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Abstract 

 The central sequences and inner derivations with regularity properties 

in the classification program for separable amenable 𝑪∗-algebras are shown. We 

obtain the automorphisms of 𝐶∗ −algebras and all Calkin algebras, similarly the 

unitary equivalence, and Rohlin property of automorphisms of separable 𝐶∗ -

algebras and Jiang–Su algebra. We determine the countable saturation and chain 

condition of Corona algebras and certain 𝐶∗-algebras and Banach algebras. We 

classify the strongly self- absorbing and descriptive set theory of 𝐶∗-algebra with 

model theory of operator algebras and Borel complexity.  
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 الخلاصة

خصائص الانتظام في برنامج تم أيضاح المتتاليات المركزية والمشتقات الداخلية مع 
 ∗𝐶-القابلة للانفصال. تم التحصيل على الاوتومورفيزم لجبريات ∗𝐶-التصنيف لأجل جبريات

 ∗𝐶-وكل جبريات كالكن وبالمثل التكافؤ الآحادي وخاصية روهلن للاوتومورفيزمات لجبريات
جبريات كورونا سو. تم تحديد التشبع القابل للعد وشرط السلسلة ل-المنفصلة وجبر جيانق

تصنيف الامتصاص الذاتي القوي ونظرية الفئة الأكيدة وجبريات باناخ. تم  ∗𝐶-وجبريات
 عقدية بورل.تمع نظرية النموذج وجبريات المؤثر و  ∗𝐶-الموصوفة لجبر
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Introduction 

We show that a separable 𝐶∗-algebra 𝐴has continuous trace if and only if 

each central sequence in  𝐴  is trivial. This is used to show that the condition, that 

every derivation of 𝐴 is determined by a multiplier of 𝐴 , is equivalent to the 

condition that every summable central sequence in 𝐴 is trivial. We shall extend the 

theorem of Lance and Smith to 𝐶∗ -algebras of bundles whose fibres are 𝐶∗ -

algebras. 

The Proper Forcing Axiom implies all automorphisms of every Calkin al-

gebra associated with an infinite-dimensional complex Hilbert space and the ideal 

of compact operators are inner. Although our results were obtained by considering 

𝐶∗‑algebras as models of the logic for metric structures, the reader is not required 

to have any knowledge of model theory of metric structures (or model theory, or 

logic in general). The proofs involve analysis of the extent of model-theoretic 

saturation of corona algebras. We study commutants modulo some normed ideal of 

𝑛 -tuples of operators which satisfy a certain approximate unit condition relative 

to the ideal. 

We include a brief history of the program's successes since 1989, a more 

detailed look at the Villadsen-type algebras which have so dramatically changed 

the landscape, and a collection of announcements on the structure and properties of 

the Cuntz semigroup. This characterizes the Jiang–Su algebra 𝒵 as the uniquely 

determined initial object in the category of strongly self-absorbing C∗-algebras.  

We establish the Borel computability of various 𝐶∗-algebra invariants, 

including the Elliott invariant and the Cuntz semigroup. This implies a 

dichotomy for the Borel complexity of the relation of unitary equivalence of 

automorphisms of a separable unital 𝐶∗-algebra: Such relation is either smooth or 

not even classifiable by countable structures. 

We introduce a version of logic for metric structures suitable for applications 

to 𝐶∗ -algebras and tracial von Neumann algebras. We introduce the countable 

chain condition for C∗­ algebras and study its fundamental properties. We study the 

saturation properties of several classes of 𝐶∗-algebras. Saturation has been shown 

by Farah and Hart to unify the proofs of several properties of coronas of 𝜎-unital 

𝐶∗-algebras; we extend their results by showing that some coronas of non-𝜎-unital 

𝐶∗ -algebras are countably degree-1saturated. We then relate saturation of the 

abelian 𝐶∗-algebra 𝐶(𝑋), where 𝑋 is 0-dimensional, to topological properties of 𝑋, 

particularly the saturation of 𝐶𝐿(𝑋).  

 

For projectionless C∗-algebras absorbing the Jiang–Su algebra tensorially, 

we study a kind of the Rohlin property for automorphisms. We show that the 
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crossed products obtained by automorphisms with this Rohlin property also absorb 

the Jiang–Su algebra tensorially under amild technical condition on the C∗ -

algebras. We show that if 𝐴 is 𝒵, 𝒪2, 𝒪∞, a UHF algebra of infinite type, or the 

tensor product of a UHF algebra of infinite type and 𝒪∞ , then the conjugation 

action Aut(𝐴) ↷ Aut(𝐴) is generically turbulent for the point-norm topology.  

  



VII 
 

The Contents 

Subject Page 

Dedication I 

Acknowledgements II 

Abstract III 

Abstract (Arabic) IV 

Introduction V 

The Contents VII 

Chapter 1 

Central Sequences and Automorphisms of 𝑪∗-Algebras 

Section (1.1) Inner Derivations of Separable 𝑪∗-Algebras 1 

Section (1.2) Second Cech Cohomology 12 

Chapter 2 

Automorphisms and Countable Degree-1 Saturation 

Section (2.1) Automorphisms of all Calkin Algebras 31 

Section (2.2) Corona Algebras 44 

Section (2.3) Certain 𝐂∗∗ Algebras Which are Coronas of Banach Algebras 60 

 Chapter 3 

Regularity Properties and Strongly Self-Absorbing 𝑪∗-Algebras 

Section (3.1) Classification Program for Separable Amenable 𝐶∗-Algebras 74 

Section (3.2) Z-Stable Wilhelm Winter 86 

Chapter 4 

Descriptive Set Theory and Unitary Equivalence 

Section (4.1) 𝑪∗-Algebra Invariants 96 

Section (4.2) Automorphisms of Separable 𝑪∗-Algebras 115 

Chapter 5 

Model Theory and Countable Chain Condition with Saturation 

Section (5.1) Operator Algebras 139 

Section (5.2) 𝑪∗-Algebras Shuhei Masumoto 155 

Section (5.3) Elementary Equivalence of 𝑪∗-Algebras 162 

Chapter 6 

Rohlin Property and Borel Complexity 

Section (6.1) Automorphisms of the Jiang–Su Algebra 187 

Section (6.2) Automorphisms of 𝑪∗- Algebras 207 

List of Symbols 228 

References 229 

 



 

1 

Chapter 1 

Central Sequences and Automorphisms of 𝑪∗-Algebras 

 

We show that an equivalent to a representation 𝐴 = 𝐴1 ⨁𝐴2 , where 𝐴1  has 

continuous trace and 𝐴2 is the restricted direct sum of simple 𝐶∗-algebras. 

Section (1.1): Inner Derivations of Separable 𝑪∗-Algebras 

 In 1968 S. Sakai [19] showed that every derivation of a simple 𝐶∗‑ algebra with unit 

is inner. Since then a fair amount of work, notably by G. A. Elliott [11]-[13], has been 

invested to find 𝐶∗‑ algebra with only inner derivations. It was soon apparent that in the 

case of a 𝐶∗‑ algebra 𝐴 without unit the correct problem is: are there any derivations of 𝐴 

not of the form ad(ℎ), where h is a multiplier of 𝐴 ? (If 𝐴 is separable and has only inner 

derivations, then by [3] 𝐴 = 𝐵⨁𝐶 , where 𝐵 has a unit and 𝐶 is commutative.) Since there 

is a bijective correspondence between derivations of 𝐴 and derivations of its multiplier 

algebra 𝑀(𝐴), the problem can be for mulated as finding those 𝐶∗‑ algebras  𝐴 for which 

𝑀(𝐴) has only inner derivations. S. Sakai showed in [20] that such was the case for all 

simple 𝐶∗‑ algebras, and in [3] it was established for separable 𝐶∗‑ algebras with continuous 

trace. 

     With W. B. Arveson's theory of spectral subspaces a new set of ideas was introduced in 

operator algebra theory. It was used in [15] to show that each ∗−derivation of a algebra A 

has the form ad(𝑖ℎ), where ℎ ∈ 𝐴′′ (the enveloping von Neumann algebra of 𝐴; see [9]), 

and is the strong limit of an increasing net of positive operators in 𝐴. For example, in 

conjunction with Lemma(1.1.1) it gives the lifting theorem for derivations [18], and, as we 

shall see, it also provides the missing tool for solving the separable case of the above 

mentioned problem (see [3]). 

    The next lemma is straightforward and cannot be attributed to anybody. We prove it here 

because we shall use it repeatedly. It is used in the proof of the lifting theorem for 

derivations. Furthermore, taking the element 𝑥 in the lemma to be an open central projection 

in 𝐴′′   supporting a closed ideal I in 𝐴(𝑖. 𝑒. 𝐼 𝑥𝐴′′ ∩ 𝐴) , it shows the existence of 

approximate units for I which are quasi-central for 𝐴. Such approximate units have turned 

out to be rather useful; see [5] and [7]. Finally, it has been used recently by 𝐺. 𝐴. Elliott to 

give a partial solution of our problem of classifying those separable 𝐶∗‑ algebras A for 

which 𝑀(𝐴) has only inner derivations (see [13]). 

Lemma (1.1.1)[1]: Let A be a  𝐶∗‑ algebra and 𝐴′′its enveloping von Neumann algebra. If 

𝑥 ∈ 𝐴′′  and 𝑥  derives 𝐴  (i.e.,𝑥𝑎 − 𝑎𝑥 ∈ 𝐴  for all a in 𝐴), then there is a net {𝑥𝜆} in 𝐴 

converging strongly to 𝑥  such that lim‖(𝑥 − 𝑥𝜆)𝑎 − 𝑎(𝑥 − 𝑥𝜆)‖ = 0  for each a in 𝐴 . 

Moreover, {𝑥𝜆}can be chosen in the convex hull of any bounded net in 𝐴  converging 

strongly to 𝑥. 

Proof: Let {𝑦𝑖⎹𝑖 ∈ 1}  be a bounded net in 𝐴 converging strongly to 𝑥. (By Kaplansky's 

density theorem such a net exists.) Denote by Λ the net (with the obvious ordering) of 

triples𝜆 = {𝑖, 𝜇, 𝜀}, where 𝑖 ∈ 𝐼, 𝜇, is a finite subset of Λ, say 𝜇 = {𝑎1, 𝑎2, . . . , 𝑎𝑛}, and 𝜀 >
0. It suffices to show that for each 𝜆 there is a convex combination 𝑥𝜆 = ∑𝜀𝑗𝑦𝑗, such that 

𝑖 < 𝑗  for all 𝑗  and ‖(𝑥 − 𝑥𝜆)𝑎𝑘 − 𝑎𝑘(𝑥 − 𝑥𝜆)‖ < 𝜀 for 1 ≤ 𝑘 ≤ 𝑛. Replacing 𝐴 by its 𝑛-
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fold direct sum and setting 𝑎 = (𝑎1, . . . , 𝑎𝑛), we may assume 𝑛 = 1 and thus reduce the 

problem to finding 𝑥𝜆 = ∑𝜀𝑗𝑦𝑗, with 𝑖 < 𝑗 such that ‖(𝑥 − 𝑥𝜆)𝑎1 − 𝑎1(𝑥 − 𝑥𝜆)‖ < 𝜀. 

     The set  

𝐸 = {𝑦𝑗𝑎1 − 𝑎1 𝑦𝑗|𝑖 < 𝑗} ⊂ 𝐴 

Contains 𝑥𝑎1 − 𝑎1𝑥 as a 𝜎-weake limit point, and 𝑥𝑎1 − 𝑎1𝑥 ∈ 𝐴, since 𝑥 derives 𝐴. Since 

𝐴" is isomorphic (as a Banach space) to the second dual 𝐴∗∗ of 𝐴 and the 𝜎-weak topology 

on 𝐴 is the 𝜎(𝐴, 𝐴∗)‑ topology, it follows from the Hahn- Banach theorem that Conv 𝐸 

contains 𝑥𝑎1 − 𝑎1𝑥 as a limit point in norm, which we need.  

    We use Dixmier [9]. 𝐴  will denote a separable 𝐶∗‑ algebra, 𝐴̂  its spectrum and 𝐴̌  its 

primitive (or prime) spectrum , both equipped with the Jacobson topology. We denote by 

𝐴" the enveloping von Neumann algebra of 𝐴, and by 𝑀(𝐴) the 𝐶∗‑ algebra of multipliers 

of 𝐴 in 𝐴". Note that if 𝑥 ∈ 𝐴" and 𝑥𝑎0 ∈ 𝐴, 𝑎0𝑥 ∈ 𝐴 for some strictly positive elements ao 

of 𝐴  (see [2]), then 𝑥 𝐸 𝑀(𝐴).  Recall from [6] that the strict topology (R. C. Busby's 

invention) on 𝑀(𝐴) is determined by the semi-norms 𝑥 → ‖𝑥𝑎‖ + ‖𝑎𝑥‖, 𝑎 ∈ 𝐴, and that for 

a bounded sequence (𝑥𝑛) in 𝑀(𝐴) to converge strictly to zero it suffices that ‖𝑥𝑛𝑎0‖ +
‖𝑎0𝑥𝑛‖ → 0 for some strictly positive element 𝑎0 in 𝐴. Finally we shall always denote the 

center of 𝑀(𝐴) by 𝑍(𝐴), and we note that by the Dauns-Hofmann theorem (see [10] or [14]) 

we may identify 𝑍(𝐴) with the algebra of bounded continuous functions on 𝐴̌ (or on 𝐴̂).  

𝐴  will denote a separable 𝐶∗ ‑ algebra. 𝐴 bounded sequence (𝑥𝑛)  in 𝐴  is central if 

Lim ‖𝑎𝑥𝑛 − 𝑥𝑛𝑎‖  =  0 for each a in 𝐴. Clearly (𝑥𝑛
∗) is a central sequence if (𝑥𝑛) is, so that 

each central sequence in 𝐴 is a combination of central sequences in 𝐴sa . From the Stone-

Weierstrass theorem it follows that if (𝑥𝑛) is a central sequence in 𝐴sa, then (𝑓(𝑥𝑛)) is a 

central sequence for each bounded continuous function 𝑓: ℝ → 𝐶. In particular, each central 

sequence in  𝐴sa is the difference of central sequences in 𝐴+. We can therefore concentrate 

our attention on central sequences in 𝐴+.  

