Z, < unital Z, for any finite subset F c A, we obtain a unital embedding
P (AQ Zr)w © Ao Such that @Fou(x) = x,x € F.
Define s = @¢(¢ ) (rn)1((Sn)n) € A, then we conclude that s*s = (e;,)

and(f;,)ns = s.
We show Theorem (6.1.12). We denote by A, the fixed point algebra of a € Aut(A)

and by a the automorphism of A, induced by «. In the following Lemma (6.1.10),
mimicking in [234], we use the weak Rohlin property to obtain a set of elements in(Ay )@
which satisfies the same relations as {cj}ﬁ?:1 in R, . After that, applying the property (SI)
and the weak Rohlin property, we obtain the generators of prime dimension drop algebras
IN(Aw) Ao

Lemma (6.1.10)[227]: Let A be a unital separable C*-algebra which has a unique tracial
state T and absorbs the Jiang—Su algebra tensorially. Suppose that « € Aut(A) has the
weak Rohlin property.

Then for any k € N there exist¢;,, € A,j = 1,2,...,k,n € N such that

(Cj,n)n € (Am)}zoo:

(Cl,n) =0, (Ci,n)n(cj,n)* = 6i,j (Cl,n)zl

k
lewnll =1, ||1=) Guite)|| = 1 lim =(cta) = 1/k
j=1

which implies lim (1, — X¥_; ¢/,c;0) = 0).
n—oo ’ ’
Proof: Let &@,,, m € N be the unital embeddings of Z into A @,y Z = A defined by
¢m(x) = 1A ® 1®:r=112 ® X ® 1®?§m+ZZ,x € Z,
And @ be the unital embedding of Z into A% defined by @ (x) = (®,,(x)), x € Z. Note
that t(®,,(x)) = 1Z(x), me N, x € Z.
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In the definition of ¢; € I(k, k + 1), replacing cos with cos™ we obtain c,(lj) €Ik k+
1)c Z,j=1,2,...,k such that

2

(1) >, C(l) (J) _ 5i,jC7(11)

)

k
1(e) | =v|f1- Z 9P| = 1,0z (V") 7 1/k.

j=1
Lete, > 0,n € N be such that g, v Oaner( " )f 1/k —&,,n € N.
Let k,, and [,, € N,n € N be such that [,, » wand 2 < k,,.Since a € Aut(A) has the weak
Rohlin property and A and Z are separable C*-algebras, we obtain f™ = (f(”))m €E(AU
Ujez @2 (@(2)))' N A® such that ||f ™| = 1,

b (F™)f™ =0,and t(f™") > 1/QUkn + L) + 1) — &,

for all p with 0 < |p| < 2(k,, + 1,,) and for all » = m. Note that any subsequence of
(f("))m satisfies the above conditions. Then, taking a subsequence of (f,,(l”))m , We may

suppose that
oo () ) =2 () e (1)
For p € Z, define a,,,, = 0 by

< &

1- (lpl - kn)/ lnr kn < |p| < kn + lnr
ap,n = 1) |p| S kn )
0, k,+ L, <|p|

and define completely positive maps ¢,,: Z = A.,by

P (%) = Xpisky+1, CpnAo (@(x)ak, (™).
Then we have that

e (@nC) = 9GO = || > (@ = pr) - @B (@D (F™)|| = lxll/ L

Iplskn+in
X €EZ,
%( ()) %( (J)) z a2 ,a?, ((p( @ (J))) a(F™) = 6,0 n( 721))2’
nEN, [plskn+ln

Jon ()] = 1 and| 1 = 3o o0 ey 0] = 1.
Let ¢) €A'j=12,...kkmeN be component of gon( (’)) (z.e.,(c,(l{%l)m =

§0n( U)) €A )Wlth c(]) = (0 then we have that

nm =

s (<2") = mint " e (o (42) ) ()

|P|<skp+ly

> (2ky, + 1) lim infr( ( (J'))”_ o)
= (2k,, + 1) lim 1nfrz( @ )) T( n(ln)")
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2k, + 1)
QU+ 1)+ 1)

(1/k - <‘En) “n-oo 1/k

Let E, be an increasing sequence of finite subsets of A; with U, E, = A. By the above
conditions, we obtain an increasing sequence m,, € N, n € N such that

[l 4] <. <<

nm'

(2 =t <115

(l) (]) -5 C(l) <&, i,j=12,...,k,

nmn nmn L,j*nm,
k

>1—¢&,|[1- U "¢ >1—g,,
” ©) ” 1 CJ)n @)

nm n,my
j=1

1) m 2k, +1 B
v (el ) > T 1k e

Define ¢; , = (” J=12,...,k, then we have that (¢j,n), € (Adw)Qw,
(Cl' n)n =0, (Ci,n)n(cj,n)* = 6i,j(cl,n)2'

k
It mall =1 [|1= ) (@ mate,m|| = Llime(cr,) = 1/k
=1

By the technique in the proof of Lemma 4.6 in [240] we obtain a generator
s in (A~)ae satisfying the relations in R, together with{(cj, n),,} above. In the proof of the
following proposition, x =, y means |[x — y|| < e.
Proposition(6.1.11)[227]: Let Abe a unital separable C*-algebra which has a unique tracial
state 7, absorbs the Jiang—Su algebra Z tensorially, and has the property(SI). Suppose that
a € Aut(A) has the weak Rohlin property. Then for any k € N there exists a set of norm-
one elements{cj}j?:1 U {s}in(A.)a satisfying R,.
Proof. By Lemma (6.1.10) we obtain c,S{) € A,j=12,...,k,m € Nsuch that(c,(,{))m €
(Aeo) oo (€10 Im = 0, (eIl )" = 81 (c )2 (e Im = 1,1 = Zhos () (e ) =
1, lim T(c,(,? )=1/k,and lim (1 — Zc,(,{) c,(,{) ) = 0, where t is a unique tracial state
m—oo m—oo
Of A. Leteg,, > 0,m € N be such that em0 and T(C,S? )1/k — em.
Because of the weak Rohlin property of a € Aut(A) we obtain
9 e AL, m e N, such that (£)m € 4., and

ab, (( (”) )( (”)_0p=1,2,...,l—1,

e <em  rem

r(l) >1/l—¢€,,r=>m.
Note that any subsequence of (f,,(f))m satisfies the above conditions. Since 7 is the unique
tracial state, taking a subsequence of (f, ))m we may suppose that r((c(l)f”))m) =
emt (€ Y~ ()T (FPY1/ (kD) — 26,,. Set then we have that (g, €
AL, 1 €N andliminf,_. (g )1/ (kD).
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By the property (SI) of A, we obtain s'(l) € AL, me N, such that (s,',gl))me
{ON '(l) k O (J) (l) (l) _ ('O
Aw, (S )=0—=25=15n ), and(g,, ) = (s,, *). Remark that

(gm) = (f”))(c(”) < ), gDy, (f(”)(s,’,ﬁ”) =(sm ), and (cpdm(sp) =

(s:Dy.Let L, € N be such that 2 L,,*/% < &,(L,, 7 ) and define
Lp—1
sin) — [~1/2 Z af (s,',(LL")).
p=0
Then we have that
”as,(,f") (L”) <2L, 12 < &y, m € N,

Let m, e N, n € N be an increasing sequence with m, 2 co such that (s,Sf;J)n €

oo, || (Ln) <1+ €, ||f(Ln) I(fln) I(Ln) < gn/Lnr a (f(Ln)f(Ln) < gn/
/ Ln r Ln .
n, || (L))" ( ) §_<=1 Cr(rjln) P(C(] )) (] ) || < Sn/(Zk),] —

.,k,p—1,2,...,Ln—1,and || 1(112 sl _ g

Then we have that a, ((sp)n) = (5,) € Aw,
Lp—1 Lp—1

* _ ’Ln Ln Ly ILn
SiSn ~ge, Ll 2 (L) L) Zaqf( )/ (Ln)

p=0 q=0

s

< &,/L,,and sets, =

Ly

- 1(Ly Lp)? 1(Ln
zsnLnlzaS( ) ) gL’

k
zEnL;l Z 1-— zc 1)1 (])
j=1

‘. 1 — (J) (1)

mn my’

j=1
(5)n =1and (c,(,fz)(sn) = (s,,) . Hence we conclude that {(c,(,{g)n}j?zl U{(s,)n} C
(Aw)%,, and they satisfy the relations Ry.
Theorem(6.1.12)[227]: Let A be a unital separable C*-algebra which does not necessarily
have projections, has a unique tracial state, and absorbs the Jiang—Su algebra tensorially.
Suppose that A has property (SI)and a is an automorphism of A with the weak Rohlin
property. Then A X, Z also absorbs the Jiang—Su algebra tensorially.
Proof. Applying Proposition 2.2 in [206] to(A4 x, Z)* it suffices to show the following
lemma.
Lemma(6.1.13)[227]: Let A be a unital separable C*-algebra which does not necessarily
have projections, has a unique tracial state, and absorbs the Jiang—Su algebra tensorially.
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Suppose that a has the Property (SI) And a € Aut(A) has the weak Rohlin property. Then
for any k € N there exists a unitalx-homomorphism @, from I(k, k + 1)t0(Aw) Xc-
Proof. By Proposition (6.1.11) we obtain a set of norm-one generators{cj}ﬁ?:1 U {s}in
(As)q,, satisfying Ry . Then, by Proposition (6.1.3), we conclude the above lemma.

We see the following proposition as an example of automorphisms with the weak
Rohlin property, hence we conclude Corollary (6.1.2).

Proposition (6.1.14)[227]: The two-sided shift automorphism ¢ on ®,,c;Z has the weak
Rohlin property.

Proof: Identify ®,,czZ with Z.Let(rr, H) be the GNS-representation of Z associated with
the unique tracial state 7Z and @ the weak extension of a« € Aut (Z) on (Z)" . Because of
Theorem 1.2 in [250], we have shown that the weak Rohlin property is equivalent to the
aperiodicity in the GNS-representation associated with the unique tracial state. Then it
suffices to show that % # Ad V for any V € U((Z))" and any € N . In particular, since
®X .7 = 7, it suffices to show that & # AdV forany V € U(n(Z)").

Assume that there exists V, € U(m(Z)"")such that Ad V, = &. Note that %(17,) =V, for
any k € N. However we see that 7(Z)5 = C1, this is acontradiction.

Indeed, for any V € U(n(2)") With G(V) = V and any € > 0, we obtain N € Nand v €
®RYyZ € ®,ezZ(= Z) such that ||V —m(w)|l, < &, where ||x]|| 2:= tZ(x*x)/?, then
¥ (V) —moc*(w)||2 < e for all k€ N. Hence, for any a €z, it follows that
[V, m(a)]ll, < 2¢. Sincee is arbitrary, we conclude that V € n(Z2) n(Z)" = C1.

Using the weak Rohlin property, we show the stability for automorphisms of the
Jiang—Su algebra Theorem (6.1.15) and prove Theorem (6.1.21).