A central sequence (𝑥𝑛) in 𝐴+is summable if there is an element 𝑥 in 𝐴" such that ∑𝑥𝑛 =
𝑥 (strongly convergent sum).  

     A central sequence (𝑥𝑛) in 𝐴 is trivial if there is a sequence (𝑧𝑛) in 𝑍(𝐴) such that 

(𝑥𝑛 − 𝑧𝑛) converges strictly to zero. Note that a central sequence (𝑥𝑛) in 𝑀(𝐴)converges 

strictly to zero provided that‖𝑥𝑛𝑎‖ → 0 for each a in 𝐴. 

Lemma (1.1.2)[1]:  𝐴central sequence (𝑥𝑛) in 𝐴 is trivial if and only if there is a sequence 

(𝑧𝑛) in 𝑍(𝐴) with ‖𝑧𝑛‖ < ‖𝑥𝑛‖ for all n such that (𝑥𝑛 − 𝑧𝑛) tends strictly to zero.  

Proof: Assume that (𝑥𝑛)  is trivial, and choose (𝑦𝑛)  in 𝑍(𝐴)  such that (𝑥𝑛 − 𝑦𝑛) →
0strictly. Define fn in 𝐶𝑏( 𝐶) by 𝑓𝑛(𝜉) = 𝜉 𝑖𝑓 |𝜉| ≤  ‖𝑥𝑛‖, 𝑓𝑛(𝜉) = ‖𝑥𝑛‖𝜉|𝜉|

−1 otherwise. 

Put 𝑧𝑛 = 𝑓𝑛 (𝑦𝑛), and note that 𝑧𝑛 ∈ 𝑍(𝐴) with ‖𝑧𝑛‖ ≤ ‖𝑥𝑛‖.   

   If (𝑥𝑛 − 𝑧𝑛) does not converge to zero strictly, there is an element 𝑎 in 𝐴 with ‖𝑎 ‖ = 1 

and 𝜀 >  0 such that, passing if necessary to a subsequence, we have ‖(𝑥𝑛 − 𝑧𝑛)𝑎‖ > 𝜀 for 
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all 𝑛. Since (𝑥𝑛 − 𝑧𝑛) → 0 strictly, we may further assume that ‖(𝑥𝑛 − 𝑧𝑛)𝑎‖ < 𝜀 ∕ 2for 

all 𝑛. 

Choose for each 𝑛 an irreducible representation 𝜋𝑛 of 𝐴 such that ‖𝜋𝑛((𝑥𝑛 − 𝑧𝑛)𝑎) ‖ > 𝜀. 

This implies that ‖𝜋𝑛(𝑎)‖ > (𝜀/2)‖𝑥𝑛‖
−1. Furthermore  

‖𝜋𝑛(𝑦𝑛 − 𝑧𝑛)‖ ≥ ‖𝜋𝑛((𝑦𝑛 − 𝑧𝑛)𝑎)‖ ≥ ‖𝜋𝑛((𝑥𝑛 − 𝑧𝑛) 𝑎)‖ − ‖𝜋𝑛((𝑥𝑛 − 𝑦𝑛)𝑎)‖

> 𝜀/2. 

From the definition of 𝑧𝑛 it follows that 𝜋𝑛 (𝑦𝑛) = 𝜆𝑛1  , where |𝜆𝑛| > ‖𝑥𝑛‖ +  𝜀/2 . 

Consequently  

‖𝜋𝑛((𝑥𝑛 − 𝑦𝑛)𝑎)‖ ≥ ‖𝜋𝑛 (𝑦𝑛𝑎)‖ − ‖𝜋𝑛 (𝑥𝑛𝑎)‖ ≥ (|𝜆𝑛| − ‖𝜋𝑛 (𝑥𝑛)‖)‖𝜋𝑛 (𝑎)‖(𝜀 ∕

2)2‖𝑥𝑛‖
−1. 

 Since ‖𝑥𝑛‖ ≤ 𝛼 for some 𝛼 and all 𝑛, we have shown that‖(𝑥𝑛 − 𝑦𝑛)𝑎‖ > (𝜀 ∕ 2)
2𝛼−1 

for all 𝑛, contradicting the assumption that 𝑥𝑛 − 𝑦𝑛 → 0 strictly.W e must therefore have 

𝑥𝑛 − 𝑧𝑛 → 0 strictly, as desired.  

Lemma (1.1.3)[1]: Assume that 𝐴̌ is a Hausdorff space. If every summable central sequence 

in 𝐴+  is trivial, then every derivation of 𝑀(𝐴) is inner. 

Proof: Let 𝛿 be a *-derivation of 𝐴 and let 𝛿 also denote the unique extension to a derivation 

of 𝑀(𝐴)By [15] there is a lower semi-continuous element ℎ0 in 𝐴+
′′such that 𝛿 = 𝑖 adℎ0. 

Take any 𝜀0 > 0, and note from [4] that if ℎ = ℎ0 + 𝜀01, then ℎ ∈ (𝐴+)
𝑚 , since ℎ0 ∈

(((𝐴𝑠𝑎)
𝑚) −)+ -Further, 𝛿 = 𝑖 ad ℎ . There is thereforea n increasing sequence (ℎ𝑛) in 𝐴+ 

such that ℎ𝑛 ↗ ℎ ; and by Lemma (1.1.1) we may assume that ‖(ℎ − ℎ𝑛)𝑎𝑘 − 𝑎𝑘(ℎ −
 ℎ𝑛)‖ < 2

−𝑛 for each 𝑛 and every 𝑘 ≤ 𝑛, where (𝑎𝑘) is a dense sequence in 𝐴.  

Fix 𝑎 in 𝐴. There are two cases: 

(i) Some For 𝜀 > 0 and all 𝑛 there are integers 𝑖, 𝑗with 𝑖 > 𝑗 ≥  𝑛such that‖(ℎ𝑖 − ℎ 𝑖 −
𝑧)𝑎‖ > 𝜀 for all 𝑧 in 𝑍(𝐴)with ‖𝑧‖ < ‖ℎ𝑖 − ℎ𝑖‖. 

(ii) For every 𝜀 > 0 there exists an 𝑛 such that for all integers 𝑖, 𝑗 with 𝑖 > 𝑗 ≥  𝑛, there 

is some𝑧 in 𝑍(𝐴) such that ‖𝑧‖ ≤ ‖ℎ𝑖 − ℎ𝑗‖and ‖(ℎ𝑖 − ℎ𝑖 − 𝑍)𝑎 ‖ ≤ 𝜀. 

In case (i) we can by induction find a subsequence 

ℎ𝑗1  ≤ ℎ𝑖1 ≤ ℎ𝑖2  ≤ ℎ𝑖2 ≤ . . . 

 such that with 𝑥𝑛 = ℎ 𝑖𝑛 − ℎ𝑗𝑛 , we have ‖(𝑥𝑛 − 𝑧)𝑎‖ > 𝜀 for all 𝑧 in 𝑍(𝐴) with ‖𝑧 ‖ ≤
‖𝑥𝑛‖. It follows from Lemma (1.1.2) that (𝑥𝑛) is a non-trivials ummable centrals equence( 

with ∑𝑥𝑛 ≤  ℎ). The lemmaw ill be establishedw hen we have shown that if case (ii) occurs 

for all 𝑎in 𝐴, then 𝛿is inner in 𝑀(𝐴). Thus suppose case (ii) holds for all a in 𝐴.  

      Let 𝑎0be a strictly positive element in 𝐴, and denote by 𝑓 the function on 𝐴̌ given by 

𝑓(𝜋) = ‖𝜋 (𝑎0)‖. Since 𝐴̌ is a locally compact Hausdorff space, it follows from [9] (cf. 

[9]) that 𝑓 is continuous, whence 𝑓 ∈ 𝐶0(𝐴̌) by [9]. Since 𝑎0 is strictly positive in 𝐴, 𝑓 is 

strictly positive in 𝐶0(𝐴̌).Applying spectral theory to 𝑓 and identifying 𝐶𝑏(𝐴̌) and 𝑍(𝐴), 
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we can therefore find a sequence (𝑒𝑚) in 𝑍(𝐴)+ with ∑𝑒𝑚 = 1, such that the support of 

each 𝑒𝑚 is contained in the open set {𝜋 ∈ 𝐴̌|1/(𝑚 + 1) < 𝑓(𝜋) <  1/(𝑚 + 1). }  In 

particular, ‖𝜋(𝑎0)‖ > 1 /(𝑚 +  1) whenever 𝜋(𝑒𝑚) ≠ 0.  

Fix 𝑚 and take 𝑎 = 𝑒𝑚𝑎0 . Since case (ii) holds, we can then, by induction with 𝜀𝑛  =
2 −𝑛(𝑚 +  1)−1, find a subsequence [again denoted by (ℎ𝑛)] and a sequence (𝑧𝑛) in 𝑍(𝐴) 
such that  

‖𝑧𝑛‖ < ‖ℎ𝑛+1  −  ℎ𝑛‖ and ‖(ℎ𝑛+1 − ℎ𝑛 − 𝑍𝑛)𝑒𝑚𝑎0‖  ≤ 𝜀𝑛.                  (1)  

Put𝑦𝑛 = ∑ 𝑧𝑘
𝑛−1
𝑘=1  𝑍𝑘and 𝑏𝑛  =  (ℎ𝑛 − 𝑦𝑛)𝑒𝑚𝑎0. Then (1) shows that 𝐼 ‖𝑏𝑛 + 1 − 𝑏𝑛‖ , ≤

𝜀𝑛, so that (bn) is norm convergent to an element in A. Since (ℎ𝑛) is strongly convergent 

to (ℎ) , it follows that (𝑦𝑛𝑒𝑚𝑎0)  is strongly convergent to some element 𝑏  and that 

ℎ𝑒𝑚𝑎0 +  𝑏 ∈ 𝐴.  

Without loss of generality we may assume that ‖𝛿‖ <  1  and therefore that ‖ℎ‖ < 1 . 

Consequently ‖ℎ𝑛‖ < 1 for all 𝑛, and by (1) also ‖𝑧𝑛‖ < 1. Since 

‖𝑏𝑛 − 𝑏1‖ ≤  ∑2−𝑘(𝑚 + 1)−1 < (𝑚 + 1)−1
𝑛−1

𝑘=1

 , 

we obtain for each 𝜋 in 𝐴̌ 

‖𝜋 (𝑦𝑛𝑒𝑚𝑎0)‖ < (𝑚 + 1)
−1 + ‖ 𝜋 ((ℎ𝑛 − ℎ𝑗 + 𝑧1)𝑒𝑚𝑎0)‖ < (𝑚 + 1)

−1 +

 ‖𝜋 (𝑎0)‖. If 𝜋(𝑒𝑚) ≠ 0, this implies that  

‖𝜋 (𝑦𝑛𝑒𝑚)‖‖𝜋 (𝑎0)‖ = ‖𝜋 (𝑦𝑛𝑒𝑚𝑎0)‖ < ‖𝜋 (𝑎0)‖. 

From this we conclude that the sequence ( 𝑦𝑛𝑒𝑚)in 𝑍(𝐴) is bounded by 4 and therefore has 

a 𝜎-weak limit point fm in 𝐴′ ∩ 𝐴". From the preceding it follows that 𝑏 = 𝑓𝑚𝑎0, so that 

(ℎ𝑒𝑚 + 𝑓𝑚)𝑎0 ∈ 𝐴. Moreover,  

‖(ℎ𝑒𝑚 + 𝑓𝑚)𝑎𝑜‖ =  Lim‖𝑏𝑛‖  ≤ (𝑚 + 1)
−1 + ‖𝑏1‖ ≤  (𝑚 + 1)

−1 + 2‖𝑒𝑚𝑎0‖
< (𝑚 + 1)−1 + 2(𝑚 − 1)−1. 

     Since 𝑒𝑛𝑒𝑚 = 0  when |𝑛 − 𝑚| > 1 , the same is true for fnm. Therefore the two 

sequences ((ℎ𝑒2𝑚 + 𝑓2𝑚)𝑎0) and ((ℎ𝑒2𝑚  − + 𝑓2𝑚 − 1)𝑎0) consist of pairwise orthogonal 

elements in 𝐴. Since their elements tend to zero, their sums belong to A; i.e., with 𝑓 = ∑𝑓𝑚 

we have  

(ℎ + 𝑓)𝑎0 = ∑(ℎ𝑒2𝑚  + 𝑓2𝑚)𝑎0 + (ℎ𝑒2𝑚−1 + 𝑓2𝑚−1)𝑎0 ∈ 𝐴. 

Since 𝑎0 is strictly positive, it follows that ℎ + 𝑓 ∈ 𝑀(𝐴). As 𝑓 ∈ 𝐴′ ∩ 𝐴′′  we have 𝛿 =

𝑎𝑑(𝑖(ℎ + 𝑓)), so that 𝛿 is inner in 𝑀(𝐴), completing the proof.  

Lemma(1.1.4)[1]: (cf. [17]). Let 𝐴̂ denote the spectrum of 𝐴 equipped with the Jacobson 

topology, and use the open continuous surjection 𝐴̂ → 𝐴̌  to embed 𝑍(𝐴)  in the von 
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Neumann algebra ℱ(𝐴̂) of all bounded functions on 𝐴̂. Then 𝑍(𝐴)−𝑤 = ℱ(𝐴̂)(−𝑤 denoting 

weak closure) if and only if 𝐴 is of type 1 and 𝐴̂ is a Hausdorff space. 

Proof: If 𝐴 is of type I, then 𝐴̂ = 𝐴̌. If furthermore 𝐴 is Hausdorff, we know from the 

Dauns-Hofmann theorem (see [10] or [14]) that 𝑍(𝐴) separates the points in 𝐴̂, whence 

𝑍(𝐴)−𝑤 = ℱ(𝐴̂).  