First, we recall the generalized determinant introduced by P. de la Harpe and G.
Skandalis (see [233], [238], [246]). Let A be a unital C*-algebra with a unique tracial statert.
For any piecewise differentiable path &: [0,1] — U(A), we define

1

- 1

5 == J T (E(OF ()dt € R
When £(0) = £(1) = 1wehavethatA,(§) € t(K,(A)). For any u € U,(A), there exists a
piecewise differentiable path &,:[0,1] - U(A) such that &,(0) =1,&,(1) =u. The
generalized determinant A, associated with the tracial state t is the map from
Uy (A toR/T (Ky(A)) defined by A (u) = A(E,) + 1(Ky(A)). Note that A, is a group
homomorphism.
Mimicking the proof of Lemma 6.2 in [238] we prove the following proposition.
Hereinafter, we let log be the standard branch defined on the complement of the negative
real axis.
Lemma (6.1.15)[227]: LetA be a unital C*-algebra with a unique tracial state 7.
(i) For uy,u, € U(A)with, ||lu; — 1]| < 1/2,i = 1,2 it follows that

tolog(uquy) = tolog(uy) + tolog(u,).
(if)For uy, u,, and v € U(A)with ||lu; — u,|| < 1/2and ||v — 1|| < 1/4, it follows that

tolog(u;vu;v*) = tolog(u,u3).
Proof: (i) Let h; € Ag, be such that exp (2mv—1h;) = u;,i = 1,2, and h; € A, be such
that exp (2mv—1hs) = uyu, . Set u(t) = exp(2mv—1th,) - exp(2mv—1th,), w(t) =
exp(2mv—1thy),t € [0,1]. Since[l1 —u(®)|l < 1,111 —w(®)Il <1, and||1 —w*u(®)|l <
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2,t €[0,1], we can define h € C([0,1]) ® Ag by h(t) = log(w*u(t)),t € [0,1], then u
and ware homotopic, by H(s,t) = w(t)exp((1 — s)h(t))with fixed endpoints H(s,0) = 1

and H(s, 1) = w(1). Hence, we have that
1 1

tolog(uyu,) = 2mv—1t(h3) = jT (Www*(t))dt = Jr (hu*(t))dt
0 0
= 2mvV—11(hy + ;) = 10log(u,) + tolog(u,).
(ii) Set U; = v*u,vuj, U,uq u3, then it follows that [|U; — 1]| < 1/2,i = 1,2. Applying (i),
since 7o log(U,) = tolog(v*) + tolog(u,vu;) = 0 we have that zolog(U,U,) =
tolog(U,) + tolog(U,) = tolog(U,).
Proposition(6.1.16)[227]: Let B be the UHF algebra of rank k*, where k € N\{1}, t the
unique tracial state of B, § € Aut(B), and u,, € U(B),n € N with (u,)n € B,,. Suppose
that § € Aut(B)has the Rohlin property and
A(uy) =0, for any n € N.

Then there exist v,, € U(B),n € N such that(v,,),, € Bw,

B I = W), T°log(Waf(v,) us) = 0, for anyn € N.
The following lemma was essentially proved in [233].
Proof. Because 8 € Aut(B) has the Rohlin property in [239], there exist v, € U(B),n €
Nsuch that (v,,),, € B, and

(WnBWn) )n = (un).

By the assumption and

1
= ToloBAB ) ) + T(Ko(B))

= A (VpB(wp) up) = Ar(UpB(vy)™) — Ar(uyn) = —Ar(uy),
we have that

1
tolog(v,,B(v;,)*u;) + ©(K,(B)),n € N.
27_[\/_—1 g( n.B( n) n) ( 0( ))
Since B is the UHF algebra of rank k*, we obtain [,, € N and m,, € Z such that
(m,, k) = 1land

1
=ln = — ! I\ *, %
k= nm, Zm/__lrolog(vnﬁ(vn) uy) + 1(Ky(B)).

Set A, = exp(2nV—1k~'»m,,) , then we have that A,, = 1, by(v,8(v})*u’), = 1.By the
Rohlin property of § € Aut(B) , there exist p,, € P(B) and z,, € U(B) ,n € N such that
(».), € B., (Zp)n =1, ,and

kln—1

D (Adzy0B) (pn) = 1.
=0

Define
kln—1
vV, = z exp(va—ljk‘lnmn) - (Adz,0B) (py), vy = ViV, € U(B),n € N,
j=0
Taking a subsequence of(pn),,and(z,),, , we may suppose that (v,),, € Bw.
Then it follows that (v,,),, € B, By the definition of v,, we have that
VpAdz, 0B (vy)* = 4, and
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(VB (V) up)n = (VpAdzy0BvaUy )y = (AvnB (V) up)y = 1.
And, by Lemma (6.1.15), we have that
tolog (v, (V) up) = tolog(vy, Adz,0B(vn) Uy)
= tolog (v, Adznof (v,)*Adz, 0B (vy,) U vy)
= 2nvV—1k~'m, + tologv,B(v.)*u, = 0,n € N.
Lemma (6.1.17)[227]: For any ¢ > 0 there exists ¢’ > 0 such that the following holds. Let
B be a UHF algebra, t the unique tracial state of B. Suppose that ii,, € U(C([0,1]) ®
B),n € N satisfy that
B (tn)n € (C([0,1]) @ B)w, (lin(i))n =1, = 0,1,
A, (i) = 0, tolog (i, (i) = 0, i=01n€eN,
and Lip (&i,) <c,n € N . Then there exist y, € U(C([0,1]?) ® B),n € N such that
) € (C([01]%) ® B).,
yn(0,t) = 1B,y,(1,t) = i, (t), t € [0,1],
yn(s,i) = exp(log i, (i)s),i = 0,1,s € [0,1],
And Lip(y,) < c’,n € N.
Proof. Set 0E = {(s,t) € [0,1]%; {s,t} N {0,1} = @}. By Proposition 4.6 in [238], for ¢ >
0, we obtain ¢’ > 0 satisfying that: for any AF-algebra A and for any z € U(C(0E) Q A)
with z(0,0) =1,Lip(z) < ¢, and [z]; =0 € K;(C(0(E)) ® A) , there exists Z €
U(C([0,1]2) ® A) such that Z| ;5 = z and Lip(Z) < c¢'. Suppose that ii,, € U(C([0,1]) ®
B) satisfies the conditions in the lemma. Define U,, € U(C(0E) @ B) by
1, s=0,
Un(s,t) =< Un(t), s=1,
exp(log(@i,())s), t=1ii=0,1.
Then we have that Lip (U,) < c for any n € N. By the assumption, regarding U,, €
U(C(T) ® B) ,we have that [U,]; = A,(U,) =0int(Ky(B)) .Let B,n €N be an
increasing sequence of matrix subalgebras of B with 1; =1z and UB, =B .
Since (U,)), € U ((C(0E) @ B),) , slightly modifying U, , we obtain an increasing
sequence m, € N,n € N and Uy, € U(C(JE) Q (B, N B)) such that m,, 7 o, (Uy), =
(Un)n, Up(0,0) = 1, and Lip(Uy) < c. Since By, N B has the unique tracial state T|B;nn N
B it follows that [Unlk, (s, ng) = ET(B% nB)(UrIl) = Az(U)) = A5z(U,) = 0,then we
obtain U, € U(C([0,1]®) ® (B, N B)),n € N such that U, |5z = Uy, and Lip (T,) < ¢’
Then we have that (U,),, € (C([0,1]*) ® B)s . Since U,|sr = U),,n € N , slightly
modifying U, on 90E ,we obtain y, € U (C([0,1]>) ® B)n €N and &> 0 such
that(v,))n, = (U, Ynlog = Uy, , and Lip(y,,) < ¢’ + & forany n € N.
As in the proof of Proposition 2.2 in [206], unitalx-homomorphisms from
I(k, k+ 1)tO(A°°a°o obtained in Lemma (6.1.13) implies the following lemma.

Lemma(6.1.18)[227]: Let A be a unital separable C*-algebra which does not necessarily
have projections, has a unique tracial state, and absorbs the Jiang—Su algebra tensorially.
Suppose that A has the property (SI) and a is an automorphism of A with the weak Rohlin
property. Then there exists a unital embedding of Z into (Ay),,, -

Theorem (6.1.19)[227]: Suppose that a € Aut(Z) has the weak Rohlin property and u,, €
U(Z),n € N satisfy (u,),, € Z, and that
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A;,(up) = 0,foranyn € N.
Then there exist v,, € U(Z),n € N such that(v,),, € Z., and
Una(vv)*n = (Un)n-
The following lemma is a direct adaptation of Proposition 4.6 in [238].
Proof. Let Z,, B®and ®®,i = 0,1, be the projectionless C*-algebra, the UHF algebras,
and the unital embeddings in the proof of Proposition (6.1.9).

Because of Z ® B® = BO, the Rehlin property of a ® id,x € Aut(Z ® B®, and
B o (n®1,0) =0, inR/7(ko(BD)),n €N,
applying Proposition (6.1.16), we obtain V" € U(z®B®),i = 0,1,n € N such that
(%) e (z@B®)_and
n

(Vn(i)a ® idgw (Vn(i))*)n = wn®1,i= 01,

T,o5MH0 logVn(i)a & idgm (Vn(i))* uplpgw =0, n €N
By the following argument, we obtain a path of unitaries #,,in Z @ Z, with endpoints
o®(4P) e UZ @BV @BW),i = 0,1 which satisfies  Tpa ® idZ(F) ~
U, ®1z,.
Set
Uny = 0@ (1) 00 (D),
Wh = n,laid3(0)®3(1)(Un,1)*rn €N
Then it follows that ((Un,l)n € (Z®B(°)®B(1))oo,(wn)n = 1(Z®B(°)®B(1))oo ,and, by (i) in
Proposition (6.1.16),
T 2050 gpm0log(W,)
= 10lg (0D (Ve ® ity () 1 @1,0) . 0 (V00 ® idyo () 1 @150) )
foranyn € N.
Since (Un,1) € (Z®BO®BW) , there exist U, € U(C([0,1]) ®Z ®BY ®
BM,n €N such that U,(0) =1,0,(1) = U,y, ()€ (C([0,1]) ® Z ® BO®
B®)) and Lip (T,) < 7 + & for some & > 0. Define 7.’ € U(C([0,1]) ® Z ® BO ®
BM n €N by
T,Ej) = Unidc([o,l]aj X idB(0)®B(1)(Un)*,
And T = 1. Note that
TVid®a®id (T V) =T", jneN
By (U)n€ (C([0,1]) ®Z @ BO ® BM),, (W), =1L, tologW,) = 0 , and
Lip()<m+e , we have that (T, e «€(01]) ® ZQ BO®
B, (TY(1)),, = 1,t 0 log(TY (1)) = jt o log(W,) = 0,and Lip(TY ) < 2(p +
€),j € N. Then, by Lemma (6.1.17), we obtain a constant ¢ > 0 and y,gj) €
UC([0,1?) ® Z ® B® ® B),j € N such that (y,E”)n € UC((0,1]Y) ®Z ®

BO & B(l))oo;
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yo,0=1 yP@,0=T"0®), telo,1]
y9(s,1) = exp ( (7P @s) ) y9(s,0) = 1,5 € [0,1],
and Llp( U))c,n €N
By the Rohlin property of a ® idg0)g sayWe obtain pPe Pz @ BO e® BW) and
pPeU(z®B®e®B®),L,meN such that (p,S,?) €(z ® BV e®
B(l))oo,(Z,(,?) =1 and
m

ki-1
Z (AdZ( )oa®ld) ( (l)) 1.
j=0
Set y(])(s)(t) = y(])(s, t),s,s€jneN
m = idc[0,1]® (Aer(rlL)OCl®idB(°)e®B(1)) ,[LmeN

kl-1 ,
T = 310 (68) ™ (590/00) (62 (o).
j=0

Since ((a;?) (idegoa ®p(l)) € (c[0,1)®Z ® B® e® B<l>> j=01,.., k' —

(0.0]

1are mutually orthogonal projections, we have that (szm,n)m IS a unitary and obtain
Wimn €UC0,1]) ® Z ® BO ® BM),l,m,n € N such that
| W) i 1) @a@id Wy ) — (T,E”)m” <c/k', LmneN

: ~(1) O (D ~Y’ 0)
Since (Tn ) ,((am) (yn (c/kl)>> , and (ocm) (16[0,1]®pm) €

n

(c[0,1]1®z®B© e® B(l))oo , and ||1—-W,]| >0 we obtain a slow increasing
sequence l,,n € Nand a fast increasing sequence m,, € N,n € N such that
l,, 7 00,m, 7 oo,
(W, mpmdn € (c[0,1]®2z8B© e® BY)
K211 = wll = 0, || Wy nid®a®id Wy ) = T2 || </ ki

Set

V=W m U, €U(c[0,1]1®Z @ BO QBW),n € N
Then it follows that (77;) € (c[0,1]1 ® Z ® B ® BM)_and

(Vi dicjo,®a®idgwgsa (%)),

kln-1

j-kin
=T = ) B0 (37) (50w, 0) (@) (45) =, 1.
Where 6, = 2kZl"Ill — W, |l,n € N, and then we have
(), = ), = (2 (1) 00 (42))
n
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Define

7() = @ (K) 7 (1), € [0,1],
Then we have (77,) € (c[0,1]1® Z ® B® ® BW)

(17,1(1')) - (db(i) (Vn("))) i=01

n

And
(]Z‘dic[o'l]®a®id3<°)®3<1)(Vn)*)n - <IC[0,1]®CD(O) (Vn(o)a®id3<0) (Vn(O)) )>

= (16[0,1]®un®13(0)®3(1))n
Slightly modifying ¥, at the end points, we obtain I, € U(Z ® Z,,) such that (%), =

(%),

n

5 () =@ (10),i=01  (7,a®idy, (7)) = (1a®1z,) .
Finally we obtain (v,), € Z, which corresponds to 7, € Z @ Z, and satisfies
v (Uy)n = (V)n , by the following. By Lemma (6.1.18) and Z;, Cnitar £ We Obtain a
unital embedding ¥ : Z @ Z, & Z® such that a0 ¥ = Yoa ® idz, and ¥(a ®
1Zk) =a€ZcZ%a € Z. LetE, c Z,n € N be an increasing sequence of finite
subsets of Z! and ,, > 0,n € N a decreasing sequence suchthat UE, = Z1,&, \ 0
||[1"7n,x X 1Zk]|| < &,X EE,
|Pha @ idy, (7,)* — un®1z, || < n.
It follows that [|W(#,), x| = ||¥([Fn x @ 12,])|| < &n. x € F, and
Denote by v,,¥ € U(Z),p € N components of ¥(7,) € U(Z*)then we obtain an
increasing sequence p,, € N € N such that

(vn,pn)n € Zo (vn,pna(vn,pn) )n = (Unn-
Define by u,, = v, ,, This completes the proof.
Corollary(6.1.20)[227]:Suppose that a € Aut(Z) has the weak Rohlin property. For any
finite subset Fof Ztand § > 0, satisfying that: for any u € U(Z)with||u,y|| < 6,y € G,
there exist v € U(Z) and A € T such that
lva(v)* — Au|| < ||[v,x]l| <&, x €F

Proof: Foru, € U(Z),n € Nwith  (up)n € Zo,, set A, = exp(—2nV—14, (u,))) €
T . Since A (Aun) = 0 € R/t (Ky(Z)), by the above theorem we obtain v, €
U(Z),n € Nsuchthat(u,), € Z,and

(Vna () )n = (AnUndn
Assume that there exist a finite subset F of Z1. and £ > 0 satisfying that: For any finite
subset G of Z! and § > 0 there exists u € U(Z) with ||[u,y]l| <&,y € G such that if
v € U(Z) and 1 € T satisfy |[va(v)* — Au|| < € then ||[u,x]|| < € for some x € F.
This contradicts theabove statement.
Theorem(6.1.21)[227]: Suppose that a and £ are automorphisms of the Jiang—Su algebra
with the weak Rohlin property. Then a and £ are outer conjugate, i.e., there exist an
automorphism é of Z and a unitary u in Z such that

a=AduodoBods L

203



Proof. By using the stability of the above form instead of Proposition 4.3 in [240] and by
the Evans—Kishimoto intertwining argument in the proof of Theorem 5.1 in [240] we can
give the proof. The details are as follows.
Let £ > 0 and let {x,},eybe a dense sequence in Z1. We shall construct inductively finite
subsets F,, G,of Z'u,, v, € U(z),and §,, > 0,n € N satisfying the following conditions:
SetFy = Gy, ={1,;},ugvy = 1,,a—1= a.fy=p,6, = 1.

Azn-1 = AdUpn1002,1, Bontz = AdUzpni205,,m € N U {0}
define

Wan = UznBan-2(Van)Van Want1 = Uznt1Ben-1(Vans1)Vanst
forn € N, and inductively define

Wan = WanAdvVon(Wan_3), Wans1 = Wan414dVs41 (Wapn_1)

forn € N, where wj = 1,w; = w;. The conditions indexed by n € N U {0} are given by
(I) Fn+1 - {xi ?:11 U {vn} U {erl}: Fn+1 - Fn:
(i) Guy1 2 Fry1 U Gryy,
(iii) [[AdUzn 410 Gpn_1(%) — Bon (Il < 271 Spps1, X € Gopyr,
(iV) [[AdUzn20Bon(x) = Azp_1(x) —II < 277 82n42, X € Gongo,
W) 1V2n4182n-1Van+1)™ = Uaneall < 272772, [[Vansr + LIl < 272771, 6,x € Fppy
(Vi) 1ans2B2n (Van+2)” — Ugnaall < 2727726, [[Vansz + 2,x]Il < 27%"7%,6,x € Fppyq
(Vi) 65141 < 2716,,, and if u € U(Z) satisfies that ||[u, y]|| < 62n41 F2n2n + 1 for any
Y € Byn(Gopiq)then there exist v € U(Z) and A € T such that
1VBan(v)" — Aull < 272772, [|[v, x]I| < 272""%for any x € Fypyq
(Viii) 65542 < 2716,,41, and if u € U(Z) satisfies that ||[w, V]|l < 82,42, fOr any y €
Ayn+1(Gonts), then there exist v € U(Z) and A € T such that

1Vant1 (V) — Aull < 272" 3¢, |lv, x|| < 272773 for any x € Fyp 4,
First, we construct F,, satisfying (i) for n = 0. Assuming that we have constructed
E,, G, u,, vy, 6,1 < 2k, and F,,, ., Satisfying (i) for n < 2k, (ii) forn < 2k —1, and
(it)—(viii) forn < k — 1, we proceed as follows: Since 3, has the weak Rohlin property,
by Corollary (6.1.20), we obtaina finite subset G, .,and §,,,,; > 0 satisfying (ii) forn =
2k and (vii) for n = k. Because any automorphism of the Jiang—-Su algebra is
approximately inner, we obtain u,, ., € U(Z)satisfying (iii) forn = k. When we obtain
G,,6; and u, , take the same argument for k = 0. By (iv) forn = k — 1, (iii) forn =
k,G, € Gypyq1,@nd o5 > 65541 (When k > 0), we have that
luzks1 VIl < Sz + S2k41) < G2k
for any y € a,x4+1(Gy). Then by (viii) for n=k —1 we obtain v,,,, € U(Z) and
Ask+1, € Tsuch that
1V2k41@2k-1(Var+1) "1l < 272" e, [[Vgperq, x]1| < 272771
for x € F,,. When we obtain v,, because for F = @ we may assume G = @ in Corollary
(6.1.20), we obtain v, € U(Z) and A; € T such that ||v;a(v1)* — Auy|| < 271e. Since
Adu,yyq = AdAypqUsk4q, replacing u,,,, We can obtain the ones which satisfy (iii) and
(v) for n = k(for u; and v, ,wetake k = 0). Let F,,,, satisfy (i) forn = 2k + 1.
Similarly, by the weak Rohlin property of a,;.;and Corollary (6.1.20), we obtain a finite
subset G,,4, and d > 0 satisfying (ii) for n = 2k +1 and (viii) for n = k. By
approximately innerness of automorphisms of the Jiang—Su algebra, (iii) forn = k, and
(vii) for n = k, we obtain unitaries u,;,,and v, satisfying(iv) and (vi) for n = k.
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Finally we obtain a finite subset F, 5 satisfying (i) forn = 2k + 2. This completes the
induction.
Set oy = Ad(V2nVan-z = V2) aNd 0341 = Ad(Vag41Van-1 -+ v1). From (i), (v), and
(vi) it follows that || [Vynti, Van—24:]ll < 27@ D foranyn € Nandi = 0, 1. Then, since
Unen Far 1S dense in Z1, we can define automorphisms of Z by
0o = lim oy, 01 = limoy,yq-
Indeed for x € F,,,, and n > m it follows that ||g,,12(x) — 0, ()| < (2n + 1) -
272"2¢ then o,,(x),n € Nis a Cauchy sequence. Similarly ,,,,;(x),n € Nis also a
Cauchy sequence. Thus we can define * homomorphisms &, ;. Since ||az‘,}+2+i(x) -
Oy i (|| < 27727 x € Fypp,n >m, we also define *-homomorphisms oy, : =
limoyl.;,i = 0,1,0n Z. Itisnot so hard to see that 6,0 6, = id; = 6. '06;,i = 0,1.
By (i), (v) and (vi, we see that |[wy,y;— 1]l< 272" % and
MVansis Won—nsilll272%" 275 | then w,, ,.,n € N,i = 0,1 converge to w; €
U(Z),i = 0,1suchthat||w; — 1| < &.By(iii),we have that for x € F,,,,
I1AdW3y_2410021410005,41 (X) — AdW;,,005,0a05, (X)|| < 2782541
Since §,, = 0, we conclude that
AdW,06,0a06] ' = AdWy,06,0806,*
Corollary (6.1.22)[370]: Let A™ be a unital C*-algebra with a unique tracial state .
(i) For ul®, ul' € U(A™)with, ||[u™ — 1|| < 1/2,i = 1,2 it follows that
tolog(ui*ul') = tolog(ui*) + t o log(uj").
(i)For ul, ul*, and v™ € U(A™)with ||[ul* — u*|| < 1/2and [[v™ — 1]|| < 1/4, it follows
that
T o log(u™v™u*v™") = 1 o log(ul*ul™).
Proof: (i) Let h* € AT be such that exp (2mV—1hA™) = u™,i = 1,2, and h* € AT be
such that exp(2mv—1hT") = ulul. Set u™(t) = exp(2myV—1th™) - exp(2mvV/—1th),
w(t) = exp(2mvV—=1th¥"),t € [0,1]. Since |1 —u™®)|| < 1,11 —w®)|| <1, and||1 —
wu™(t)|| <2,t €[0,1], we can define h™ e C([0,1]) @ AT, by ~A™(t) =
log(w*u™(t)),t € [0,1] , then u™ and ware homotopic, by H(s,t) = w(t)exp((1 —
s)h™(t))with fixed endpoints H(s,0) = 1 and H(s, 1) = w(1). Hence, we have that
1 1

tolog(uuy) = 2mv—1t(h}) = fr (Www™(t))dt = fr ™u™*(t))dt
0 0
= 2nV—=1t (A" + k") = 1o log(u™) + 7 o log(u).

(i) Set U; = v™ ulMv™u™], U,u™ul™, then it follows that ||U; — 1| < 1/2,i =1,2.
Applying (i), since 7o log(U,) = tolog(v™") + 7 o log(u*v™u™) = 0 we have that
tolog(UUy) =tolog(Uy)+teolog(U,) =tolog(U,).

Corollary(6.1.23)[370]: Let B be the UHF algebra of rank k*, where k € N\{1}, T the
unique tracial state of B, § € Aut(B), and u;, € U(B),n € N with (uy),ep, . SUuppose that
f € Aut(B)has the Rohlin property and

Z A(uy) =0, forany n € N.

T
Then there exist v}, € U(B),n € N such that(v},),, € Bw,
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D GEBED den= ) e ). Tolog(RB(R) W) = 0, for anyn € N.

T T T
The following lemma was essentially proved in [233].
Proof. Because f € Aut(B) hasthe Rohlin property in [239], there exist (v};)’ € U(B),n €
N such that ((v})"),, € By, and

D @B ) Ien = ) (R,

By the assumption and

1
T2 OB DY) + x(Ko(E)
DI (C) B, D= A B - Z AT

=) A,

27T\/_ Tolog((vn)' B((vp)" ) 'uy) + t(Ko(B)),n € N.