     Conversely, if 𝑍(𝐴)−𝑤 = ℱ(𝐴), then 𝑍(𝐴) separates the points in Ȃ. It follows that 𝐴̌ =

𝐴̂, so that 𝐴 is of type I by [9]. Furthermore 𝐴̂ is a Hausdorff space, since 𝑍(𝐴) = 𝐶𝑏(𝐴̂). 

Theorem (1.1.5)[1]: A separable 𝐶∗-algebra 𝐴 has continuous trace if and only if each 

central sequence in 𝐴 is trivial.  

Proof: Suppose first that 𝐴 has continuous trace, and let (𝑥𝑛) be a central sequence in 𝐴. 

Let 𝐵 denote the 𝐶∗-algebra consisting of all convergent sequences from 𝐴, i.e.  

𝐵 = 𝐶(ℕ𝑈{∞})⨂𝐴. 

Define a derivation 𝛿of 𝐵 by 𝛿 = 𝑎𝑑(𝑥), where 𝑥 = (𝑥𝑛). Note that if 𝑏 = (𝑏𝑛) ∈ 𝐵, then 

𝑏𝑛𝑥𝑛 − 𝑥𝑛𝑏𝑛 → 0so that 𝛿(𝑏) ∈ 𝐵. Since 𝐵 has continuous trace, there is by [3] an element 

ℎ in 𝑀(𝐵) such that 𝛿 =  𝑎𝑑(ℎ). By [6] ℎ has the form (ℎ𝑛)(1 ≤  𝑛 ≤ ∞), where {ℎ𝑛} ⊂
𝑀(𝐴) and ℎ𝑛 → ℎ∞  strictly. Let 𝑍𝑛 = 𝑥𝑛 − ℎ𝑛 . Then 𝑧𝑛 ∈ 𝑍(𝐴), since 𝑎𝑑(𝑥 − ℎ) = 0. 

Moreover, if 𝑥∞. denotes any 𝜎-weak limit point of (𝑥𝑛), then 𝑥∞  ∈ 𝐴′ ∩ 𝐴", since (𝑥𝑛),is 

central. Further, since 𝑧𝑛 ∈ 𝐶 𝑍(𝐴) 𝑎𝑛𝑑 (𝑥∞ − ℎ∞)  is a 𝜎 -weak limit point of (𝑧𝑛) 
(because the strict topology is stronger than the 𝜎-weak topology), then (𝑥∞ − ℎ∞) ∈ 𝐴′ ∩
𝐴", so ℎ∞  ∈ 𝑍(𝐴). Thus the sequence with elements  

𝑥𝑛 − 𝑍𝑛 − ℎ∞ = ℎ𝑛−ℎ∞ 

Converges strictly to zero, proving that(𝑥𝑛)is a trivial central sepuence. 

    For the converse assume first that 𝐴̂ is a Hausdorff space (so that 𝐴 is of type I). If 𝐴 

does not have continuous trace, there is an outer derivation of 𝑀(𝐴) by [3]. But then by 

Lemma(1.1.3) there is also a non-trivial central sequence in 𝐴+(even a summable one).  

    If 𝐴̂ is not a Hausdorff space, there is by Lemma(1.1.4) a characteristic function 𝑝 on 𝐴̂ 

which cannot be weakly approximated by elements in 𝑍(𝐴). Since ℱ(𝐴̂) is the center of 

the weak closure of 𝐴 in its atomic representation, we may regard 𝑝 as a central projection 

in 𝐴". Let 𝑈 be a 𝜎-weak neighbor-hood of 0 in 𝐴" with the 𝜎-weak closure of 𝑈 − 𝑈 

disjoint from 𝑍(𝐴) + 𝑝. Choose a net (𝑥𝜆) in the unit ball of 𝐴 ∩ (𝑈 +  𝑝) which is 𝜎-

wealdy convergent to 𝑝. By Lemma (1.1.1) and the separability of 𝐴 we may choose a 

sequence (𝑥𝑛) in the convex hull of (𝑥𝜆)such that ‖𝑥𝑛𝑎 − 𝑎𝑥𝑛‖ → 0 for each a in A, i.e., 

(𝑥𝑛)is a central sequence. If it was trivial, then 𝑥𝑛, − 𝑧𝑛, → 0 strictly for some sequence 
(𝑧𝑛) in the unit ball of 𝑍(𝐴) by Lemma (1.1.2) Since the strict topology is stronger than the 

𝜎-weak topology and (𝑥𝑛) ⊂ 𝑈 + 𝑝, it follows that 𝑧𝑛 +  𝑝 ∈  𝑈 −  𝑈 eventually. This 

contradicts our choice of 𝑝 and shows that (𝑥𝑛) is non-trivial.  

 The following two conditions on a separable 𝐶∗-algebra 𝐴 will occur repeatedly.  
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(A) Every summable central sequence in 𝐴+is trivial.  

(B) Every derivation of 𝑀(𝐴) is inner.  

Lemma (1.1.6)[1]: If 𝐴 satisfies condition (𝐴) and 𝑍(𝐴) = ℂ, then 𝐴 is simple.  

Proof: Assume, to obtain a contradiction, that I is a non-trivial closed ideal of 𝐴, and let 𝑝 

denote the open central projection in 𝐴" supporting I, i.e. 𝐼 =  𝑝𝐴" ∩  𝐴. If 𝑏0is a strictly 

positive element in I, then 𝑝 is the range projection of 𝑏0in 𝐴". By spectral theory we can 

therefore find an increasing sequence (ℎ𝑛) in the 𝐶∗-algebra generated by 𝑏0such that 0 ≤
 ℎ𝑛  ≤  1, ℎ𝑛+ 1ℎ𝑛  =  ℎ𝑛for all 𝑛, and ℎ𝑛 ↗ 𝑝. Using Lemma (1.1.1) we can further assume 

that (ℎ𝑛 ) is a central sequence. In particular we may assume that ‖ℎ𝑛𝑎0 − 𝑎0ℎ𝑛‖ < 2
−𝑛 

for all 𝑛, where 𝑎0is a strictly positive element in A. Put  

𝑥𝑛 = ℎ2𝑛 − ℎ2𝑛−𝐼 and 𝑦𝑛  =  ℎ2𝑛−1 − ℎ2𝑛−2 (with ℎ0 =  0). 

Then (𝑥𝑛)  is a summable central sequence in 𝐴+ with ‖𝑥𝑛‖ = 1  for all 𝑛 . 

Furthermore𝑥𝑛𝑥𝑚 =  0if 𝑛 ≠ 𝑚. The same statements hold for the sequence  (𝑦𝑛). 

By assumption (𝑥𝑛) is trivial so that for some sequence 𝜆𝑛 in ℂ [=  𝑍(𝐴)] we have 𝑥𝑛 −
 𝜆𝑛⟶𝑂 strictly. However, this implies that  

|𝜆𝑛|  =  ‖𝜆𝑛𝑥1‖ =  ‖(𝑥1 − 𝜆𝑛)𝑥1‖ ⟶ 0, 

so that x𝑛 → 0  strictly. In particular, 𝑥𝑛𝑎0 → 0 . Consider the partial sum 𝑆𝑛𝑚 =

 ∑ 𝑥𝑘𝑎0
1/2𝑚

𝑘=𝑛 ,where 𝑛 < 𝑚. Then 

‖𝑆𝑛𝑚‖
2  =  ‖ ∑ 𝑥𝑘𝑎0𝑥1

𝑛≤𝑘,𝑙<𝑚

‖  

≤ ‖ ∑ 𝑥𝑘𝑎0𝑥𝑘
𝑛≤𝑘 ≤𝑚

‖ + ‖ ∑ ((∑𝑥𝑘
𝑘≠𝑙

) (𝑎0𝑥1 − 𝑥1𝑎0))

𝑛≤𝑙<𝑚

‖   

≤  sup
𝑛≤𝑘
‖𝑥𝑘𝑎0𝑥𝑘‖ +∑‖𝑎0𝑥1 − 𝑥1𝑎0‖

𝑛≤𝑙

 

which tends to zero as 𝑛 → ∞. Since A is complete, it follows that  ∑ 𝑎0
1/2

𝑥𝑛 ∈ 𝐴. The exact 

same reasoning on (𝑦𝑛) shows that ,∑ 𝑎0
1/2

𝑦𝑛 ∈ 𝐴. But then 

𝑝𝑎0 = (∑𝑥𝑛𝑎0
1 2⁄ + 𝑦𝑛𝑎0

1 2⁄
) 𝑎0

1 2⁄ ∈ 𝐴,  

and, since 𝑎0  is strictly positive, this implies that 𝑝 ∈ 𝑀(𝐴).  But p is central, so 𝑝 ∈
𝑍(𝐴)(= ℂ). This contradicts the non-triviality of I.   

Lemma(1.1.7)[1]:If 𝐴 is primitive and satisfies condition (𝐵), then A is simple. 

 Proof: If 𝐴 is non-simple, we construct the orthogonal central sequences (𝑥𝑛) and  (𝑦𝑛) 
as in the proof of Lemma (1.1.6) If 𝑎0 is a strictly positive element in 𝐴 and both 𝑥𝑛𝑎0 →
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0and 𝑦𝑛𝑎0 → 0, we conclude as in the proof of Lemma(1.1.6)that 𝑝 ∈  𝑍(𝐴). However, 

𝑍(𝐴) = ℂ1 , since 𝐴  is primitive, 𝑎  contradiction. Thus we may assume, passing if 

necessary to a subsequence of (𝑥𝑛)(𝑜𝑟 (𝑦𝑛)) that for some 𝜀 > 0 we have ‖𝑥𝑛𝑎𝑜‖ > 𝜀 for 

all 𝑛. Furthermore, we may assume that ‖𝑥𝑛𝑎𝑜 − 𝑎𝑜𝑥𝑛‖ < 2
−𝑛 for each 𝑛 and all 𝑘 ≤ 𝑛, 

where (𝑎𝑘) is a dense sequence in A.  

    Let Λ = (𝜆𝑛) be a sequence of zeros and ones. The element ∑𝜆𝑛𝑥𝑛derives 𝐴, and thus 

by (𝐵) there is some 𝑧 in 𝐴′′ ⋂ 𝐴′ such that 𝑧 + ∑ 𝜆𝑛𝑥𝑛  ∈ 𝑀(𝐴). Since 𝐴 is primitive, it 

has a faithful irreducible representation 𝜋, 𝑖. 𝑒. 𝜋(𝐴′′ ⋂ 𝐴′) = ℂ1 =  𝜋(𝑍(𝐴)). It follows 

that 𝜋𝑧 + (∑ 𝜆𝑛𝑥𝑛) ∈ 𝜋(𝑀(𝐴)).  

Put 𝑎Λ = 𝜋(∑𝜆𝑛𝑥𝑛𝑎0)  ∈ 𝜋(𝐴). If Λ ≠ Λ
′, say 𝜆𝑛 ≠ 𝜆𝑛

′ ,then  

‖𝑎Λ − 𝑎Λ′‖ ≥ ‖𝑥𝑛∑(𝜆𝑘 − 𝜆𝑘
′ )𝑥𝑛𝑎0‖ = ‖𝑥𝑛

2𝑎0‖ ≥  ‖𝑎0𝑥𝑛
2𝑎0‖ > 𝜀

2. 

Since there are uncountablymany Λ′𝑠,this contradicts the separability of 𝐴. 

Lemma (1.1.8)[1]: If A is simple, then it satisfies condition (𝐴). 

Proof: Assume to obtain a contradiction that (x𝑛)  is a non-trivial summa-ble central 

sequence in A+. Passing to a subsequence, we may assume that for some ε >  0 and all n 

we have ‖𝑥n
1∕2
a0‖ > 𝜀 , where a0  is strictly positive in 𝐴 , and that ‖𝑥𝑛𝑎𝑘 − 𝑎𝑘𝑥𝑛‖ <

2−𝑛for each n and all 𝑘 ≤ 𝑛, where (𝑎𝑘) is a dense sequence in A. If Λ =  (𝜆𝑛)is any 

sequence of zeros and ones, then the element ∑𝜆𝑛𝑥𝑛 belongs to 𝐴" and derives A. Since 𝐴 

is simple, it follows from Sakai's theorem (see [19], [20] or [3]) that ∑𝜆𝑛𝑥𝑛 ∈ 𝑀(𝐴). Thus 

𝑎Λ = ∑𝜆𝑛𝑎0𝑥𝑛𝑎0 ∈ 𝐴.  

Put 𝑏𝑛 = ∑ 𝑎0𝑥𝑛𝑎0𝑘>𝑛 . Then (𝑏𝑛) ⊂ 𝐴+ and 𝑏𝑛 → 𝑂 strongly. We can there-fore assume, 

passing if necessary to a subsequence of (𝑥𝑛), that for each 𝑛 there is a state 𝜑𝑛 of A with 

. 

𝜑𝑛(𝑎0𝑥𝑛𝑎0) =  ‖𝑎0𝑥𝑛𝑎0‖ (= ‖𝑥n
1∕2
a0‖

2
≥ ε2) , 

such that 𝜑𝑛(𝑏𝑛) <
1

2
𝜀2. If Λ ≠  𝐴′, let 𝑛 be the first number with 𝜆𝑛 ≠ 𝜆𝑛

′ . Then 

‖𝑎Λ − 𝑎Λ′‖ ≥ |𝜑Λ(𝑎Λ − 𝑎Λ′)| 

≥ 𝜑𝑛(𝑎0𝑥𝑛𝑎0) − 𝜑𝑛(𝑏𝑛) >
1

2
ε2 

This contradicts the separability of A. 