Since B is the UHF algebra of rank k*, we obtain [,, € N and m,, € Z such that (m,, k) =
1 and

we have that

1
k~thnm, = — 7o log((v v Y uT) + (Ko (B
n rmd—1 s g((vr)'B((vp) ) uy") + (Ko (B)).
Set A, =exp(2nv—-1k~»m,) , then we have that 1,->1 , by

. ((v,f) ﬁ((v,f) )Y'u), = 1. By the Rohlin property of € Aut(B) , there exist p,, €
P(B)and z; € U(B) ,n € Nsuch that (p,) € B,, (zp)» =1, ,and
kln—1

> ) (AdzioB) (bn) = 1.

j=0
Define
kln—1

Z 2 Z exp(2my—1jk~'nmy) - (Adz0B) (pn).

| Z z (vi)'#y € U(B),n € N.

r
Taking a subsequence of (pn)nand(zn)n , We may suppose that (v),),, € By
Then it follows that (v},),, € B, By the definition of i, we have that v,fAdzn o B(vy)* =
A, and

(Unﬁ(v]{)*u )n = (UnAdZn Bon Uy )n = (/1 (v;;) B((v;{) )*u )n =1
And, by Lemma (6.1.15), we have that

> relog BN = ) T log(vy Adzf o Bog) il

r r
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=Z rolog(ThAdzn o B(55) Adzl o B((wE) ) sy (vE)")
= 27T\/_k i, +Z tolog(w))' B((W))w =0,n€N.

Corollary (6.1.24)[370]:Suppose that a? € Aut(Z) has the weak Rohlin property. For any
finite subset F of Z1 and 6 > 0, satisfying that: for any u™ € U(Z)with||u™, y|| < 6,y €
G, there exist v™ € U(Z) and A% € T such that

lv™a?(v™)* — A2u™|| < |[[v™, x™]|| < &,x™ € F
Proof: For ul' € U(Z),n € Nwith (W) mn € Zoo, Set 12 = exp(—2nV—14A, (ul))) €
T. Since A, (Aup") = 0 € R/t (Ko(Z)), by the above theorem we obtain vy €
U(Z),n € N such that(uz"),» € Zoand

(' @) Dmn = (Un' Imn

Assume that there exist a finite subset F of Z1. and £ > 0 satisfying that: For any finite
subset G of Z! and § > 0 there exists u™ € U(Z) with ||[[u™,y]|| <&,y € G such that
if v € U(Z) and A2 € T satisfy |[v™a?(v™)* — 212u™|| < ¢ then ||[u™, x™]| < ¢ for
some x™ € F. This contradicts the above statement.
Section (6.2): Automorphisms of €*- Algebras

A major program in descriptive set theory over the last twenty-five years has been to
analyze the relative complexity of classification problems by encoding these as equivalence
relations on standard Borel spaces. If one can naturally parametrize the objects of a
classification problem as points in a standard Borel space equipped with the relation of
isomorphism, then one should expect that any reasonable assignment of complete invariants
will be expressible within this descriptive framework, with the invariants being similarly
parametrized. Accordingly, given equivalence relations E and F on standard Borel spaces
X and Y ,onesaysthat E is Borel reducible to F ifthereisaBorel map 0 : X — Y such
that, for all x;,x, € X,

0(x,)FO(x,) & x, E x,.

Borel reducibility to the relation of equality on R is the definition of smoothness
for anequivalence relation, which was introduced by Mackey in the 1950s. Ina celebrated
theorem,Glimm verified a conjecture of Mackey by showing that the classification of
the irreducible representations of a separable C*-algebra is smooth if and only if the C*-
algebra is type | [286].

A much more generous notion of classification is that of Borel reducibility to the
iIsomorphism relation on the space of countable structures of some countable language [260].
This classification by countable structures is equivalent to Borel reducibility to the orbit
equivalence relation of a Borel action of the infinite permutation group S, on a Polish
space [354]. The isomorphism relation on any kind ofcountable algebraic structure canbe
parametrized by such an orbitequivalence relation (see Example 2in [358]). Nonsmooth
examples of classification by countable structures include Elliott’s classification of AF
algebras in terms of their ordered K -theory [161] and the Giordano-Putnam-Skau
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classification of minimal homeomorphisms of the Cantor set up to strong orbit equivalence
[359].

A classification problem is often naturally parametrized as the orbit equivalence relation

of a continuous action G ™~ X of a Polish group on a Polish space. Starting from the fact that
every Borel map between Polish spaces is Baire measurable and hence continuous on a
comeager subset,one might then aim to analyze Borel complexity in this setting by using
methods of topological dynamics and Baire category. As a basic example, onecan show that
the orbit equivalence relation for the action G ~ X fails to be smooth whenever every
orbit is dense and meager.By locally strengthening the orbit density condition in this
obstruction to smoothness, Hjorth formulated the following concept of turbulence
Definition (6.2.2) and proved that it obstructs classification by countable structures [260].
Definition(6.2.1)[288]: Let G ™~ X be an action of a topological group G on a topological
space X . For x € X ,an open set U € X which contains x, and open set IV € G which
contains the identity element 1 € G, we define the local orbit O(x, U,V ) to be the set of
all y € U for which there exist neN and g,,9,,...,9, €V satisfying g grx_1 - -
gix €Uforeachk = 1,2,....,n—1and g,gn—1 - g1Xx =Y.
Definition(6.2.2)[288]: Let G ™~ X be an action of a Polish group G on a Polish space X.
A point x € X is turbulent if for every U and V as in Definition(6.2.2), the closure of
O(x,U,V) has nonempty interior. We refer to the orbit of x as a turbulent orbit. The action
G ~ X is saidto be turbulent if every orbit is dense, turbulent, and meager, and generically
turbulent if everyorbit is meager and there exist a dense orbit and a turbulent orbit.
The definition of a turbulent orbit is sensible because one point in an orbit is turbulent if and
only if all points in the orbit are turbulent. Generic turbulence is defined differently in
Definition 3.20 of [260]. The equivalence of conditions (1) and (V1) in Theorem 3.21 of
[260] shows that our definition is equivalent.

In [260], if G ~ X is generically turbulent then for every equivalence relation F
arising from a continuous action of S., on a Polish space Y and every Baire measurable map
6:X - Y such that x,E x, implies 68(x;)F 6(x,), there exists a comeager set C € X
such that 8(x,)F6(x,) forall x;,x, € C . It follows that the orbit equivalence relation on X
does notadmit classification by countable structures.

In [358] Foreman and Weiss established generic turbulence for the action of the space
of measure-preserving automorphisms of a standard atomless probability space on itself by
conjugation. In an analogous noncommutative setting, Kerr, Li, and Pichot showed that
generic turbulence also occurs for the conjugation action Aut(R) ~ Aut(R) where Aut(R)
Is the spaceof automorphisms of the hyperfinite I1; factor R[267]. This raises the question
of whether something similar can be said about the Borel complexity of automorphism
groups in the topologicalframework of separable nuclear C*-algebras, especially those that
enjoy the regularity properties that have come to play a prominent role in the Elliott
classification program [145].
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For the topological analogue of an atomless probability space, namely the Cantor set X ,
the group Homeo(X) of homeomorphisms from X to itself can be canonically identified
with the set of automorphisms of the Boolean algebra of clopen subsets of X (see [280]),
and thus the relation of conjugacy in Homeo(X) is classifiable by countable structures. In
particular, there is no generic turbulence, in contrast to the measurable setting. On the other
hand, by [280], the relation of conjugacy in Homeo(X) has the maximum complexity
among all equivalence relations that are classifiable by countable structures. It is thus of
particular interest to determine on which side of the countable structure benchmark we
can locate the automorphism groups of various noncommutative versions of zero-
dimensional spaces, such as UHF algebras and the Jiang-Su algebra Z.

We show that whenever A is Z, 0, , O, a UHF algebra of infinite type, or the tensor
product of a UHF algebra of infinite type and O, then the conjugation action Aut(4) ~~
Aut(A) is generically turbulent with respect to the point-norm topology Theorem (6.2.15).
We furthermore use this in the case of Z to prove that for every separable C*-algebra A
satisfyingZ @ A = A (a property referred to as Z -stability ) the relation of conjugacy on
the set Inn(A) ofapproximately inner automorphisms is not classifiable by countable
structures Theorem (6.2.21).This class of C*-algebras includes all of the simple nuclear
C*-algebras that fall under the scope of the standard classification results based on the
Elliott invariant [145]. We thus see here an illustration of how noncommutativity tends to
tilt the behaviour of a C*-algebra more in the direction of measure theory, and not merely
through the kind of “zero-dimensionality” that one frequently encounters in simple nuclear
C*-algebras. We also prove nonclassifiability by countable structures for approximately
inner automorphisms of separable stable C*-algebras Theorem (6.2.22) and of separable
11, factors which are Mc Duff or a free product of /1, factors Theorem (6.2.26), which
includes the free group factors.

In [267], the existence of a turbulent orbit for the action Aut(R) ~ Aut(R) was
verified by afactor exchange argument applied to the tensor product of a dense sequence
of automorphismsof R. This factor exchange was accomplished by cutting into pieces which
are small in trace norm and then swapping these pieces one by one to construct the required
succession of small steps in the definition of turbulence. In the point-norm setting of a
separable C*-algebra, any such kind of swapping is topologically too drastic an operation
if we are similarly aiming to establish turbulence, and so a different strategy is required.
The novelty inour approach isto apply the exchange argument not to an arbitrary dense
sequence of automorphisms but toan infinite tensor power of the tensor product shift
automorphism of A®Z, which allows us tocarry out the exchange via a continuous path of
unitaries in a way that commutes with the shift action. This malleability property of the
tensor product shift plays an important role in Popa’s deformation-rigidity theory [366] but
does not seem to have appeared in the C*-algebra context before. It is the exact
commutativity of the factor exchange with the shift action that turns out to be the key for
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verifying turbulence. This should be compared with the kind of approximate commutativity
that one's finds in a result like Lemma 2.1 of [214], which does not seem to provide enough
control for our purposes. Our use of the shift also relies on the density of its conjugacy
class in various situations, notably in the case of the Jiang-Su algebra Z, for which it is a
consequence of recent work of Sato [227].

To establish the other part of our turbulence theorem, namely thatevery orbit is meager, we
employ a result of Rosendal whichprovides acriterion interms ofperiodic approximation for
every conjugacy class in a Polish group to be meager [367] (see also page 9 of [362]). The
Rokhlin lemma inergodic theorymay be seen as a prototype for this kind ofperiodic
approximation, which we call the Rosendal property Definition (6.2.10). We relativize
Rosendal’s result in Lemma (6.2.17) so that we may use the Rosendal property in
conjunction with generic turbulence to derive nonclassifiability by countable structures
within the broader classes of operator algebras described above.

Throughout an undecorated @ will denote the minimal C*-tensor product. In fact,in all of
our applications involving separable C*-algebras at least one of the factors will be nuclear,
and so there will be no ambiguity about the tensor product. We take N =
{1,2,...}(excluding 0). If A is a unital C*-algebra, we denote its identity by 1, when A
must be explicitly specified.

The goal is to establish Lemma(6.2.9), which guarantees the existence of a dense
turbulent orbit in Aut(A) for various strongly self-absorbing C*-algebras A. This forms
one component of the proof of Theorem(6.2.15), which will be completed.

Recall that a separable unital C*-algebrad 2 Cis said to be strongly self-absorbing if
there is an isomorphism A @ A = A which is approximately unitarily equivalent to the
first coordinate embedding a —» a & 1[205]. This is a strong homogeneity property of
which one consequence isA®% = A, which enables us to exploit the tensor product shift.
Notation(6.2.3)[288]:Let A be a separable C*-algebra. For @ € Aut(A), a finite set Q <
A,and € > 0, we write

Upoe = {B € Aut(4):||f(a) — a(a)|| < € foralla € Q} .

These sets form abase for the point-norm topology on Aut(A), under which Aut(A) is
a Polish group. (For some details, see Lemma 3.2 of [365].) The action Aut(4) ~
Aut(A) byconjugation is continuous.

Notation(6.2.4)[288]:Let A be a unital nuclear C*-algebra. We let A®Z be the infinite
tensor product of copies of A indexed by Z, taken in the given order. Formally, A®Z is
the direct limit of thesystem

A AQAQRA-ARARARARA----

under the maps a » 1, ® a® 1, at each stage. A dense subalgebra is spanned by
infinite elementary tensors in which all but finitely many of the tensor factors are 1,.
For S € Z, we further write A®S for the subalgebra of A®Z obtained as the closed linear
span of all infiniteelementary tensors as above in which the tensor factors are 1, for
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all indices notinS. Form,n € Z withm < n, we take A®IM = 4®(mnInZ) e yse
the analogous notation for other intervals, and for tensor powers of automorphisms as well
as of algebras.

Lemma(6.2.5)[288]:Let A be a strongly self-absorbing C* -algebra. Let y be an
automorphism of A®Z, let O be a finite subset of A®N, and let § > 0. Then there are g €
N and 7 € Aut(A®M41) such that, with id being the identity automorphism of A®la+1.el
we have ||(7 ® id)(a) —y(a)|| < & forall a € Q.

Proof: Take g € N large enough that, with 1 being the identity of A®l*1.=L for every
a € QU y(Q) there is a® € A®4] suchthat ||a — a® ® 1|k < 5/6.

Since A is strongly self-absorbing, there is an isomorphism 8 : A®4l — A®N which is
approx- imately unitarily equivalent to the embedding A®14] & 4®[Lal @ A®lq+1eol -
A®N given bya = a ® 1. Thus by composing 8 with a suitable inner automorphism of
A®N we can construct an isomorphism w: A®L14!  A®N gych that ||w(a?) — a? @ 1| <
s/6foralla e QUy(Q). Sety = w ! oyow € Aut(A®H4l), Then forevery a € Q we
have

7@ - v@?] < (@ o V) (@(@®) - a® ® || + [0 y)(a® ® 1 - )

Ho 7 ¥(@ -y@* @D + llo™ ¢(@”® 1 —y@”|

6 6§ 6 & 26
SeHototo=—

6 6 6 3
and so
| (7 ® id)(a) —y(a)ll
< |G ®id)(a—a® @ D| +|7@®) - y(@)® 1
+|ly(@? ® 1 —y( )||<§+§+§—5
y a V a 6 3 6 - )
as desired.

Lemma(6.2.6)[288]:Let A be Z,0,, O,, a UHF algebra, or the tensor product of
a UHF algebraand O.. Then thetensor product shift automorphism £ of A®Z has dense
conjugacy class in Aut(4%®%).

Proof: Consider first the case A = Z. Let « be an automorphism of Z, let Q be a finite
subset of Z, and let e > 0. Set M = 1 + sup({||a]| : a € Q}). As every automorphism of Z
is approximately inner (Theorem 7.6 of [177]), there is a unitary u € Z such that ||a(a) —
uB(a)u*|| < g/3 for all a € Q. Proposition 4.4 of [227] implies that § has the weak
Rokhlin property, and so by Corollary 5.60f [227] (or more precisely the simpler version
omitting the quantification of finite subsets, which follows from the proof ) there are a
unitary v € Z and A € T such that ||[Au — vB(v*)|| < €/(3M) (stability). Then for all a €
Q) we have
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la(a) — (Ad (W) o p o Ad(w)" (@)l = lla(a) — v )B(@)BW)v'|
< lla(a) — up(@u*|| + [|(Au — vB ")) || IB@II. || Au*
€ € €
B IB@IL I CAu = vB@) 1l < 5+ (53) M + M (537) < e

Thus B has dense conjugacy class in Aut( A%%).
For 0,, O, a UHF algebra, or the tensor product of a UHF algebra and 0., we can
proceed using a similar argument. Automorphisms of these C*-algebras are well known to
be approximately inner. (See for example Proposition 1.13 of [205], which shows this for
every strongly self-absorbing C*-algebra.) In the case of O,, O, or the tensor product
of a UHF algebra and O, 8, has the Rokhlin property by Theorem 1 of [244] and thus
satisfies stability by Lemma 7.2 of [361]. In the case of a UHF algebra, the unital one sided
tensor shift endomorphism is shown to have theRokhlin property in [355] and [363]. The
Rokhlinproperty for the two sided tensor shift £ follows by tensoring with 1 in front. So 8
satisfies stability by Theorem 1 of [360].
Definition(6.2.7)[288]:An automorphism « of a C*-algebra A is said to be malleable if
there is a point-norm continuous path (p¢)¢epo,11in Aut(4A ® A) such that p, is the
identity, p,is the tensor product flip, and p; o (@ Q@ @) = (a Q a) o p,for all t € [0,1].
Lemma(6.2.8)[288]:Let A be a strongly self-absorbing C*-algebra and let «a the
tensor product shift automorphismof A @ Z. Then a is malleable.
Proof:Let ¢ be the tensor product flip automorphism of A @ A. Since Ais strongly self-
absorbing we have A @ A = A, and so by Theorem 2.2 of [214] we can find a norm-
continuous path (u;)¢epo 17 Of unitariesin A @ A such that u, = 14g4and gigl_llut au; —
p(a)[|=0for all aec AR A.
Define a path (py)eeoq] in Aut(4 ® A)®Z by setting p, = Ad(u,)®% for every te€
[0,1) and p, = @ ®Z . Then p, is the identity. A simple approximation  argument
showsthat this path is point-norm continuous. Moreover, by viewing ((A X A)®Z) as
(A®Z) X (A®Z) via the identificationthat pairs like indices, we see that p,is the flip
automorphismand p; e (a @ a) = (a Q a) o p.forall t € [0,1]. Thus a is malleable.
Lemma (6.2.9)[288]:Let A be Z,0,,0. , a UHF algebra of infinite type, or a tensor
product of a UHF algebra of infinite type and O,. Then there exists a dense turbulent
orbit Definition (6.2.2) for the action of Aut(A4) on itself by conjugation.
Proof:We follow Notation (6.2.4) throughout. Also, in this proof, for any interval S we
let ids € Aut(A®S)be the identity automorphism and let 15 € A®Sbe the identity of the
algebra.

Note that A®S = A, as all of the above C*-algebras are strongly self-absorbing.
Thus there is an automorphism g of A which is conjugate to the tensor shift automorphism
of A®S. 1t followsfrom Lemma(6.2.8) that S is malleable. Set a = ®N € Aut(A®N). By

. . . . Z
a tensor product coordinate shuffle we can view a as the shift automorphism of (A®N)® :
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and since A®N = 4 it follows that « is conjugate to 8.By Lemma(6.2.6) we deduce that
has dense conjugacy class in Aut(A®N).Thus to establish the lemma it suces to show, given
a neighbourhood U of a in Aut(A®N)and a neighbourhood V of the identity automorphism
idy in Aut(A®N), that the closure of the local orbit O(a, U, V) Definition (6.2.1) has
nonempty interior.

By a straightforward approximation argument, there exist m € N, e > 0, and a finite set
Q, in the unit ball of A®™Isych that, if we set
Q={a® lpmi1m) : a € Qy} S A®V,
then (using Notation6.2.3) we have Uy o, S U and Ui, 0 S V.

Since B is malleable so is O™ for we can rewrite A®IL™ @ A®[Lmlgs (4 ®
A)®ml by pairing like indices and then take the m-fold tensor power of a path in
Aut(A @ A)witnessing the malleability of g. Thus there is a point-norm continuous path
(PO eefo) in ACL™ @ A®ILmIsych that p, is the identity automorphism, p,is the
tensor product flip automorphism, and

(ﬂ@[l,m] R B@[l,m]) o pp = pgo (ﬁ@[l,m] R lg@[l,m] ) (1)
for all t € [0,1]. By point-norm continuity we can find a finite set F € A®lm @
A®mlwhich is e/6-densein {p;(a @ 1j1m):a € Qy and t € [0,1]}.

Now choose a finite subset E, of the unit ball of A®IL™ such that for every b € F there

ared,, , € Cforx,y € E, with
&
b — z Ax,y,bx® y <g
X,YEE
Taking
M = sup({|Axy»|: x, ¥ € E;and b € F}),

for every t € [0,1]and a € Q, we find scalarsd,,, ., € Cwith |4, .| < M for x,y € E,
such

&
pt(a ® 1[1,m]) - z Ax,y,t,a X ® Y| < §
X,YEE,
Set
&
&' and E ={a ® 1pni10) ¢ a € Eg} € A®N

~ 9(M + 1)card(E,)?
Let W € U,g. be a nonempty open set. We will construct a continuous path
(Kt)tefo.1] in Aut(A®N) such that K, is the identity automorphism, k, e a o Kk, ™! € Uy q.
for all t € [0,1], andk; ca o k,~t € W. By discretizing this path in small enough
increments, this will show thatO (a, U, V) contains U, g .,and hence has nonempty interior.
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A simple approximation argument provides y € Aut(4®N),5 > 0,q € N, with q >
m and afinite set Y, € A®14) such that, if we setY = {a ® 141100 : @ € Y} S A®N,
then we have Uy,Y,§ < W. By Lemma(6.2.1) we may furthermore assume, increasing q
if necessary,that there is an automorphism y of A®!%4l such that

7 ® idggs1.0®) ~ YO < 5 @
forall b €Y and
|7 ® id[gi1,0)(B) =¥ ()| < € (3)
forallb € E.
By Lemma(6.2.6) there is an isomorphism 8 : A®!4] - 4 such that
1071 ¢ o 0)(@) ~ (@)l <5 @
foralla €Y, and
107 o BoB)(x ® Tjgr1m)) = 7(x @ Ljgarem)|| <& (5)

forall a € E,.
Let ¢ be the tensor flip on A®M+1.4]l @ A®Im+1.4]l The glgebra A®M+14] © A®Im+1al jg
strongly self-absorbing and k-injective (since A4 is). So ¢ is strongly asymptotically inner
(in the sense of Definition 1.1 (ii) of [214]) by Theorem 2.2 of [214]. Therefore there is a
point-norm continuous path (a;)¢e[o,170f automorphisms of A®IM+1al @ 4®Im+1al gych
that o, = id and a; = ¢. Set

B = A®Im1] ®A®[m,1] ®A®[m+1,q] ®A®[m+1,q]
and letiy : B —» A®Lal @ A®Mal pe the isomorphism

(1 ®c®d®d - Qd QR Q dy.