Lemma(1.1.9)[1]: Let 𝜋: 𝐴 → 𝐵 be a surjectice morphism between separable 𝐶∗-algebras 

𝐴 and 𝐵 . If (𝑦𝑛) is a central sequence in 𝐵 , there is a central sequence (𝑥𝑛) in 𝐴 with 

𝜋(𝑥𝑛) = 𝑦𝑛 . If (𝑦𝑛) is summable, (𝑥𝑛) can be chosen to be summable. If (𝑦𝑛) is non-

trivial, (𝑥𝑛) is automatically non-trivial. 
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 Proof: (cf. the proof of [18]). Given a central sequence (𝑦𝑛) in B, choose by [6] a sequence 

(𝑏𝑛) in 𝐴 with 𝜋(𝑏𝑛)  =  𝑦𝑛 and ‖𝑏𝑛‖ = ‖𝑦𝑛‖f or all 𝑛. Let (𝑎𝑘) be a dense sequence in 

𝐴, and choose by [5] or [7] a quasi-central approximate unit {𝑢𝜆} for ker𝜋. For each a in 𝐴 

we have, by (1) in [9],  

lim
𝜆
∥(1 − 𝑢𝜆)𝑏𝑛 𝑎 − 𝑎(1 − 𝑢𝜆)𝑏𝑛 ∥= lim

𝜆
∥ (1 − 𝑢𝜆)(𝑏𝑛𝑎 − 𝑎𝑏𝑛) ∥ 

= ‖𝑦𝑛𝜋(𝑎) −  𝜋(𝑎)𝑦𝑛‖.  

We can therefore choose 𝜆 such that with 𝑥𝑛 = (1 − 𝑢𝜆)𝑏𝑛 we have 

‖𝑥𝑛𝑎𝑘 − 𝑎𝑘𝑥𝑛‖ < ‖𝑦𝑛𝜋(𝑎𝑘) − 𝜋(𝑎𝑘)𝑦𝑛‖ + 2
−𝑛 

for all 𝑘 ≤  𝑛. It follows that (𝑥𝑛) is a central sequence for A. 

        If (𝑦𝑛) ⊂ 𝐵+ is summable, say ∑𝑦𝑛 ≤  1, we use [16] and induction to find (𝑏𝑛) ⊂

𝐴+, with ∑ 𝑏𝑘 ≤ 1
𝑛
𝑘= 1 for every 𝑛. Then we define 𝑥𝑛 = 𝑏𝑛

1∕2(1 − 𝑢𝜆)𝑏𝑛
1∕2

 for a suitable 𝜆 

and obtain as before a central sequence (𝑥𝑛), which is now also summable, since 𝑥𝑛 ≤ 𝑏𝑛 

for all 𝑛.  

If (𝑦𝑛) is non-trivial, then (𝑥𝑛)is non-trivial, since 𝜋(𝑍(𝐴) ) ⊂ 𝑍(𝐵). 

Proposition (1.1.10)[1]:If a separable 𝐶∗-algebra 𝐴 satisfies condition (𝐴) or (𝐵), then 𝐴̌ 

is a 𝑇l-space (i.e., points are closed).  

Proof: Let 𝜋  be an irreducible representation of 𝐴 . By Lemma (1.1.9), 𝜋(𝐴)  satisfies 

condition (𝐴) if 𝐴 does, and, by the lifting theorem for derivations [18], 𝜋(𝐴) satisfies 

condition (𝐵) if 𝐴 does. Thus either Lemma (1.1.6) or Lemma (1.1.7) applies to show that 

𝜋(𝐴)is simple. Consequently every primitive ideal of 𝐴 is maximal, i.e. 𝐴̌ is a 𝑇l-space.    

Recall from [8] that a point g in a 𝑇l-space 𝑋 is separated if for each 𝜋′in 𝑋, 𝜋′ ≠ 𝜋, there 

are disjoint neighborhoods of 𝜋 and 𝜋′. Thus 𝑋 is a Hausdorff (= separated) space precisely 

when every point is separated. If A is a separable 𝐶∗-algebra (and 𝐴̌ is a 𝑇l-space), then the 

separated points in 𝐴̌ form a dense set by [8]. 

Lemma(1.1.11)[1]: Assume that 𝐴̌ is a 𝑇l-space. Let (𝜋𝑛) be a convergent sequence of 

distinct, separated points in 𝐴̌, and denote by 𝐹 the closed set of limit points for (𝜋𝑛). Let 

𝐵  be the quotient of 𝐴  corresponding to 𝐹 (𝑖. 𝑒. , 𝐵̌ =  𝐹).  If 𝐵+  contains a non-trivial 

central sequence, then 𝐴 satisfies neither condition (𝐴)nor (𝐵).  

Proof: If 𝐵+ contains a non-trivial central sequence, there is by Lemma (1.1.9) a non-trivial 

central sequence (𝑥𝑛) in 𝐵+. Let 𝑎0 be a strictly positive element in 𝐴, and denote by 𝜌 the 

quotient map 𝜌: 𝐴 → 𝐵. Passing to a subsequence, we find an 𝜀 >  0 such that for every 𝑧 
in 𝑍(𝐴) and all n we have ‖𝜌((𝑥𝑛 −  𝑧)𝑎0)‖ > 𝜀.  

We claim that for each 𝑛 and each 𝑘0 there is a 𝑘 ≥ 𝑘0 such that ‖𝜋𝑘((𝑥𝑛 − 𝜆)𝑎0)‖ >
𝜀/2 for all 𝜆  in ℂ .Otherwise we have (𝜆𝑘) ⊂ ℂ such that for all 𝑘 ≥ 𝑘0, ‖𝜋𝑘((𝑥𝑛 −

𝜆𝑘)𝑎0)‖ ≤  𝜀/2. If 𝜋 ∈ 𝐹, then 𝜋 (𝑎0) ≠  0, and so eventually ‖𝜋𝑘(𝑎0)‖ >
1

2
‖𝜋(𝑎0)‖. It 
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follows that (𝜆𝑘) is bounded, and, passing to a sub-sequence, we may assume that 𝜆𝑘 −
𝜆 ∈ ℂ. But then the closed set  

{ 𝜋 ∈ 𝐴̌|‖𝜋((𝑥𝑛 − 𝜆) 𝑎0)‖ ≤
2

3
 𝜀 }contains(𝜋𝑘) and therefore also 𝐹, and 

‖𝜌((𝑥𝑛 − 𝜆) 𝑎0)‖ =  𝑆𝑢𝑝
𝜋∈𝐹
‖𝜋((𝑥𝑛 − 𝜆) 𝑎0)‖  ≤

2

3
 𝜀 , 

a contradiction. Passing to a subsequence of (𝜋𝑘) , we may therefore assume that 

‖𝜋𝑛((𝑥𝑛 − 𝜆)𝑎0)‖ >
1

2
 𝜀 for all 𝜆 in ℂ and all 𝑛.  

Take 𝜋in 𝐹. Since 𝜋1 is a separated point, there are disjoint open neighborhoods 𝐺1 and 

𝐺1
′of 𝜋1, and 𝜋. Since 𝜋𝑛 → 𝜋, we have eventually 𝜋𝑛, ∈ 𝐺1

′ . Continuing by induction and 

passing to a subsequence of (𝜋𝑛), we find a sequence (𝐺𝑛) of pairwise disjoint open sets 

in 𝐴̌ such that (after relabeling) 𝜋𝑛 ∈ 𝐺𝑛.  

Let 𝐼𝑛 be the non-zero closed ideal of 𝐴 corresponding to 𝐺𝑛(𝑖. 𝑒. 𝐼𝑛  =  𝐺𝑛). Since 𝐺𝑛 ∩
𝐺𝑚 = ∅ , we have  𝐼𝑛 ∩ 𝐼𝑚  = {𝑂}  for 𝑛 ≠ 𝑚 . Choose a quasi-central approximate unit 

 {𝑢𝜆} for 𝐼𝑛 , and let {𝑎𝑘}  be a dense sequence in 𝐴 . Assuming, as we may, that 
‖𝑥𝑛𝑎𝑘 − 𝑎𝑘𝑥𝑛‖ < 2

−𝑛 for 𝑘 ≤ 𝑛 , we put 𝑦𝑛 = 𝑢𝜆𝑥𝜆𝑛𝜆 for 𝜆  so large that ‖𝑦𝑛𝑎𝑘 −

𝑎𝑘𝑦𝑛‖ < 2
−𝑛for 𝑘 ≤ 𝑛 and ‖𝜋𝑛((𝑥𝑛 − 𝑦𝑛) 𝑎0)‖ <

1

4
 𝜀. 

The central sequence (𝑦𝑛) in 𝐴+ is summable, since 𝑦𝑛𝑦𝑚 = 0 for 𝑛 ≠ 𝑚, and non-trivial, 

since for each 𝑧 in 𝑍(𝐴). 

‖(𝑦𝑛 − 𝑧)𝑎0‖ ≥ ‖𝜋𝑛 (((𝑦𝑛 − 𝑧))𝑎0)‖ ≥ ‖𝜋𝑛((𝑥𝑛 − 𝜆)𝑎0)‖ − ‖𝜋𝑛((𝑦𝑛 − 𝑥𝑛)𝑎0)‖

>
1

4
𝜀, 

where 𝜆1 = 𝜋𝑛(𝑧). Thus condition (𝐴) is violated. Suppose that for each sequence Λ =
 (𝜆𝑛) of zeros and ones, the deriver ∑𝜆𝑛𝑦𝑛  of 𝐴  [and hence of 𝑀(𝐴)]  gives an inner 

derivation of 𝑀(𝐴). Then 𝑧Λ + ∑𝜆𝑛𝑦𝑛  ∈ 𝑀(𝐴) for some 𝑧Λin 𝐴′′ ∩ 𝐴′, and we define 

𝑎Λ = (𝑧Λ  + ∑𝜆𝑛𝑦𝑛)𝑎0 in 𝐴. If Λ ≠ Λ′ , say 𝜆𝑛 > 𝜆𝑛
′ , we have  

‖𝑎Λ − 𝑎Λ′‖ ≥  ‖𝜋𝑛((𝑎Λ − 𝑎Λ′ + (𝜆𝑛 − 𝜆𝑛
′ )𝑦𝑛)𝑎0 )‖ 

≥  ‖𝜋𝑛((𝜆 + 𝑦𝑛) 𝑎0) ‖ >
1

4
ε, 

where 𝜆1 =  𝜋𝑛(𝑎Λ − 𝑎Λ′). This contradicts the separability of 𝐴, and proves that 𝑀(𝐴) 
has outer derivations, in violation of condition (𝐵). 

Lemma(1.1.12): As in Lemma (1.1.11), let (𝜋𝑛) be given and define 𝐹and 𝐵. If 𝑍(𝐵) ≠
ℂ, then 𝐴 satisfies neither condition (𝐴) nor (𝐵). 

Proof: (cf. the proof of [3]). Let p denote the quotient map 𝜌: 𝐴 → 𝐵. Since 𝐴 is separable, 

we have 𝜌(𝑀(𝐴))  =  𝑀(𝐵) by [6]; thus by assumption there exists 𝑥 in 𝑀(𝐴), 0 ≤ 𝑥 ≤
 1, such that 𝜌(𝑥)  ∈ 𝑍(𝐵) with 𝜌0(𝑥) = 0, 𝜌1(𝑥) =  𝐼for 𝜌0, 𝜌1, in 𝐹.         Let 𝑎0 be a 

strictly positive element in 𝐴 , and assume that ‖𝑎0‖ ≤ 1 and ‖𝜌0(𝑎0)‖ = ‖𝜌1(𝑎0)‖ =
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1.We claim that eventually‖𝜋𝑛((𝑥 − 𝜆)𝑎0)‖ ≥
 𝐼

3
for all 𝜆 in ℂ. Otherwise there would exist 

a bounded sequence (𝜆𝑛) such that ‖𝜋𝑛((𝑥 − 𝜆𝑛)𝑎0)‖ ≥
 𝐼

3
for all 𝑛 ≥ 𝑛0 . Passing to a 

subsequence, we may assume that 𝜆𝑛 → 𝜆 and that ‖𝜋𝑛((𝑥 − 𝜆)𝑎0)‖ ≤
1

3
for all 𝑛. But then 

the same is true for the limit points; in particular ‖𝜌0((𝑥 − 𝜆)𝑎0)‖ ≤
1

3
 , ‖𝜌0((𝑥 −

𝜆)𝑎0)‖ ≤
1

3
 . 

With our choice of 𝑥 this implies that |𝜆| ≤  
1

3
and |1 − 𝜆| ≤  

1

3
, a contradiction. 

 Let (𝑎𝑘) be a dense sequence in 𝐴.For each m the set  

𝐾𝑚  =  𝑈
𝑘≤𝑚

 {𝜋 ∈  𝐴̌‖𝜋(𝑥𝑎𝑘 − 𝑎𝑘𝑥)‖  ≥ 2
−𝑚} 

is compact by [9] and disjoint from 𝐹. Since (𝜋𝑛) consists of separated points, each set  

𝐹𝑛 = {𝜋𝑛|𝑘 ≥ 𝑛} 𝑈 𝐹  

is closed in 𝐴̌ ; and ∩𝑛 𝐾𝑚  ∩  𝐹𝑛  = ∅ . Consequently 𝐾𝑚 ∩ 𝐹𝑛  = ∅ . for some n, and 

passing to a subsequence of (𝜋𝑛), we may assume that ‖𝜋𝑛 (𝑥𝑎𝑘 − 𝑎𝑘𝑥)‖ < 2
−𝑛for all 𝑘 ≤

𝑛 . As in the proof of Lemma(1.1.11), choose a sequence (𝐺𝑛) of pairwise disjoint open 

subsets of 𝐴̌ with 𝜋𝑛 ∈ 𝐺𝑛, and let 𝐼𝑛 denote the closed ideal of 𝐴 corresponding to 𝐺𝑛. 