Then we have an isomorphism
= (idpg ® 0)e p: B - A®La+Ll,
For
te[0,1],seti;, =To(p,® o0,) LoT™ 1,
and define x, = K, @ id (42,00 € Aut(A®V).
Then (kt) t € [0,1] is a point-norm continuous path in Aut(A®N). We complete the
proof by showing that
Ko = idy, that i, o @ o, ™t € Uygqforall t € [0,1], and that kg 0 ok, ' € Uyygs
That k, = idy is obvious.
We prove thatk; o @ ox; ™' € U,y 5. Letb € Y. Thenthereisa € Y, such that
b=a®1l,Q®1giz0) €EABIQ 4 @ ABGH22),
Since p, is the tensor flip on A®™ @ A®[L™Mand g, is the tensor flip on A®M+1al @
A®Mm+1al it follows that 1 o (p; ® 0y) o P~ is the tensor flip ¢, on A®LY @ A®M,
Therefore
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(’31)_1(61 K1, =
(idjnq ® 6) © ¢ ° (idjng ® 6) (¢ ® 6(111q)
= 1[1,q] ® 9((1)
Continuing with similar reasoning, we conclude that
(Ryo g o (R)™)(a® 1) =(0"" 2B 1, (6)
In the second step of the following calculation, recall that b =a ® 1, @ 1(442,,0), USE
(6.2.8)and (6.2.6) on the first term, and use (6.2.4) on the second term, getting
(g 0 a0 iy =1 (D) —y(D)I
< [|[[(7y e BB o (£) ) (@ ® 1) ]~ 7(@) ® 14 ® ligaz,e|
+ ||(7(@) ® idy ® id[g12,00))(B) —¥(D)||
6 6
< E + E =0,
Thusk; o ok, ™' € Uyy s, as desired.
Finally, we prove that k; c aok; ' € Uyq,. forall t €[0,1]. Letb€Qand lett €
[0,1]. We need to prove that ||(k; c @ o k; 71 )(B) — a(b)|| < €. There isa € O, such
that

b=a ® limi1q ® 14 ® 1(grz,m) € AL @ ABIMHLAl @ 4 @ AB@+22),
We carry out two preliminary estimates. For the first, recall that £, € A®!>™lwas a subsetof
the unit ball chosen so that there are scalars A, = A5, 4 € Cwith [1,,| < Mforx,y €
E,such that
&

. )

pt(a 02 1[1,m]) - Z Ax,yx®y <

X,YEE,

We have
(R)7'a @ L1 @ la= (T o (p: ® ) (@ & L1 @ Limrrgl @ Limsrql)

= ((id[l.q] ®6) o ’l’) (pe(a ® 1pm) @ Lpmirgt @ Limrq)-
So

&E
(’21)_1(61 X 1[m+1,q] K1, — )lx,yx X 1[m+1,q] 029 9()/ X 1[m+1,Q]) <z (8
3

X,YEE,
Our second preliminary estimate is that for y € E,, we have
[0 e Bo0)(y ® Limirqy) — BO || < 3¢ 9
To prove this, sincey € W € U, g ., , We have
Iy (¥ ® 1pmsrq1) = a(y ® Tpmsrg) || < €
Combine this inequality with (5) and (7) (tensoring with a suitable identity as needed) to get

”(9_1 ° B ° 9)(3’ X 1[m+1,q]) 03¢ 1[q+1,oo)[q+1,oo) - a(y X 1[q+1,oo))|| < 3¢
Now use
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(Y ® Lpmsie) = BEPU(Y @ 1pnit,0) ) @ Limsr,eo
and drop the tensor factor 1,41 ) to get (9). From (9) and |A,,| <M, lxll < 1, and
lyll < 1 forx,y € E,, we then get

Y 2y ® BO(x @ Lpnsson) ® (07 0 f 0 O @ Tmrsg))

X,YEEy

B Z Ay ® B®[1'q](x Y 1[m+1.<><>)) Y :3®[1'q](y 2 1[m+1,q])

X,YEEy

£
< 3Mcard(E,)?¢ < 3 (10)

We are now ready to show that |[(k;oaok,~1)(b) —a(b)|| <e. We calculate
(justificationsgiven afterwards):
(ke oaor,~)(b)

—a®) ~e | D Ay BE(E @ Tmis) ® B0V ® Lpmar)

X,YEE,
® 1 [q+2,0)

— ((id[Lq] ® 9) o 1/) o (pt ® O't)_l o l/)_l)

2 Ax,y :8®[1'q](x 03¢ 1[m+1,oo)) X (6_1 offo 9)(}7 X 1[m+1,q]) 03¢ 1[q+2,oo)

X,YEE,

~€/s (idj1q ® 8) oo (p @) oh™)

Z Aoy BEM U (x @ Limar,m)) @ BEHU(Yy @ Lpmirg)) | ® 1igez0)

x,yEEO

(id[l.q] X 8) o Po(p ®@ac)™h)

z /1x,y .8®[1'm] (x) ® ,8®[1'm] (y) ® 1[m+1,q] ® 1[m+1,q] ® 1[q+2,00)

X,YEEy

= ((id[l,q] ® 6)o° 111)
z Ax,y(ﬂ®[1'm] ® B®[1'm])(pt_1(x ® :V)) ® 1[m+1,q] ® 1[m+1,q] ® 1[q+2,oo)

x,yEEO

= ((idpnq ® 8) o (BO™ @ pELM)) o Yo (97! @ idpmirg) ® idimsrg)
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z Ax,yx ® y ® 1[m+1,q] ® 1[m+1,q] ® 1[q+2,oo)

x,yEEO

~e, ((id[l,q] ® )0 (pOL @ pOILl) o 111) (@ ® 11m) ® Tpmrtql @ 1pmarql)
® lig+2,0)
= pE(a ® 1pni1,q1) ® Ligiz.em)
= a(b).

The first step follows from (8) and o = S®N. The second step is the definitian of #,. The
third follows from (10). The fourth is the definition of 1 and ®m*14] (1) = 1. For the
fifth, we use

(ﬁ®[1.m] R ﬁ®[1,m]) op, 1=p, Lo ('3®[1,m] R ’3®[1,m]),
which follows from (1). The sixth step uses the definition of i and the relation
pOIm+14l(1) = 1. The seventh step follows from (7), the eighth is easy, and the last step
isa = pON,
For any unital - algebra A, we denote its unitary group by U(A), and equip it with the norm
topology.

To establish turbulence for the action U (A) ~ Aut(A)we proceed as follows.

Observe that the orbits are just translates of the group Inn(A) of inner automorphisms. As
Inn(A)a non- closed Borel subgroup of Aut(A) [297], it follows from Pettis’s theorem (see
[259]) that Inn(A) is meager in Aut(A). Moreover, Inn(A) is dense in Aut(A) by
Proposition 1.13 of [205]. It follows that every orbit is dense and meager. It thus remains to
show, given a € Aut(A), a neighbourhood U of a in Aut(A), and a neighbourhoodV of 1
in U(A), that the local orbit O(a, U,V ) is somewhere dense.
To this end, we may assume that U is of the form U,q. as in Notation 6.2.1 for some finite
setQc Aande >0, and that V = {u € U (4): [lu — 1| < &}. Write U,(A) for the path
connected component of the identity in the unitary group of A. By Lemma 2.1 of [214],
there are a finite set Y € Aand 6§ >0 such that if w is a unitary in Uy(4)
satisfying |[[w, x]|| < &forall x € Y ,then there isa continuous path (w;)e[o,1] OF unitaries
in Uy(A) such that wy =w,w; =1, and lfw,, x]ll < eforall x € a(Q) and t € [0,1]. To
complete the argument we will show that the open set U, ,_1 (r),5 IS contained in the closure
of O(a,U,V).Solet B € Uy 4-1 vy, 6 and let W be an open neighbourhood of 4 contained
in U . By Theorem 3.1 of [369], the algebra A is automaticallyZ - stable. In particular, (see
Remark 3.3 of [369]), it is Kj-injective, so Proposition 1.13 of [205] applies. Thus there is
u € Uy(A) such that Ad(u) c a €W S U, -1s - In  particular, Ad(u) o a €
Ug,a -1(r),s» @nd s0 by our choice of ¥ and ¢ there is a continuous path (u;)efo,1) Of unitaries
in Uy(A) such that uy = u,u; = 1, and llfug, x]Il < eforallx € a(Q)andt € [0,1].
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This last condition is the same as saying that Ad(u,) o a € Uy forallt € [0,1]. We
can now discretize the path (u¢)¢e[o,1) in small enough increments to verify the membership
of #in O(a, U,V ). We conclude that U, , -1y s is contained in the closure of O(a, U,V ),

as desired.
Implies that automorphisms of strongly self-absorbing C*-algebras are not clas- sifiable up
to unitary equivalence by countable structures. This consequence is proved using different
methods in [278], in much greater generality (for separable C*-algebras which do not have
continuous trace).
With the aim of completing the proof of Theorem(6.2.15), we now concentrate on verifying
the meagerness of orbits condition in the definition of generic turbulence. For this we will
employ a result of Rosendal that gives a criterion in terms of periodic approximation for
every conjugacy class in a Polish group to be meager [367]. As we will later relativize this
result in Lemma(6.2.17) for applications, it will be convenient to abstract the relevant
periodic approximation property into a definition.
Definition(6.2.10)[288]:We say that a Polish group Ghas the Rosendal property if for every
infinite set I € N and neighbourhood V of 1 in Gthe set.

{g € G : thereisn € I such that g™ € V}
IS dense. Rosendal’s result [367] can now be formulated as follows.
Lemma(6.2.11)[288]:Let G be a nontrivial Polish group with the Rosendal property. Then
every con- jugacy class in G is meager.

For aunital C*-algebra A we write U, (A) for the path connected component of the identity
in the unitary group U(A) of A, and Inn,(A) for the normal subgroup of Aut(A) consisting
of all automorphisms of A of the form Ad(u) for some u € U,(4).
Lemma(6.2.12)[288]:Let A be a separable unital C*-algebra with real rank zero such that
Inny (A)is dense in Aut(A). Then Aut(A)has the Rosendal property.

Proof: Let I be an infinite subset of N. Set

S = {@ € Aut(A4): there isn € I such thatp™ = id,}.
It suffices to prove that S is dense. Let a € Aut(A), let Q < Abe finite, and let € > 0. It
suffices to show (following Notation (6.2.3)) that SN U, . # @.Set M = 1 + sup({||a]| :
a€Q}).
As real rank zero is equivalent to the density in U,(A) of the unitaries in U,(A) with finite
spectrum [364], the density of Inny(4) in Aut(A) implies the existence of a unitary u with
finite spectrum such that |la(a) —uau®|| < /2 for all a € Q. Since u has finite
spectrum, there are k € N, projections p;,ps,...,px € 4, and 64,0,,... ,08, € [0,1) such
that u = 3_, e2™8i/mp,.

Choose n € I such that n > 8nM/e, and for j = 1,2,...,kchoose m; € {0,1...,n —
1} such that |; —m;/n| <1/n. Set v=3* e*™i/"p,  Then v" =1 and so
Ad(v)™ = id . Moreover, since
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m; 2t €
lu —v|| < sup 27t|9]-——]| < —< -,
1<j<k n n 4

We have, for every a € 2

la(a) — vav*|| < [la(a) —uau|| + ||lu- v .llall . [lu*|] + v . llall - |(w- v)*|
(S mn () =
<3t (BM) 3m) =~ ¢

Thus Ad(v) € Ugq . as required.
Lemma(6.2.12) shows that Aut(A4) has the Rosendal property when A is 0,,0,,, a UHF
algebra, or the tensor product of a UHF algebra and O, but cannot be applied to Z since Z
does not have real rank zero. Indeed the only projections in Z are 0 and 1. Nevertheless
we can useanother argument based on the shift automorphism.
Lemma(6.2.13)[288]: Aut(Z)has the Rosendal property.
Proof:Let I be an infinite subset of N. As in the proof of Lemma(6.2.12), we actually show
that automorphisms with orders in I are dense. Thus set

S = {p € Aut(A): thereisn € I suchthat ™ = id,}
let @ € Aut(A), let Q € A be finite, and let ¢ > 0. We showthat SN U, . # @.

Let 8 be the tensor shift automorphism of 2®¥Z. By Lemma(6.2.6) there is an
isomorphism y: Z®¥% — Z such that |[(y o £ o y™)(a) — a(a)|| < £/3 for all a € Q. By
the definition of the infinite tensor product, there are m € N and a finite set

Yyc1Q z®mml 1 c z®%
such that for every a € Q there is b € Y with ||[y~1(a) — b|| < £/3. Choose n € Isuch that
n>2m+2 . Let k€ Aut(g®-mn-m-1) pe the forwards cyclic tensor shift
automorphism, which for x_,,, , X_ 41, «+o» Xnn—m—1 € Z satisfies
K(x—m X X_m+1 K Q& Xn-m-2 X xn—m—l)

= Xn-m-1 03y X_m 03y X—m+1 K & Xn-m-2

Then k™ = id.
Let then
k" =id @ k ® id € Aut(Z®C2rm-U @ g®l-mn-m-1] @ Zz®[n-m.))

= Aut(Z%7).
Then Y™ = id (so that y o yp o y"1€ S ) and P(b) =pL(b) for all beE1®
z®l-mml @1 ¢ Z®Z,
Now let a € . Choose b € Y such that lly~1(a) — bll < &/3. Using Y (b) = B(b), we
get
Iy o oy ™)@ —a(a)l
<[y e WG '@ -+ ||y e B(b=y @)+ Iy eB ey (@) - a@l

<£+€+€_
373737 ¢

Thusy o ¢ o y~1 € Ugqe, Which establishes the desired density.
From Lemmas(6.2.11),(6.2.12) and(6.2.13) we obtain:
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Lemma(6.2.14)[288]:Let A be Z,0,, O, a UHF algebra, or the tensor product of a UHF
algebra and O,. Then every conjugacy class in Aut(A) is meager.

Lemmas (6.2.4) and(6.2.8) together yield the following.

Theorem(6.2.15)[288]:Let A be Z,0,, 0., a UHF algebra of infinite type, or the tensor
product of a UHF algebra of infinite type and O.,. Then the conjugation action Aut(4) ~~
Aut(A)is generically turbulent.

Consider a standard atomless probability space (X, u) and the Polish group Aut(X, ) of
measure-preserving transformations of X under the weak topology. In [358] Foreman and
Weiss showed that restriction of the conjugation action Aut(X,u) ~ Aut(X, ) to the Gs
subset of essentially free ergodic automorphisms is turbulent and not merely generically
turbulent. The essentially free automorphisms are precisely those which satisfy the Rokhlin
lemma. The analogue of freeness for automorphisms of Z is the property that every nonzero
power of the automorphism is strongly outer, which is equivalent to the weak Rokhlin
property [227]. The set WRok(A) of automorphisms of Aut(Z) with the weak Rokhlin
property is easily seen to be a Gg set, and it is dense by Lemma(6.2.6) as the tensor product
shift automorphism of Z is strongly outer. In analogy with the Foreman-Weiss result we ask
the following.

Problem(6.2.16)[288]:Is the conjugation action Aut(Z) ~ WRok (Z) turbulent?

Using the stability of automorphisms of Z with the weak Rokhlin property [227], it
can be shown as in the proof of Lemma(6.2.6) that any automorphism of Z with the weak
Rokhlin property has dense conjugacy class in Aut(Z). So the question of turbulence for
the action Aut(Z) ~ WRokZ amounts to the problem of whether every orbit in
WRok (2)is turbulent.

We can also ask the same question for the conjugation action Aut(4) ~ WRok(A) on
the set of automorphisms satisfying the Rokhlin property when A is any one of the other C*-
algebras in Theorem(6.2.15).

We prove Theorem(6.2.21):for a separable Z -stable C* -algebra A, the orbit
equivalence relation of the conjugation action Aut(4) ~ Inn(A4) is not classifiable by
countable structures.

Lemma(6.2.17)[288]: Let G and H be Polish groups such that G has the Rosendal property
Definition (6.2.10). Let ¢ : G —» H be a continuous homomorphism such that ¢(G) #
{14}. Let E be an equivalence relation on G such that for every infinite set I € N the set

g € G:there is a strictly increasing sequence (k) ~,in I such that

Q= { kn }

p(g) " -1
Is E-invariant. Then every equivalence class of E that is dense in G is meager. In particular
E does not have a comeager class.
Proof: Let I © N be infinite. We claim that Q,is comeager. To prove the claim, choose
acountable base (1},),—; of open neighbourhoods of 1, in H such that V;, 2V, 2 -
.Forn € N define
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Qin = {g € G:thereisk € 1suchthak >nand ¢(g)Xe Vn}
Then Q, , is open and contains the set
{g € G:thereisk € 1{1,2,3,...,n — 1} such that (p(g)k € Vn}
which is dense in Gby the Rosendal property. Since Q; = Ny~1 Q1 ., the claim follows.
Now let C be an equivalence class of E that is dense in G, and suppose that C is not
meager.Let g € C. Then for every infinite I € N the set Q,, being comeager and E -

invariant, contains C. Therefore every subsequence ((p(g)ln):zlof (p(g)™)p=q inturn has

a subsequence whichconverges to 1, . It follows that ¢ (g)™ — 1. Since also ¢ (g)"*! -
1, , we conclude that ¢(g) = 1, . Thus ¢~ 1({14}) contains C and hence is dense in G
Since ¢ is continuous, we conclude that ¢ =1 ({1,}) = G. This contradicts our hypothesis
that ¢ (G) # {14}

We let S, denote the set of all permutations of N (equivalently, of any countable set),

which is a Polish group in a standard way. Also, for an action G ™~ Xof a group G on a set
X,we write EZ for the orbit equivalence relation on X.
Definition(6.2.18)[288]: (Definition 3.6 of [260]). Let E be an equivalence relation on a
Polish Space X, and let F be an equivalence relation on a Polish Space Y. A Baire
homomorphism from E to F is a Baire measurable function ¢ : X — Ysuch that whenever
X1, X, € Xsatisfy x; E x,, then ¢(x;)Fep(x,). We say that E is generically F-ergodic if
for any Baire homomorphism ¢: X — Ythere is a comeager set C € Xsuch that the image of
C under ¢is contained in a single F -equivalence class.

From the point of view of applications, the following lemma is the main result in [260],
although it is not explicitly stated there.

Lemma(6.2.19)[288]:LetG ~ X be a continuous action of a Polish group G on a Polish
space X, and let E the corresponding orbit equivalence relation. If the action is generically
turbulent, thenis genericallyE}’w—ergodic for every Polish S,-space Y .

Proof: By condition (V1) in Theorem 3.21 of [260], there is a G — invariant denseGg —
set in Xsuch that the restriction of the action to this set is turbulent. It is clearly enough to
show genericE}”oo-ergodicity for this subset. Apply Theorem 3.18 of [260].
Lemma(6.2.20)[288]:Let G be a Polish group with the Rosendal property such that the
relation ofconjugacy in G is generically E}’w—ergodicfor every Polish S..-space Y. Let H be
a Polishgroup and let ¢: G — H a continuous homomorphism such that ¢ (G) # {1,}. LetF
be the equivalence relation on ¢ (G)given by xFy if there is h € Hfor which y = hxh™1.
Then F is not classifiable by countable structures.

Proof: Suppose to the contrary that F is classifiable by countable structures. Then there is
a space Zof countable structures for a countable language and a Borel map ¥ : G = Zsuch
that, with = denoting the orbit equivalence relation of the canonical action S, ~ Z, we
have xFy if and only if y¥(x) = ¥(y). (See Definition 2.37 and Definition 2.37 of
[260].) Let E be the equivalence relation on Gsuch that sEtif there is h € Hfor which
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@(t) = ho(s)h™1. By hypothesis the relation of conjugacyin : G is genericallyE}”oo-
ergodicand so there is a comeagersubset C of G such that for all s,t € C we have
W op)(s) = (Y o )(t) and hence sEt.

Now let s,t € Gsatisfy sEtand let(k, )=, be a strictly increasing sequence in N such
thate(s)*» — 1. By the definition of E, there is h € H such that ¢ (t) = he(s)h™1. Then

p()n = ho(s)h™ - 1.

This shows that for every infinite I € N the set Q,in Lemma(6.2.17) is E-invariant. We
apply that lemma to deduce that E does not have a comeager class, contradicting the
comeagerness of C. We thus conclude that F is not classifiable by countable structures.
Clearly in the statement of Lemma(6.2.20) one can replace ¢(G) with ¢(X) for any
comeager Borel subset X of G that is invariant under conjugation.
For a C*-algebra A we write Inn(A) for the set of inner automorphisms of A, and note that
the closure Inn(A) is a normal subgroup of Aut(A).
Theorem(6.2.21)[288]: Let A be a separable Z -stable C* -algebra. Then the orbit
equivalence relation of the conjugation action Aut(4) ~ Inn(A4) is not classifiable by
countable structures.
Proof: Identify A with Z @ A. Themap a » a @ id, is a continuous homomorphism from
Aut(Z) onto a closed subgroup of Aut(Z ® A). Since all automorphisms of Z are
approximatelyinner (Theorem 7.6 of [177]), its image is contained in Inn(A). By
Lemma(6.2.13) the group Aut(Z) has the Rosendal property, and by Lemma(6.2.9) and
Lemma (6.2.19) the orbit equivalence relation ofthe conjugation action Aut(Z) ™~ Inn(2)
Is generically ESYOo -ergodicfor every Polish S, -space Y . We thus obtain the conclusion by
applying Lemma (6.2.20).
Using Theorem 4.17 of [365] and the fact that the automorphism constructed in the proof of
Lemma(6.2.9) has the tracial Rokhlin property [365], we can furthermore deduce from the
proof of Theorem(6.2.21) that if A is a simple separable unital infinite-dimensional C*-
algebra with tracial rank zero, then the approximately inner automorphisms of A with the
tracial Rokhlin property are not classifiable by countable structures up to conjugacy.
Similarly, using Theorem 5.13 of [365] we can conclude that if A is a separable unital 0, -
stable C* -algebra, then the approximately inner automorphisms of A with the Rokhlin
property are not classifiable by countable structures up to conjugacy.

In the particular case when A is the Cuntz algebra of 0,, [285] provides further
information about the complexity of the orbit equivalence relation of the conjugation action
Aut(0,) ~ Aut(0,): Such equivalence relation is not Borel as a subset of Aut(0,) X
Aut(0,). Moreover if Cis any class of countable structure such that the relation =, of
isomorphism ofelements of C is Borel, then =, is Borel reducible to the relation of
conjugacy of automorphismsof 0,. The same conclusions hold if one considers the relation
of cocycle conjugacy of auto- morphisms of O0,. (Recall that two automorphisms «, 8 of a
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unital C*-algebra A are cocycle conjugate if there is a unitary element u of A such that
Ad(u) o a and B are conjugate.)

Fix a separable infinite dimensional Hilbert ', and let K be the C*-algebra of
compact operators on . Recall that a C*-algebra A is said to be stable if X Q@ A = A.
Here we show using Lemma(6.2.22) that if A is a stable C*-algebra then the orbit
equivalence relation of theconjugation action Aut(A) ™~ Inn(A) is not classifiable by
countable structures.

Lemma(6.2.22)[288]: The unitary group U (#') has the Rosendal property.
Proof: The proof is like part of the proof of Lemma(6.2.12). Set

S={u € U(H):thereisn € Isuchthatu™ = 1}.
It suffices to prove that Sis dense. Let v € U (H) and let e > 0. Choose n € [ such that
2m/n < &. Let Stdenote the unit circle in C. Let f: ST - S be the Borel function
which,for k=0,1,...,n —1 , takes the value exp(2rmik/n) on the arc
{exp(2mif): k/n < 6 < k+1/n}. Thenu = f(v) € U (H) satisfies u™ = 1, so that
ueSand|lu—v|| <2n/n<e.
Theorem(6.2.23)[288]: Let A be a separable stable C*-algebra. Then the orbit equivalence
relation of the conjugation action Aut(4) ~ Inn(4) is not classifiable by countable
structures.
Proof: Identify A with £ @ A. The map a » a @ id, is a continuous homomorphism
from Aut () onto a closed subgroup of Aut(X @ A). Since every automorphism of X is
inner, this subgroup is contained in Inn(A). By Theorem 6.1 of [263] the conjugation action
U(H)~ U (H)is generically turbulent and hence the corresponding orbit equivalence
relation is genericallyE}’w — ergodic for every Polish S, — space Yby Lemma(6.2.19). As
Aut(X) has the Rosendal propertyby Lemma (6.2.22), we can therefore apply Lemma(
6.2.20) to obtain the result.