 Fix n, and let {𝑢𝜆} be a quasi-central approximate unit for ker 𝜋𝑛 . Then lim
𝜆
‖𝑥

1

2(1 −

𝑢𝜆)𝑥
1

2𝑎𝑘  −  𝑎𝑘𝑥
1

2(1 − 𝑢𝜆)𝑥
1

2‖ =  lim
𝜆
‖𝑥

1

2(1 − 𝑢𝜆)(𝑥𝑎𝑘 − 𝑎𝑘𝑥)‖ =  ‖𝜋𝑛( 𝑥𝑎𝑘 − 𝑎𝑘𝑥)‖, 

by [9]. For sufficiently large 𝜆  we define 𝑥𝑛 = 𝑥
1/2(1 − 𝑢𝜆)𝑥

1/2  and have ‖𝑥𝑛𝑎𝑘 −
𝑎𝑘𝑥𝑛‖ < 2

−𝑛 for all 𝑘 ≤  𝑛. Let {𝑣𝜆} be a quasi-central approximate unit for 𝐼𝑛, and, for 

sufficiently large 𝜆, define 𝑦𝑛 = 𝑣𝜆𝑥𝑛𝑣𝜆 to obtain  

‖𝑦𝑛𝑎𝑘 − 𝑎𝑘𝑦𝑛‖ < 2
−𝑛 , 𝑘 ≤  𝑛,                                          (2)  

and ‖𝜋𝑛((𝑥𝑛  −  𝑦𝑛)𝑎0)  ‖ <
1

6
. This last inequality implies that for each 𝜆 in ℂ we have  

‖𝜋𝑛((𝑦𝑛 − 𝜆)𝑎0)  ‖  ≥  ‖𝜋𝑛((𝑥𝑛 − 𝜆)𝑎0)  ‖ − ‖𝜋𝑛((𝑥𝑛 − 𝑦𝑛))𝑎0) ‖

=  ‖𝜋𝑛((𝑥 − 𝜆)𝑎0)  ‖ −
1

6
≥
1

6
                                                                         (3) 

 Given (2) and (3) we can now show, exactly as in the proof of Lemma (1.1.11), that 𝐴 has 

a non-trivial summable central sequence [viz. (𝑦𝑛)] and that 𝑀(𝐴) has an outer derivation 

[of the form ad(∑ 𝜆𝑛𝑦𝑛)]].  

Proposition(1.1.13)[1]: If a separable 𝐶∗-algebra 𝐴 satisfies condition (𝐴) or (𝐵), then 𝐴̌ 

is a Hausdorff space.  

Proof: From Proposition (1.1.10) we know that 𝐴̌  is a 𝑇1 -space. Assume, to obtain a 

contradiction, that 𝐴̌ is not a Hausdorff space. There are then at least two points 𝜌0, 𝜌1 in 𝐴̌ 

that cannot be separated. Since 𝜌0 is not an isolated point and since the separated points are 
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dense in 𝐴̌ by [8], we can find a sequence (the Jacobson topology is second countable when 

A is separable) of distinct separated points 𝜋𝑛 in 𝐴 such that (𝜋𝑛) converges to 𝜌0. The set 

F of limit points of (𝜋𝑛) contains at least two points (viz. (𝜋𝑛)and 𝜌1), so the quotient 𝐵 of 

𝐴 corresponding to 𝐹 is not simple.  

If B satisfies condition (𝐴), then 𝑍(𝐵) ≠ ℂ  by Lemma (1.1.6), and thus 𝐴  will satisfy 

neither condition (𝐴) nor (𝐵) by Lemma(1.1.12)  If, on the other hand, 𝐵 does not satisfy 

condition (𝐴), then 𝐴 will satisfy neither condition (𝐴) nor (𝐵) by Lemma (1.1.11) We 

have found the desired contradiction. 

Theorem(1.1.14)[1]:The following three conditions on a separable 𝐶∗ -algebra 𝐴 are 

equivalent:  

(i) Every summable central sequence in 𝐴+  is trivial. 

(ii) Every derivation of 𝑀(𝐴) is inner.  

(iii) 𝐴 = 𝐴1⊕𝐴2 , where 𝐴1  has continuous trace and 𝐴2  is discrete (i.e., 𝐴2  is the 

restricted direct sum of simple 𝐶∗-algebras).  

Proof: (𝐴) ⇒ (𝐵): Combine Proposition (1.1.13) with Lemma (1.1.3) 

(𝐵) ⇒ (𝐴): If 𝜋 is an irreducible representation of 𝐴 corresponding to a non-isolated point 

in 𝐴̌ , then, since 𝐴̌  is a Hausdorff space by Proposition (1.1.13), it follows from 

Lemma(1.1.11) that 𝜋(𝐴) has no non-trivial central sequences. Since 𝜋(𝐴) is primitive, it 

follows from Theorem (1.1.5) that 𝜋(𝐴) is isomorphic to the compact operators on a 

separable Hilbert space. Let 𝐺1denote the open set in 𝐴̌ corresponding to the largest CCR 

ideal in 𝐴 (cf. [9]), and let Go denote the set of isolated points in 𝐴̌. 

 From the first part of the proof we see that 𝐺0 ∪ 𝐺1 = 𝐴̌. 𝑆𝑒𝑡 𝐺2 = 𝐴̌\𝐺1 . Then 𝐺2  is 

closed, but, since it consists of isolated points, it is also open. Thus 𝐴̌ =  𝐺1 ∪ 𝐺2 (disjoint 

union). Let 𝐴1  and 𝐴2  be the direct summands of 𝐴  corresponding to 𝐺1 and 𝐺2 , 

respectively. Then 𝐴1 is a CCR algebra with Hausdorff spectrum and satisfies condition 

(𝐵). It follows from [3] that 𝐴1 has continuous trace. Since 𝐴̌2 (=  𝐺2) is discrete, 𝐴2 is the 

restricted direct sum (cf. [9]) of simple 𝐶∗-algebras.  

(𝐶) ⇒ (𝐴): 𝐼𝑓 𝐴 = 𝐴1  ⊕ 𝐴2 where𝐴1 has continuous trace and 𝐴2 = ⊕0 𝐵𝑘 , where (𝐵𝑘) 
is a sequence of simple 𝐶∗ -algebras, then each summable central sequence (𝑥𝑛) in 𝐴+  

breaks into a sequence (𝑥𝑛
𝑘), 0 ≤  𝑘 < ∞, of summable central sequences, where (𝑥𝑛

0) ⊂
 𝐴1 and (𝑥𝑛

𝑘) ⊂  𝐵1. From Theorem (1.1.5) we know that (𝑥𝑛
0) is trivial, and by Lemma 

(1.1.8) each (𝑥𝑛
𝑘) is also trivial. Since 𝑀(𝐴) = 𝑀(𝐴1)⨁⊕𝑀(𝐵𝑘) (full direct sum), it 

follows that (𝑥𝑛) is trivial, as desired.  

Corollary (1.1.15)[1]: Let 𝐴 be a separable 𝐶∗-algebra with unit, and assume that 𝐴 has 

only inner derivations. Then 𝐴 is the direct sum of a finite number of 𝐶∗sub-algebras which 

are either homogeneous of finite degree or simple. As pointed out in [13], the implications 

(𝐴) ⇒ (𝐵)and (𝐵) ⇒ (𝐶) do not generally hold when 𝐴 is allowed to be non-separable. 
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Corollary(1.1.16)[370]: Let 𝜋: 𝐴 → 𝐴 + 𝜖  be a surjectice morphism between separable 

𝐶∗-algebras 𝐴 and 𝐴 + 𝜖. If (𝑦𝑛
𝑚) is a central sequence in 𝐴 + 𝜖, there is a central sequence 

(𝑥𝑛
𝑚) in 𝐴 with ∑  𝑚 𝜋(𝑥𝑛

𝑚) = ∑  𝑚 𝑦𝑛
𝑚. If (𝑦𝑛

𝑚) is summable, (𝑥𝑛
𝑚) can be chosen to be 

summable. If (𝑦𝑛
𝑚) is non-trivial, (𝑥𝑛

𝑚) is automatically non-trivial. 

 Proof: (cf. the proof of [18]). Given a central sequence (𝑦𝑛
𝑚) in B, choose by [6] a 

sequence (𝑏𝑛
𝑚) in 𝐴 with ∑  𝑚 𝜋(𝑏𝑛

𝑚)  = ∑  𝑚 𝑦𝑛
𝑚  and ∑  𝑚 ‖𝑏𝑛

𝑚‖ = ∑  𝑚 ‖𝑦𝑛
𝑚‖f or all 𝑛. 

Let (𝑎𝑘) be a dense sequence in 𝐴, and choose by [5] or [7] a quasi-central approximate 

unit {𝑢𝜆
𝑚} for ker𝜋. For each a in 𝐴 we have, by (1) in [9],  

∑ 

𝑚

lim
𝜆
∥(1 − 𝑢𝜆

𝑚)𝑏𝑛
𝑚 𝑎 − 𝑎(1 − 𝑢𝜆

𝑚)𝑏𝑛
𝑚 ∥=∑ 

𝑚

lim
𝜆
∥ (1 − 𝑢𝜆

𝑚)(𝑏𝑛
𝑚𝑎 − 𝑎𝑏𝑛

𝑚) ∥ 

=∑ 

𝑚

‖𝑦𝑛
𝑚𝜋(𝑎)  −  𝜋(𝑎)𝑦𝑛

𝑚‖.  

We can therefore choose 𝜆 such that with 𝑥𝑛
𝑚 = (1 − 𝑢𝜆

𝑚)𝑏𝑛
𝑚 we have 

∑ 

𝑚

‖𝑥𝑛
𝑚𝑎𝑘 − 𝑎𝑘𝑥𝑛

𝑚‖ <∑ 

𝑚

‖𝑦𝑛
𝑚𝜋(𝑎𝑘) − 𝜋(𝑎𝑘)𝑦𝑛

𝑚‖ + 2−𝑛 

for all 𝑘 ≤  𝑛. It follows that (𝑥𝑛
𝑚) is a central sequence for A. 

        If (𝑦𝑛
𝑚) ⊂ 𝐴+ + 𝜖 is summable, say ∑  𝑚 ∑𝑦𝑛

𝑚 ≤  1, we use [16] and induction to find 

(𝑏𝑛
𝑚) ⊂ 𝐴+ , with ∑ ∑  𝑚 𝑏𝑘

𝑚 ≤ 1𝑛
𝑘= 1 for every 𝑛 . Then we define ∑  𝑚 𝑥𝑛

𝑚 =

∑  𝑚 𝑏𝑛
𝑚∕2(1 − 𝑢𝜆

𝑚)𝑏𝑛
𝑚∕2

 for a suitable 𝜆 and obtain as before a central sequence (𝑥𝑛
𝑚), 

which is now also summable, since 𝑥𝑛
𝑚 ≤ 𝑏𝑛

𝑚 for all 𝑛.  

Section (1.2): Second Cech Cohomology 

Let A  be a 𝐶∗ − algebra with identity, and let Aut A  be the group of all 

*-automorphisms of A endowed with the norm topology. In their systematic investigation 

[42] of Aut A, Kadison and Ringrose considered the subgroups Inn A, 𝛾(𝐴),Π(A) of Aut A 

consisting of, respectively, inner automorphisms, those path-connected to the identity, and 

𝑛-inner automorphisms. As well as proving some general theorems about the relationships 

between these subgroups, they investigated in detail some particular cases, including the 

algebra C (X,Mn(C)) of continuous functions from a compact space into the matrix algebra 

Mn(C).Subsequently Lance [45] and Smith [52] considered the algebra A =  C(X, B(H)),  

where X is compact and separable, and B(H) is the algebra of all operators on a Hilbert 

space H of dimension 𝜘0. They proved the striking result that π(A)/γ(A)  ≅  H2(X, Z), the 

second 𝐶̌ech cohomology group of X with integral coefficients. It follows from their results 

that in this case Π(A) coincides with the group Aut𝐶(𝑋)𝐴 of automorphisms which preserve 

the 𝐶(𝑋)-module structure of A,  and that γ(A)  =  Inn A; hence their theorem identifies the 

group 𝐴𝑢𝑡𝐶(𝑋)𝐴 ∕Inn A of outer 𝐶(𝑋)-auto-morphisms of A =  C(X, B(H)) with H2(X, Z). 

We shall extend the theorem of Lance and Smith to 𝐶∗-algebras of bundles whose 

fibres are 𝐶∗-algebras. We consider two distinct types of bundles: the first have as fibre the 

algebra K(H) of compact operators on a Hilbert space H,  and as structure group Aut K(H) 
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equipped with the topology of pointwise convergence; the algebra A =  Γ0(E) of such a 

bundle E over a locally compact space X is called a stable continuous trace 𝐶∗-algebra with 

spectrum X.  We show that if Inn A now denotes the group of automorphisms which are 

implemented by multipliers, then there is a short exact sequence 

0 →  𝐼𝑛𝑛 A →  AutC
b(X)
A
η
→H2(X, Z)  →  0. 

In fact, if A  is any separable continuous trace 𝐶∗ -algebra then we can construct the 

homomorphism 𝜂, but it is not necessarily surjective. The second type of bundle we consider 

has as fibre a 𝐶∗-algebra B with identity and structure group Inn B in its norm topology. If 

E is such a bundle over a separable compact space X, with fibre B a von Neumann algebra 

factor, and if A = Γ(E), then we obtain an exact sequence 

0 → 𝐼𝑛𝑛𝐴 → π(A) 
η
→H2(X, 𝑍); 

if in addition the unitary group of B is contractible, then 𝜂 is surjective. In case of the trivial 

bundle E =  X × B(H) we recover the theorem of Lance and Smith. The construction of 𝜂 

in both cases is a modification for non-trivial bundles of Lance's proof of [45, Theorem 4.3]. 

If E is a bundle of matrix algebras over a compact space X, the algebra A = Γ(E) is 

called (by algebraists) an Azumaya algebra over C(X). The exact sequence 

0 →  𝐼𝑛𝑛 A →  AutC(X)A → 𝑃𝑖𝑐 C(X)  ≅  H
2(X, Z) 

is due to Rosenberg and Zelinsky [50], and a theorem of Knus [44] says that the range of 𝜉 

is contained in the torsion subgroup of H2(X, Z).  A  standard construction (cf. [39]) 

associates to each Azumaya algebra A over C(X) an element 𝛿(𝐴) of the torsion subgroup 

of H3(X, Z), and in fact a theorem of Serre [39] asserts that every element of H3(X, Z) of 

finite order arises this way. Now Dixmier and Douady [34] have proved that stable 

continuous trace 𝐶∗-algebras with spectrum X are classified up to isomorphism by H3(X, Z); 
our result on stable continuous trace 𝐶∗ −algebras shows that H2(X, Z) classifies the outer 

𝐶(𝑋)-automorphisms of such 𝐶∗-algebras. Thus analogies of the Serre-Knus results are 

valid for stable continuous trace 𝐶∗-algebras with the torsion subgroups replaced by the 

whole of the cohomology groups. 

We show some technical results. The second part contains our results on 

automorphisms and derivations of a separable continuous trace 𝐶∗-algebra A. As well as the 

main theorem which we described above, we investigate the group of all outer 

automorphisms of A and discuss the relationship of the work with that of Kadison and 

Ringrose [42] and Brown, Green and Rieffel [28]. We concerned with bundles of 𝐶∗ -

algebras where the structure group has the norm topology. In addition to the theorem 

mentioned above, we look at what happens when the fibre has non-trivial centre, and show 

that the Dixmier-Douady classification of stable continuous trace 𝐶∗-algebras works also 

for these bundles. 

We shall denote by B(H)  the 𝐶∗ -algebra of all bounded linear operators on a 

separable Hilbert space H,  by K(H) the 𝐶∗-algebra of all compact operators on H,  and by 

U(H)  the group of unitary operators on  H .  Unless we specifically say otherwise, all 

homomorphisms between 𝐶∗-algebras will be*-homomorphisms; this applies in particular 
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to automorphisms and representations. If A is a 𝐶∗-algebra with identity, we shall denote 

the identity of A  by 1  and the identity mapping: A →  A  by id. The group of all 

automorphisms of a 𝐶∗-algebra A will be denoted by Aut A,  the centre of A by Z(A),  and 

the group of unitary elements of A  by U(A).  We shall write A  for the spectrum of A 

equipped with the Jacobson topology (see [32, Chapter 3]). 

 Let A be a 𝐶∗-algebra and let M(A) be its multiplier algebra—the collection of all 

pairs m =  (m′, m′′) of maps from A to A satisfying 

am′{b)  =  m′′(a)b      for a, b ∈  A; 

intuitively, m′  and m′′  represent left and right multiplication by the element 𝑚, and we 

usually write ma for m′(a) and am for m′′(a). The collection M(A) is a 𝐶∗-algebra with 

identity containing A as a closed two-sided ideal, and has the following universal property: 

if B is a 𝐶∗-algebra containing A as a closed two-sided ideal such that bA =  0 implies b =
 0, then there is an embedding of B into M(A) (see [30, Sections 2 and 3] for details). If 𝛼 ∈
 𝐴𝑢𝑡 A  has the form 𝛼(a)  =  uau∗ for some u ∈  U(M(A))  then we call 𝛼  an inner 

automorphism, and we write 𝛼 =  Adu these form a subgroup of Aut A which we denote 

by Inn A.  If the algebra A has an identity, then M(A)  =  A and this coincides with the usual 

notion of inner. 

 Following Kadison and Ringrose [42] we denote by Π(A) the group of automorphisms of 

A  which are weakly inner in every faithful representation, and we call these ir-inner 

automorphisms. If B is a commutative subalgebra of M(A),  then 𝐴𝑢𝑡𝐵𝐴 will denote the 

collection of automorphisms of A which commute with the multipliers in B.  

 Let E be a continuous field of 𝐶∗-algebras over a locally compact(Hausdorff) space; 

that is, E is a parametrised family {Ex: x ∈  X of 𝐶∗-algebras together with a family Γ(E) 
satisfying 

( i )  Γ(E) is a ∗‑algebra; 

(ii) {a(x): a ∈  Γ(E)}  =  Ex for each x ∈  X; 
   (iii)  for each a ∈  Γ(E), x →  ‖a(x)‖ is continuous; 

   (iv) Γ(E) is closed under local uniform convergence. 

The space A =  Γ0(E) of continuous which vanish at infinity is a 𝐶∗-algebra in the uniform 

norm, and is also a module over the ring Cb(X) of bounded continuous functions on X. An 

isomorphism 𝜙: E →  F  of fields over X  is a collection of isomorphism 𝜙𝑥: Ex  →  Fx 
which carries Γ(E) onto Γ(E); we denote the induced isomorphism of Γ0(E) onto Γ0(F) by 

𝜙∗, and note that the correspondence 𝜙 → 𝜙∗ is functorial. See [32, Chapter 10]. 

Lemma(1.2.1)[21]: Let 𝐸 be a continuous field of 𝐶∗-algebras over a locally compact space 

X, let 𝐴 = Γ0(𝐸) and let 𝛼 ∈ 𝐴𝑢𝑡𝐶
𝑏(𝑋)
𝐴. 

  ( i ) If a1, a2 ∈ A  satisfy a1(x)  =  a2(x) for some x ∈  X, then  α(a1)(x) = α(a2)(x). 
  ( ii )  If Y is a compact subset of X, then α induces an automorphism αY of Γ(E|Y) 
such that αY(a|Y ) = α(a)|Y for a ∈ A. 

Proof: For suppose a1(x)  =  a2(x) 𝑏𝑢𝑡 α(a1)(x)  ≠ α(a2)(x),  and let ε =
‖α(a1)(x) —  α(a2)(x)‖  >  0 . Choose a neighbourhood N  of x  such that 
‖a1(y) — a2(y)‖ < ε for y ∈  N, and let ρ: X →  [0,1] be a continuous function such that 

ρ(x) = 1  and ρ =  0  outsi  ρ  de N ;  then ‖ρa1 —ρa2 ‖ < ε  and,  since α  is isometric, 
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‖α(ρa1)(x) —  α(ρa2)‖ < ε.𝑁𝑜𝑤 α(ρai)(x)  =  (ρα(a𝑖))(x)  =  ρ(x)α(ai)(x)  =
 α(ai)(x), so that 

ε‖α(a1)(x) −  α(a2)(x)‖  = ‖α(ρa1)(x) − α(ρa2)‖  < ε, 

which is nonsense, and we have proved (i). The second part now follows if we define αY(b) 
for b ∈ Γ(E|Y) to be α(a)|Y for any a ∈ Γ0(E) which extends b. 

Lemma(1.2.2)[21]: Let E be a continuous field of C∗-algebras over a locally 

compact space X, let A = Γ0(E)  and let m ∈ M(A).  

(i )   If a1, a2 ∈ A satisfy a1(x) = a2(x), then ma1(x) = ma2(x). 
(ii)   If Y ⊂ X is compact, then m induces a multiplier  mY of Γ(E|Y).  

This can be proved along the lines of the preceding lemma, or deduced from the results of 

[22]. 

 𝐴 special case of a continuous field of  C∗-algebras is the trivial field E =  X × B , 
where we take for Γ(E) the set of all continuous functions from X to B. 

Lemma (1.2.3)[21]:  Let X be a compact space, let  B be a C∗-algebra and  α ∈
Autc(X)C(X, B); for x ∈  X we define  αx: B →  B by αx(b)  =  α(b)(x), where b is the 

constant function; with value  b . Then  αx  ∈  Aut B , the map  α → αx  is a 

homomorphism, and  x → αx is  a continuous map of X into Aut B when  Aut B has 

the topology of pointwise convergence. Further, if f ∈  C(X, B) then 

α(f)(x)  =  αx(f(x))     for   x ∈  X. 

Proof: The last statement follows from Lemma (1.2.1); the rest are straightforward and are 

the content of [52, Lemmas 3.6-3.9]. 

 Recall that an elementary 𝐶∗-algebra is one which is isomorphic to the algebra K{H) 
for some Hilbert space H.  Let 𝑋 be a locally compact space and 𝐸 be a continuous field of 

elementary 𝐶∗-algebras over X.  

 We say that E is locally trivial if it is locally isomorphic to the field X ×  K(H)for some 

Hilbert space H; we observe that these are the fibre bundles over X with fibre K{H) and 

structure group 𝐴𝑢𝑡 K(H)  (in the topology of pointwise convergence). We say that E 

satisfies Fell's condition if for each x ∈ X there of E whose values are rank one projections 

in a neighbourhood of x. 
If E is a continuous field of elementary 𝐶∗-algebras over a locally compact space X,  and 

if E satisfies Fell's condition, then A = Γ0(E) is called a continuous trace 𝐶∗-algebra. The 

spectrum of A can be identified with X,  and the primitive ideals have the form IX  = {a ∈
 Γ0(E): a(x)  =  0}; E is called the field associated with A,  is unique up to isomorphism, and 

can be recovered from A by taking Ex =  A/IX,see [32]. If A is a separable continuous trace 

𝐶∗ -algebra, then its spectrum is paracompact; frequently we shall assume that our 𝐶∗ -

algebras are separable. We observe that if each of the irreducible representations of a 

separable continuous trace 𝐶∗ -algebra A  has Hilbert dimension 𝜘0 , and if 𝐴̂  has finite 

dimension, then the field associated with A is locally trivial [32, 10.8.8]. 

If A is a 𝐶∗-algebra such that every irreducible representation of A has dimension n(<
∞), A  is called an 𝑛-homogeneous 𝐶∗ -algebra. Fell (see [53, Section 2]) shows that n-

homogeneous 𝐶∗-algebras all have the form Γ0(E) for some (locally trivial) bundle of n ×
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n matrix algebras; in particular, they are continuous trace 𝐶∗-algebras. If an n-homogeneous 

𝐶∗-algebra has an identity then its spectrum X is compact; algebraists refer to these either as 

Azumaya algebras over 𝐶(𝑋), or as central separable 𝐶(𝑋)-algebras. Conversely, it is not 

hard to deduce from [57] that a unital continuous trace 𝐶∗-algebra is just the finite direct 

sum of n-homogeneous 𝐶∗-algebras, where n can vary from summand to summand. 

Lemma(1.2.4)[21]: Let A  be a continuous trace  𝐶∗ -algebra with spectrum X
 and let  α ∈ AUT A.  Thenα is a Cb(X)-automorphism if and only if  α(I)  ⊂  I 
for every primitive  ideal I  of A.  

Proof: Every primitive ideal of A has the form I X = {a: a(x) = 0} for some x ∈ X,  and 

Lemma (1.2.1) tells us that α(IX) ⊂  IX  for every  α ∈  Autcb(X)A . Conversely, suppose 

a(IX)  ⊂ IX for all x (i. e. a(x)  =  0 ⟹ α(a)(x)  =  0) and let a ∈  A, f ∈  Cb(X). Let x ∈
 Xthen(f(x)a)(x) = (fa)(x)and so f(x)α(a)(x)  = α(f(x)a)(x)  =  α(fa)(x),  as required.  

Corollary(1.2.5)[21]: Let A be  a  continuous trace  C∗ -algebra with spectrum  

X.Then  AUTC
B(X)
A = Π(A).  

Proof: Lemma(1.2.4) implies that α(I)  =  I for every closed two-sided ideal I of A,  and 

the result now follows from [36]. 

If A and B are 𝐶∗-algebras, we denote by A ⨀ B their algebrai tensor product. If A is 

represented faithfully on H and B is represented faithfully on K , then A ⨀ B is represented 

faithfully on H ⨂ K, ,  and its closure in B(H ⨂ K)  is a 𝐶∗ -algebra A ⨂∗B  which is 

independent of the representations chosen.  𝐴 𝐶∗-algebra A is nuclear if there is a unique 

𝐶∗-tensor product norm A ⨀ B for any 𝐶∗-algebra B;  in particular, continuous trace 𝐶∗-
algebras are nuclear (see e.g., [55]). If A or B is nuclear then we write A ⨂ B for the unique 

𝐶∗-tensor product of A and B.  

Let A and B be 𝐶∗-algebras, and let Π: M{A)  →  B(H) and 𝜌: M(B)  → B(K) be faithful 

representations; then Π⨂𝜌 is a faithful representation of A ⨀ B .  Thus we have an 

embedding of A ⨂∗ B  as A ⨀ B ⊂  M(A) ⨂∗M(B) ,  and since A ⨀ B  is an ideal in 

M(A)  ⨂∗M(B) so is A ⨂∗ B. The universal property of multiplier algebras implies that 

there is an embedding of M(A)⨂∗ M(B) into M(A ⨂∗ B).  It is straightforward that this is 

the obvious map: in other words, 

(∑ 𝑚𝑗⨂𝑛𝑗
𝑗

)(∑𝑎𝑖⨂𝑏𝑖
𝑖

) =∑𝑚𝑗𝑎𝑖⨂𝑛𝑗𝑏𝑖
𝑖𝑗

. 

This embedding is not in general surjective [22, Section 3]. We shall identify 

M(A) ⨂∗ M(B) with its image in M(A ⨂∗ B).  

A  C∗ -algebra I A  s said to be stable if A ⨂ K(H)  ≅  A ,  where H  is a separable 

infinite-dimensional Hilbert space. We recall that if E  and F  are continuous fields of 

elementary 𝐶∗-algebras satisfying Fell's condition over a space X, then we can define a field 

E ⨂ F over 𝑋 whose fibre (E ⨂F)x over x ∈ X is Ex⨂ Fx (see [33]). 

Lemma (1.2.6)[21]: Let A =  Γ0(E) be a continuous trace C∗-algebra with par compact 

spectrum X. Then the map Φ: A ⨀ K(H)  →  Γ0(E ⨂ (X ×  K(H)) defined by 
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Φ(∑𝑎𝑖⨂𝑘𝑖
𝑖

) (𝑥) =∑𝑎𝑖(𝑥)⨂𝑘𝑖
𝑖𝑗

 

extends to an isomorphism of A ⨂ K(H) onto Γ0(E ⨂ (X ×  K(H))). The induced map 

Φ^: X → (A ⨂ K(H))^ sends Jx  =  {b: b(x)  =  0} onto Ix ⨂ K(H), where Ix  =  {a ∈
 A: a(x)  =  0}. 

Proof: It is obvious that Φ is injective on A ⨂ K(H).  Hence, by uniqueness of the 𝐶∗-
algebra norm, it is isometric. Since the range of Φ is clearly dense, Φ is surjective. The 

assertion about Φ^ is quite easy to check. 

Proposition(1.2.7)[21]: Let A be a separable continuous trace C∗-algebra with spectrum X. 

Then is A stable if and only if the field associated with A is locally trivial of rank 𝜘0.  