Let M be a 1, factor with separable predual. Write Il - I, for the 2-norm associated
to its unique normal tracial state. We equip the automorphism group Aut(M) of M with the
point- |l - Il, topology. For @ € Aut(M), a finite subset Q € M, and € > 0, define (by
analogy with Notation(6.2.3)

Vaqe = (B € Aut(A): ||f(a) — a(a)ll, < e foralla € Q}.
These sets form a base for the point- Il - I, topology. In thisway Aut(M) becomes a Polish
group, and the action Aut(M) ~ Aut(M) by conjugation is continuous. By Theorem
5.14 of [267] this action is generically turbulent when M is the hyperfinite I, factor R.
Using thisfact and Lemma(6.2.11) we will show in Theorem(6.2.25) that Aut(M) is not
classifiable by countable structures for a large class of 11, factors M .
We first record the following fact.
Lemma(6.2.24)[288]:The group Aut(R) has the Rosendal property.
Proof: Since every automorphism of the hyperfinite /1, factor R is approximately inner
[156] and every unitary in a von Neumann algebra is a norm limit of unitaries with finite
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spectrum by the bounded Borel functional calculus, we can argue as in the proof of
Lemma(6.2.12) to obtain the result.

For a II,factor M we write Inn(M) for the set of inner automorphisms of M, and note
that the closure Inn(M). is a normal subgroup of Aut(M). (This notation conflicts with
that usedabove when M is a C*-algebra, since we are taking the closure in a weaker
topology.) We say that Mis McDuff if M @ R = M.

Theorem(6.2.25)[288]: Let M be a separable I1; factor which is either McDuf f or a free
product of II; factors. Then the orbit equivalence relation of the conjugation action
Aut(M) ~ Inn(M) is not classifiable by countable structures.

Proof: Suppose first that M is McDuff. Writeit as M @ R. Thenthemap a = id, ®
a is a continuous homomorphism from Aut(R) onto a closed subgroup of Inn(M). By
Theorem5.14 of [267] the conjugation action Aut(R) ~ Aut(R) is generically turbulent,
so that the corresponding orbit equivalence relation is generically E}”w — ergodicfor every
Polish S, —spaceY by Lemma (6.2.12). As Aut(R) has the Rosendal property by
Lemma(6.2.24), we obtain the desired conclusion using Lemma(6.2.20).

Now suppose that M = A = B for some [1, factors A and B. For any II, factor N, let
N,,, denote the cut-down of N by a projection of trace 1/2. For an integer r = 2,
let L(F.) denote the corresponding free group factor. Using Theorem 3.5(iii) of [357] at the
second step and Theorem 4.1 of [356] at the third step, we then have

Ax*x B = (A1/2 03¢ Mz) * (31/2 X Mz) = (A1/2 * By * L(F3)) X M,
= (Ay2 *Bijp* L(F) * R) @ M,.
Then the map a ~ (idAl/2 *idpg, ,, * ldy(p,) * a) ® id y, is a continuous homomorphism

from Aut(R) onto a closed subgroup of Inn(M). We can now continue to argue as in the
first paragraph to reach the desired conclusion.

The above theorem applies in particular to the free group factor L(E,.) for every integer r >
2,as we have L(F.) = L(F,_;) * R by Theorem 4.1 of [356].

We furthermore notice that the statement of Theorem (6.2.25) is still valid if we
replace Inn(M)with the smaller set consisting of those automorphisms in Inn(M)which
are free in the sense that all nonzero powers are properly outer (an automorphism 8 of a von
Neumann algebra M is properly outer if for every nonzero 8-invariant projection p the
restriction of 8 to pMp is not inner [368]). To see this, it suffices to note that the set of free
automorphisms in Aut(R) is a dense Gg-set by [267] and that freeness is preserved under
the maps between automorphism groups in the proof of Theorem(6.2.25).
Corollary(6.2.26)[370]:Let A,,, be a strongly self-absorbing C*-algebra. Let y,, be an

automorphism of A7, let Q be a finite subset of A2N, and let § > 0. Then there are g,, €
N and 7, € Aut (A,?;[l’q’”]) such that, with id being the identity automorphism of

A%[Qm"'l'w[’ we have ||(7, ® id)(a?) — v, (a®)| < 6 forall a? € Q.
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Proof: Take q,, € N large enough that, with 1 being the identity of ASm* 2L for
every a2 € Q U, (Q) there is a2? € A such that ||a? — a2? @ 1|k < &/6.

Since A,, is strongly self-absorbing, there isan isomorphism 9 : A%“'qm] - AS,?N which
Is approximately unitarily equivalent to the embedding A,?;“"’m] S Ag[l’Qm] ®
ABlam+Lel — 48N given by a2 - a2 @ 1. Thus by composing 6 with a suitable inner
automorphism of AZ"N we can construct an isomorphism a):A%[l’Qm] - A®N such that
|w(@?®) —a?* @ 1| < §/6 for all a? € QUy,(Q) . Set y=wloyowe
Aut (A;%[l'qm]). Then for every a2 € Q we have
[7m(@®®) = ¥ (a®)?||

< [[(w o ) (w(@®®) — a** @ || + [[(w 0 ¥m) (@** ® 1 - a?)||

o™ (@) = ¥m(@®)” @ V| + llo™ (rm(a®® ® 1) —ym(@®)”||

<6+6+6+6_26
6 6

6 6 3
and so
| 7 @ id)(@?) = ym(a®)l
< || ® id)(a? — a®® @ D|| + || (@?®) — ym(@a®? @ 1|
b 5 6 26 6
+ ”)/m(a ) 03¢ 1_Ym(a )” <8+?+€= 8,
as desired.

Corollary(6.2.27)[370]:Let A™ be a strongly self-absorbing C*-algebra and let «a,,
the tensor product shift automorphism of A™ @ Z. Then a,, is malleable.

Proof:Let ¢ be the tensor product flip automorphism of A™ @ A™. Since Ais strongly self-
absorbing we have A™ ® A™ = A™, and so by Theorem 2.2 of [214] we can find a norm-
continuous path (uf")¢epo,1) Of unitaries in A™ @ A™ such that ug' = 1 mgm and
tllr{l_llugn au;™ —p(a)|| =0for all ae AMQ A™.

Define a path (p;)¢efo1] i Aut(A™ @ A™)®Z by setting p, = A™d(u")®% for every
t €[0,1) and p, = ¢ ®Z. Then p, is the identity. A™ simple approximation argument
showsthat this path is point-norm continuous. Moreover, by viewing ((A™ ® A™)®Z) as
((Am)®z) X ((Am)®z) via the identificationthat pairs like indices, we see that p; is the flip
automorphism and p; o (@, Q a,,) = (a,, Q a,,) o pfor all t e€[0,1]. Thus a,, is
malleable.
Corollary(6.2.28)[370]:Let A™ be a separable unital C*-algebra with real rank zero such
that Inn,(4™)is dense in Aut(A™). Then Aut(A™)has the Rosendal property.
Proof: Let I be an infinite subset of N. Set

S ={p™ € Aut(A™): there is n € I such that ™™ = id,m}.
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It suffices to prove that S is dense. Let a™ € Aut(4™), let Q € A™ be finite, and let ¢ >
0. It suffices to show (following Notation (6.2.3)) that SN Ugmg, = @. SetM =1 +
sup({llall : a € Q}).

As real rank zero is equivalent to the density in U,(A™) of the unitaries in Uy,(A™)
with finite spectrum [364], the density of Inny,(A™) in Aut(A™) implies the existence of a
unitary u™ with finitespectrum such that ||a™(a) —u™au™|| < &/2 for all a € Q.
Since u™ has finite spectrum, there are k € N, projections pi*,p%*,...,pgr € A™, and

01,63,... , 6 € [0,1) such that u™ = 3_, e2™6;i /mpin,

Choose n € I such that n > 8nM /¢, and forj =1,2,...,kchoose m; € {0,1...,n —
1} suchthat |6; —m;/n| <1/n. Setv™ = Y¥_ e?™™i/Mp™  Then v™ =1 and so
AMd(v™)™ = id . Moreover, since

2w €
[u™ — v™|| < sup 2n|9 ——| <—<—
1<js<k 4’

We have, for every a™ € 2
la™(a) — v™av™||
< [la™(a) —u™auw™|| + [[u™ - v . llall . ™™ || + [[lv™]] - llall
@™ - v™)|
&E
<37 (3M
Thus Amd(v™) € Uymq . as required.
Corollary (6.2.29)[370]: Let G and H be Polish groups such that G has the Rosendal
property Definition (6.2.10). Let ¢, : G — H be a continuous homomorphism such that
¢,(G) # {14}. Let E be an equivalence relation on G such that for every infinite set ] € N
the set

)M+ M ( e.

) -

g" € G:there is a strictly increasing sequence(k,)n,in I such that
&= D og o1
r

Is E-invariant. Then every equivalence class of E that is dense in G is meager. In particular
E does not have a comeager class.

Proof: Let I € N be infinite. We claim that Q,is comeager. To prove the claim, choose
acountable base (V,)n-,0f open neighbourhoods of 1, in H such thatV; 2V, 2 - - -. For
n € N define

Qin = {gr € G:thereisk € 1 suchthak > nand Z o, (gNk e Vn}
T
Then Q4 ,, is open and contains the set
{gr € G:thereisk € 1{1,2,3,...,n — 1} such that Z o, (gMk e Vn}

which is dense in Gby the Rosendal property. Since Q; = Ny~ an, the claim follows.
226



Now let C be an equivalence class of E that is dense in G, and suppose that C is not
meager.Let g" € C. Then for every infinite I € N the set Q,, being comeager and E -

invariant, contains C. Therefore every subsequence (%(gr)ln)::lof (0, (g")M) =1 Inturn
has a subsequence whichconverges to 1, . It follows that )., ¢, (g")™ — 1. Since also
Y. (g")! - 1, ,we concludethat Y- @, (g™) = 1 . Thus ¢ 1({14}) contains C and
hence is dense in G Since ¢, is continuous, we conclude that ¢ 1({1,}) = G. This

contradicts our hypothesis that Y- ¢, (G) # {14}
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List of Symbols

Symbols Page

[a>) Divest sum 1

® Tensor product 5

sup Supermom 9
Aut Automorphism 12
Inn Inner 12
Pic Picard 13
H? Hilbert spaces 13
O] Algebra tensor product 16
tr Tracial 19
Hom Homomorphism 25
Plnn Pointiest Inner 31
PFA Proper forcing Axiom 31
MA Martin Axiom 31
TA Todorcwic Axiom 32
cce Countable claim condition 33
Lev Level 34
Min Minimum 37
Supp Support 44
AA Asymptotically Abetion 44
CRISP Countable Rlesz separation property 48
rc Relative commutant 49
max Maximum 53
Inf Infimum 61
Im Imaginary 62
Af Approximately finite dimensional 74
At Approximately circle 74
Ell Ellioh 75
Dim Dimension 78
VCT Vniversal coefficant theorem 80
AH Approximately homogenous 81
Al Approximately interval 85
Ord Ordered 99
Conv Compact convex 99
Proj Projection 100
nuc Nuclear 112
ker Kernel 119
I Hilbert space of sequences 121
Ann Annihilator 130
Ch Continuum hypothesis 139
[® Essential space of sequences 139
12 Hilbert space 141
LP Lebesgve space 154
[p Lebesgve space of sequences 154
L Essential lebesgve space 157
Sl Suslin hypothesis 158
Prim Prime 161
Sot Strong operator topology 170
Lip Lipchitz 200
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