Proof: Suppose that A is stable, and let E be the field associated with A.  Then the lemma 

tells us that A ≅ Γ0(E ⨂(X × K(H))),  and it follows from [32, Section 10.5] that E ≅
E⨂ (X ×  K(H)).  Since A is separable so is E,  and Theoreme 2 of [33] implies that E is 

locally trivial; clearly each fibre has rank. 𝜘0Conversely, suppose that A =  Γ0(E) and E is 

locally trivial of rank 𝜘0. Theoreme 1 of [33] implies that δ(E ⨂(X × K(H)))  =  δ(E), and 

Theoreme 2 of [33] shows that E ⨂ (X ×  K(H)) is locally trivial, so that we can deduce 

from [32, 10.8.4] that E ≅ E ⨂ (X ×  K(H)).  Thus Γ0(E)  ≅ Γ0(E ⨂ (X ×  K(H))),  and 

the result follows from Lemma (1.2.11). 

 A  derivation of a C∗ -algebra A  is a (bounded) linear map δ: A → 𝐴  such that 

𝛿(𝑎𝑏)  =  δ(a)b +  𝑎𝛿(𝑏) f or a, b ∈  A; we say 𝛿 is inner if there exists m ∈ M(A) such 

that 𝛿(𝑎) =  ma −  am for a ∈  A,  and we write 𝛿 =  𝑎𝑑 𝑚.  If every derivation of A is 

inner we write H1(A,M(A))  = 0. If 𝛿 is a derivation of A then exp 𝛿 is an automorphism, 

and if 𝛼 is an automorphism of A close to the identity then we can define a derivation

 log  𝛼  of A by the power series expansion for log.This correspondence between 

automorphisms and derivations gives the following well-known result of Dixmier [58].  

Proposition(1.2.8)[21]: Let A be a 𝐶∗-algebra. Then every derivation of 𝐴 is inner if 

and only if every automorphism close to the identity has the form Ad 𝑢 for some 𝑢 ∈
 𝑈(𝑀(𝐴)) close to 1 ∈ 𝑀{𝐴).L 

Lemma(1.2.9)[21]: Let  𝐴  be a 𝐶∗ -algebra, and let 𝛼 ∈  𝐴𝑢𝑡 𝐴 . If is 𝛼   close to the 

identity then 𝛼 ∈ 𝐴𝑢𝑡𝐶
𝑏(𝐴̂)
𝐴. 

Proof: First we note that by the Dauns-Hofmann theorem, 𝐶𝑏(𝐴̂)is the centre of the 

multiplier algebra M{A) of A.  If 𝛼 ∈ 𝐴𝑢𝑡 A is close to the identity, then 𝛼 = 𝑒𝑥𝑝 𝛿for 

some derivation 𝛿 of A.  Now 𝛿 extends to a derivation 𝛿̅of M(A) (via 𝛿̅(m)a =  δ(ma) −
 mδ(a) etc.), and a calculation shows that  𝛿̅: Z(M(A))  →  Z(M(A)); thus by [51, 4.1.2] 

𝛿̅  ≡  0 on Z(M(A)).  Thus 𝛼̅  =  𝑒𝑥𝑝 𝛿̅fixes Z(M(A));  but 𝛼̅ is an extension of 𝛼  and the 

result follows. 

 We shall also need some elementary sheaf cohomology; a good reference for our 

purposes is chapter 5 of [55]—particularly on 𝐶̌ech cohomology. Let X be a paracompact 

space, and let ℜ and𝒴 respectively denote the sheaves of germs of continuous 𝑅 −  and 

S1 − valued functions on X. Then the covering map t →  2πit: R → S1  induces a short  

exact sequence of sheaves 
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0 → 𝑍 → ℜ → 𝒴 → 0, 
which in turn induces a long exact sequence of cohomology: 

. . . → HP(X,ℜ) →  Hp{X, 𝓎) → HP+1(X, Z) →  HP+1 (X,ℜ) → . . . . 

Since ℜ  is a fine sheaf, HP(X,ℜ)  =  0  for p ≥  1  and so we have isomorphisms 

Hp(X,𝒴)  ≅  Hp+1(X, Z) for p ≥  1; this gives us a concrete realisation of H2(X, Z) and 

H3(X, Z) in terms of cocycles with coefficients in S1 .  Finally, we recall that if G is a 

topological group which acts transitively on a space 𝐹 , and ℜ i the sheaf of germs of 

continuous 𝐺-valued functions on X,  then H1 (X,𝒴) is in one-to-one correspondence with 

the set of isomorphism classes of fibre bundles over X with fibre F and structure group G. 

Combining these last two observations gives us the well-known characterisation of H2(X, Z) 
as the set of isomorphism classes of complex line bundles over X. 

 We have the following theorem: 

Theorem(1.2.10)[21]: Let A be a separable continuous trace 𝐶∗-algebra with 

spectrum X. Then there is an exact sequence 

0 →  𝐼𝑛𝑛 A →  AutC
b(X)
A 

η
→ H2(X, Z). 

If A is stable, then  η is surjective . 

The proof of this result will be accomplished in several stages. We shall first reduce to the 

case where A is stable, so that the field E associated with A is locally trivial. We then 

associate to each 𝛼 ∈  AutCb(X)A a 1-cocycle 𝜉(𝛼) over X with coefficients in the sheaf 𝒴 

of germs of continuous S1  valued functions, and show that 𝛼 → 𝜉(𝛼)  induces a 

homomorphism 𝜉: AutCb(X)A → H
1(X,𝓎) ; composing with the isomorphism H1(X, y) =

H2(X, Z) gives the homomorphism η. Our next step is to identify ker 𝜉: this is easy once we 

have Lemma (1.2.9) a concrete realization of M(A) of a bundle with fibre B(H).  Finally we 

show Theorem (1.2.10) that £ is onto using a standard Zorn ʼ𝑠 lemma argument. 

Once we have established Theorem (1.2.10), we look briefly at its implications in the case 

where A  is an 𝑛 -homogeneous 𝐶∗ -algebra. We then explore the relationship between 

AutCb(X)A and the group 𝐴𝑢𝑡 A of all automorphisms of A;  we prove that 𝐴𝑢𝑡 A/AutCb(X)A 

can be identified with a group of homeomorphisms of X Theorem (1.2.20). We close by 

recasting, in terms of automorphisms, the proof of the theorem of Akemann, Elliott, 

Pedersen and Tomiyama [3] that all derivations of separable continuous trace 𝐶∗-algebras 

are implemented by multipliers. 

𝐴𝑢𝑡 K(H) will have the topology of pointwise convergence and U(H) the strong 

operator topology; we notice that both become topological groups. Further, it is easy to see 

that the strong and ∗ −strong operator topologies coincide on U(H).  

 Let A be a separable continuous trace 𝐶∗-algebra with spectrum X.  

Then A ⨂ K(H) is a stable separable continuous trace 𝐶∗-algebra with spectrum X, and any 

automorphism 𝛼of A  induces an automorphism 𝛼 ⨂ 𝑖𝑑   of A ⨀K(H);  since there is a 

unique 𝐶∗ -tensor product norm on A⨀ K(H) , α ⨂id  is isometric and so extends to an 

automorphism of A ⨂K(H).  

It follows from Lemma (1.2.4) and the last statement of Lemma (1.2.11) that if 𝛼 ∈
 AutCb(X)A then 𝛼 ⨂ 𝑖𝑑 ∈ AutCb(X)A ⨂ K(H).  We recall that there is an embedding of 
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M(A) ⨂∗M(K(H)) into M(A ⨂K(H));  it is clear that if 𝛼 is implemented by a unitary U ∈
M(A) ,  then 𝛼 ⨂ 𝑖𝑑  is implemented by u ⨂ 1 ∈  M(A ⨂ K(H)).  We claim that the 

𝑚𝑎𝑝 𝛼 →  𝛼 ⨂ 𝑖𝑑 induces an injection 

AutCb(X)A /Inn A →  AutCb(X)A ⨂ K(H)/Inn A⨂ K(H). 

Thus if we can prove Theorem (1.2.10) for stable A,  then the result for general A will follow 

immediately. This claim is a consequence of the following  lemma: 

Lemma(1.2.11)[21]: If α ∈  Aut A  and α ⨂ id  is an inner  automorphism of 

A ⨂ K(H),  then  α is inner . 

Proof: Suppose that 𝛼 ∈  𝐴𝑢𝑡 A  and 𝛼 ⨂ 𝑖𝑑 =  𝐴𝑑  u  for a unitary u ∈

M(A ⨂ K(H)) . Let e ∈  K(H)  be a minimal projection; then a → a ⨂ e   induces an 

isomorphism of A  with A ⨂ e ⊂  A ⨂ K(H),  and hence an isomorphism of M(A)  with 

M(A) ⨂ e ⊂  M(A) ⨂    ∗ K(H) ⊂ M(A⨂K(H)). It is routine to check that  

a⨂ e →  (1 ⨂ e)  u  (a ⨂ e)(1 ⨂ e),      a⨂e → (1 ⨂ e)(a ⨂ e) u (1 ⨂ e) 

defines 𝑎 multiplier of A ⨂ e;  thus there is 𝑎 𝑣 ⨂ e ∈  𝑀(𝐴) ⨂e such that 

(1 ⨂ e) u (a ⨂ e)(l ⨂ e)  =  (𝑣 ⨂ e)(a ⨂ e)      for a ∈  A.  

Then a computation shows that for a ∈  A 

α(a) ⨂e =  (1⨂e)u(a⨂e)u∗(1⨂e)  =  vav∗ ⨂ e, 
so that α(a)  =  vav∗ and α is inner. 

 We now prove that if 𝑋 is 𝑎compact space then 𝐶(X) −module automorphisms of 

C(X, K(H)) are locally inner. Recall that if 𝜉 ∈  H, ‖ξ‖ =  1 and p is the rank one projection 

of H onto 𝐶𝜉, then the map kp →  kp(ξ) is an isometric isomorphism of K(H)p onto 𝐻[32, 

10.6]; further, under this map k ∈  K(H) corresponds to left multiplication by k on K(H)p.  

We shall need the following well-known lemma: 

Lemma(1.2.12)[21]: If ф ∈ Aut K(H), p is a rank one projection  and v ∈ K(H)  
satisfies  𝑣𝑣∗  =  ф(p), 𝑣∗𝑣 =  𝑝 , then 𝑢(ℎ𝑝) =  ф(h)v  defines  a  unitary operator 

u: K(H)p →  K(H)p such that  ф =  Ad u. 

Proof: It is easy to check that u is well-defined,and 𝑎  computation using the inner product 

(hp|kp) =  tr(pk∗hp) shows that u∗(kp)  =  ф−1(k)ф−1(v∗). It is now straightforward to 

verify that 𝑢 is 𝑎 nitary implementing ф. 

Proposition(1.2.13)[21]: Let p ∈ K(H) be  𝑎 rank one  projection. Then there 

is  𝑎  continuous map  γ: M =  { ф ∈ Aut K(H): ‖ ф(p) − p‖ < 1} → U(H) such that 

𝐴𝑑°𝛾 is the identity on M. Further , if ‖ ф −  id‖ <  ε ≤  1 2⁄ then ‖γ (ф) − 1 ‖  <

 4ε . 

Proof: Suppose that ф ∈ M; then ф (p)p ≠ 0, and 𝑣(ф)  =  ф (p)p /‖ф (p)p‖ defines 𝑎 

continuous map of M into K(H).  Then 𝑣 (ф)∗ 𝑣(ф) is a positive element of pK(H)p of 

norm one, and so 𝑣 (ф)∗ 𝑣(ф) =  p; similarly 𝑣(ϕ)𝑣 (ф)∗  =  ϕ(P) thus by the lemma  

γ(ϕ)(ℎP) =  ϕ(h)v(ϕ)      (hp ∈ K(H). P, ϕ ∈  M) 

defines a unitary operator γ(ϕ)  ∈ U(H)and ϕ =  Ad γ(ϕ) . It is easy to verify that γ is 

continuous, and a computation shows that if ‖𝜙—  id ‖ <  ε ≤  1/2, then‖v(ϕ) −  p ‖ <
 3𝜀 and ‖γ(ϕ) −  1 ‖ <  4𝜀, which completes the proof. 
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Corollary(1.2.14)[21]: Let X b e  a  compact space, and  let α ∈
 AutC(X)C(X, K(H)).  Then for each  x0 ∈ X there is  aneighbourhood  N of x0  and 

a(strong operator)  continuous map  u: N →  U{H) such that 

α(f)(x) =  u(x)f(x)u(x )∗    for x ∈  N, f ∈  C(X, K(H)). 

 Let A be a separable stable continuous trace 𝐶∗ −algebra with spectrum X,  and let 

α ∈  AutC(X)A. Then there is a locally trivial field  E of elementary 𝐶∗-algebras of rank ℵ0 

over x such that A = Γ0(E). 

 Let {Mj} be an open cover of X such that there are isomorphisms hj. M̅j  × K(H)  →

 E|M̅j then, 𝛼induces automorphisms (by Lemma (1.2.1)) 

𝛼𝑗  =  (hj
−1)∗°αM̅j °(hj)∗  ∈  AutC(X)C (M̅j, k(H)) 

(without loss of generality we have assumed that each M̅j .  is compact). According to 

Corollary (1.2.14) we can by shrinking the Mjʼs assume that there are continuous maps 

uj: M̅jj →  U(H) such that uj.  implements αj.If we start the argument of [32, 10.7.11] with 

this open cover, we obtain: 

Proposition(1.2.15)[21]: Let  A = Γ0(E)  be a separable stable  continuous 

traceC∗ −algebra with spectrum  X, and let  α ∈  AutC(X)A. Then there is an open 

cover {Ni} of X and  

(i) isomorphisms  hi: N̅i  × K(H) ⟶ E|N̅i; 

(ii) continuous maps  vij: . N̅ij⟶  U(H) such that 

(hj
−1)x(hj)x = Ad vij (x)     forx ∈ N̅ij; 

(iii) continuous maps  ui: . N̅i⟶  U(H) such that  αi =  Ad ui. 

 We now observe that for x ∈  N̅ij (using the notation of the proposition) we have 

(αi)∗ = (hi
−1)x°αx °(hi)x 

=  (hi
−1hi)x ° (hi

−1)x  ° αx ° (hi)x ° ((hi
−1hi)

−1)x, 
so that on N̅ij 

𝐴𝑑 ui =  𝐴𝑑 vij° 𝐴𝑑 uj ° 𝐴𝑑 𝑣𝑖𝑗
∗  =  𝐴𝑑 (vij𝑢𝑗𝑣𝑖𝑗

∗ ). 

Two unitaries in B(H) can induce the same automorphism of K(H) only if they differ by a 

constant of modulus 1; hence there are continuous maps λij N̅ij → S
1such that 

λij(x)ui(x) =  (vijx)u j(x)(vijx)
∗
,      for x ∈ N̅ij. 

Further, it follows from (2) that 𝐴𝑑 (vijvik)  =  𝐴𝑑 (𝑣𝑖𝑘) so that on N̅ijk we have 

λij λikui = vij[VIKUKVIK
∗ ] 𝑣ij

∗ =  VIKUKVIK
∗ , 

so that λijλik = λik  and {Ni, λij} defines a 1-cocycle with coefficients in the sheaf  𝒴  of 

germs of 𝑆1 −valued functions. We shall denote by 𝜉(𝛼) the class in H1(X, 𝒴) defined by 

{Ni, λij}. 

Our next task is to show that 𝜉(𝛼) depends only on 𝛼 and not on any of the choices 

we have made. We first note that if we replace our cover by a finer one, and the h𝔦ʼS, vijʼS 
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and 𝑢𝔦ʼ𝑆 and hence also the 𝜆𝔦𝔧ʼS −by their restrictions, this will not change the cohomology 

class (see for example [55, page 201]), so we suppose that {Ni} is an open cover of X and 

that we have 

(i) isomorphisms hi, gi: N̅i.×  K(H) → E|N̅i ; 

(ii)continuous maps vij, wij: N̅ij   →  U(H) such that (hi
−1hj)∗  =  Ad vij and (gi

−1gj)∗ =

Ad wij on N̅ij ; 

(iii)continuous maps ui, si: N̅i →  U(H) such that on  N̅i, (hi
−1)∗ °   αN̅i    ° (hi)∗ =  Ad ui 

and(gi
−1)∗ °   αN̅i    ° (gi)∗ =  Ad si . 

The corresponding cocycles {𝜆𝑖𝑗} and {𝜇𝑖𝑗} are given by 

λij1 =  VIJUJVIJ
∗UI
∗     and     μij1 =  WIJSJWIJ

∗SI
∗   ; 

to show these define the same class in H1(X,𝒴) we shall construct maps 𝑣1: N̅i → S
1 such 

that 𝜇𝑖𝑗  =  vi
−1. λijVj 𝑜𝑛 N̅ij. 

By Corollary (1.2.14) we can assume (shrinking the N̅iʼS if necessary) that there are 

continuous maps z1: N̅i →  U(H) such that (𝑔𝑖
−1, ℎ𝑖)∗  =  𝐴𝑑 zi Then (ii) and (iii) imply that 

𝐴𝑑 (𝑧𝑖
∗ wijZi)  =  𝐴𝑑 vij  𝑎𝑛𝑑  𝐴𝑑 si  =  𝐴𝑑 (𝑧𝑖𝑢𝑖𝑧𝑖

∗); 

from this last identity we deduce that there are continuous maps vi: N̅i  → S
1  with si =

 viziuizi
∗ on N̅i We now compute: 

 

𝜇𝑖𝑗1 = 𝑤𝑖𝑗(vjzjujzj
∗ )𝑤𝑖𝑗

∗ (vi
−1ziui

∗zi
∗ ) = vi

−1vjzi(zi
∗wijzj)uj(zi

∗wij
∗zj)ui

∗zi
∗ 

= vi
−1vjzivijuivijvij

∗uizi
∗ = vi

−1vjλij1 , 

which shows that {λij} and {𝜇𝑖𝑗} represent the same class in H1(X, y). We conclude that 𝜉(𝛼) 

is well-defined. 

If 𝛼, β ∈  AuiC
b(X)
A , then we can proceed and construct data for and β satisfying the 

conclusion of Proposition (1.2.15) with respect to the same cover of X;  if α1 =  Ad ui and 

βi =  𝐴𝑑 si. then (𝛼 ° β)𝑖  =  𝐴𝑑 (uisi) and it is a straightforward calculation to check that 

the resulting cocycle for aβ is the product of the cocycles for 𝛼 and β. Since ξ (𝛼β ) is 

independent of all the choices made, it follows that ξ: Autcb(x)A → H
1(X,𝒴) is a group 

homomorphism. 

 We next have to identify the kernel of ξ as the inner automorphisms; since ξ is 

defined in terms of local coordinates we must first identify multipliers in terms of local 

coordinates. We shall need the following well-known lemma; it is the trivial case of [22, 

Corollary 3.5], and a simple proof can also be given using Lemma (1.2.2) and the fact that 

M(K(H))  =  B(H). 

Lemma(1.2.16)[21]: Let X be a compact  space. Then every multiplier of 

C(X, K(H)) is given b a ∗ −strong  continuous map of X into B(H). 

 Let A =  Γ0(E), {Ni}, h iand vij be as in Proposition (1.2.15). If m is a multiplier of A, 

then by Lemma (1.2.2)  m induces multipliers mi of C(N̅i, K(H)) defined by  mI
′ =

(hi
−1)∗ ̊mN̅i

′  ̊(h𝔦)
∗ , and similarly for mi

′′. By Lemma (1.2.16) each mi . is given by a *-
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strongly continuous function ti: N̅i  → B(H);  then for x ∈ N̅̅̅ij  and b ∈ C(N̅ij, K(H))  we 

have 

ti(x)b(x)  =  (hi
−1)x(mx(hi)x(b(x))) 

=  (hi
−1
hj)

x
 [(hi

−1)x (mx(hi)x {(hi
−1
hj)

x
b(x)})] 

vij = (x) [tj(x) vij(x)
∗(b{x)vij(x)] vij(x)

∗
 

so that ti = vijtjVij
∗.  Conversely, it is routine to check that any collection of *-strong 

continuous maps ti: N̅i  →  B(H)  satisfying  ti = vijtjvij
∗  on N̅ij  defines 𝑎  multiplier m  of 

Γ0(E)  by m′(a)(x)  = (hi)x[ti(x)(hi
−1)x(a(x))],m

′′(a)(x)  = (hi)x (hi
−1)x(a(x)ti(x)].  Thus we 

have 

Proposition(1.2.17)[21]: Let A =  Γ0(E)  be  a  separable stable  continuous 

trace C∗ − algebra  with spectrum X , and let  Ni, hi, vij  satisfy 

conditions( I)and( I I)of Proposition  (1.2.15).Then we can identify M(A) with the 

set  {{ti}:  ti: Ni  → B(H)  is *- strong continuous, uniformly  bounded and  ti  =
 vijtjvij

∗  on Nij}.  

 Let A =  Γ0(E)be a separable stable continuous trace C∗ −algebra with spectrum X,  

and let Ni, hi.  and vij satisfy conditions (i) and (ii) of Proposition (1.2.15). If 𝛼 =  𝐴𝑑 u ∈ 

Inn A,  then by the preceding proposition we can regard u as a family of maps ui: N̅i →
 U(H) satisfying ui = . .  vijujvij

∗ . 

The usual sort of calculation shows that ui implements αi, and the analogous 𝜆𝑖𝑗 ʼ𝑠 

are all 1 so that 𝜉(𝛼)  =  0 ∈  H1(X,𝒴).  Now suppose that 𝛼 ∈  AntC
b(X)
A and 𝜉(𝛼)  =  0, 

so that there are Ni, hi , vij  and ui  satisfying the conclusions of Proposition (1.2.33) and 

continuous maps 𝑣𝑖: N̅i  →  S
1 such that on N̅ij 

vi
−1vjui = λijui  =  vijujvij

∗ . 

If we define wi: N̅i  →  U(H)  by wi = vi
−1ui ,  then 𝛼𝑖 =  𝐴𝑑 wi and it is easy to check that 

wi  =  vijwjvij
∗ . Thus the  𝑤𝑖 ʼ𝑠  define a unitary element w  of M(A) and another calculation 

shows that 𝛼 =  Ad (w) , SO that  𝛼 ∈  𝐼𝑛𝑛 A . This completes the proof that ker  𝜉 =
𝐼𝑛𝑛 A . 

    To complete the proof of Theorem (1.2.10) we have to show that 𝜉 is surjective. Our 

method is a version of Lance ʼ𝑠  argument [45, last part of Theorem 4.3]; modified (cf. [32, 

proof of 10.8.4]) to allow for transition functions and noncompact spectra. We begin with a 

simple lemma. 

Lemma(1.2.18)[21]: Let  A be  a separable stable continuous trace   C∗ −algebra 

with spectrum X,  and let  Ni, hi .  and 𝑣𝑖𝑗  satisfy ( I)  and ( I I)  of Proposition 

(1.2.15).  If ui: N̅i  →  U(H) are continuous maps such that  𝐴𝑑 (𝑣𝑖𝑗𝑢𝑗𝑣𝑖𝑗
∗ )  =  𝐴𝑑 ui 

on N̅ij, then there is  a unique Cb(X)-module automorphism   α of A such that  αi =

 Ad ui. .  

Proof:   Let a ∈ A,  and let 
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α(a)(x) =  (hi)x ∘  Ad ui(x) ∘ (hi
−1)x(a(x))for x ∈  N̅ij. 

Then a(a)  is a well-defined element of A , and it is clear that 𝛼  is a a Cb (X)-algebra 

homomorphism; a is an automorphism since we can write down its inverse. Using a partition 

of unity we can see that a Cb (X)-automorphism is uniquely determined by its restrictions to 

the𝑁𝑖 ʼ𝑠 , and hence 𝛼 is unique. 

Let A =  Γ0(E), Ni, hi.  and 𝑣𝑖𝑗 be as in (i) and (ii) of Proposition (1.2.15), and let 

{Ni, λij} be a 1-cocycle with coefficients in𝒴. Since 𝐴is separable, X is paracompact and so 

we can assume that the cover {𝑁𝑖}𝑖∈𝐼 is locally finite; moreover, by refining, we can assume 

that {𝑁̅𝑖}𝑖∈𝐼 is a locally finite cover. We shall show that there are maps ui: Ni  →  U(H) 
satisfying vij ujvij

∗ = λijon Nij  9 so that by Lemma (1.2.18) the 𝑢𝑖 ʼ𝑠  will define an 

automorphism 𝛼 ∈  𝐴𝑢𝑡𝑐𝑏(𝑋)  𝑤𝑖𝑡ℎ 𝜉(𝛼)  =  {Ni, λij}. Let 𝔄 denote the sheaf of germs of 

continuous U(H)-wahxed  functions on X  we shall need the fact that 𝔄 is soft, which 

follows by Lemma 4.2 of [45] from the contractibility of U(H) [32]. 

Let 𝒴 = {(𝐽 , 𝛽): 𝐽 ⊆ 1  and 𝛽 =  {𝛽𝑖}𝑖∈𝐽 consist of 𝛽𝑖 of 𝔄  over N̅i  such that 

𝜈𝔦𝔧𝛽j𝜈𝔦𝔧
∗  = λij𝛽𝑖  . on N̅i ∩ Nj}. If 𝐽 ⊆ K and 𝛽𝑖 = γi  for 𝑖 ∈ 𝐽, then we set (𝐽 , 𝛽)  ≤  (K, γ): 

this is a partial order on 𝒴The collection 𝒴 is non-empty and every chain has an upper 

bound, so by Zorn's lemma 𝒴 contains a maximal element (𝐽 , 𝛽).Suppose that there is an 

i ∈  I\ 𝐽,  and let 𝑅 = 𝑁̅𝑖 ∩ (⋃ 𝑁̅𝑗𝑗∈𝐽 ) ; note that R is  closed since 𝑁̅𝑖   is locally finite. 

Suppose that j, k ∈  J, so that vijβkvik
∗  =  λikβj on N̅j ∩ N̅k.  Then on N̅i ∩ N̅j  ∩ N̅k 

𝜆𝑖𝑗
−1𝑣𝑖𝑗𝛽𝑗𝑣𝑖𝑗

∗ = 𝜆𝑖𝑗
−1𝑣𝑖𝑗𝜆𝑖𝑘

−1𝑣𝑗𝑘𝛽𝑘𝑣𝑗𝑘
∗ 𝑣𝑖𝑗

∗ = 𝜆𝑖𝑘
−1𝑣𝑖𝑘𝛽𝑘𝑣𝑖𝑘

∗  

so that 𝛽𝑖 = 𝜆𝑖𝑗
−1𝑣𝑖𝑗𝛽𝑗𝑣𝑖𝑗

∗  defines a continuous 𝛽𝑖  of 𝒰 over R,  which satisfies the right 

relations on R ∩ N̅j. for all j ∈  𝐽. Since 𝒰 is soft, 𝛽𝑖  extends to a continuous 𝛽i over N̅i,  

which contradicts the maximality of (𝐽, 𝛽) so that 𝐽 must be all of 𝐼. If we restrict the 𝛽𝑖
,𝑠 to 

𝑁𝑖., then they are continuous of 𝒰 over open sets and so given by continuous maps ui: Ni →
U(H) which have the required properties. This completes the proof of Theorem (1.2.10). 

We now investigate the special case of the above construction where A is an 𝑛-

homogeneous 𝐶∗ -algebra, or, in algebraic language, an Azumaya algebra. Let A  be an 

algebra identity over a commutative ring R, and let M be a left A ⨂R A
°Pmodule—that is, 

M is a left and a right A-module and the action of R commutes with everything. We say M 

is invertible if there is another left A ⨂R A
°P-module N with M ⨂AN ≅ A and N ⨂A M ≅

A,  and we denote by PicRA the group of isomorphism classes of invertible left A ⨂R A
°P-

modules. If for 𝛼 ∈  𝐴𝑢𝑡 𝑅𝐴  we define   𝛼A1  to be the A ⨂R A
°P -module with A  as 

underlying set, and left and right multiplication defined by a . b =  α(a)b  and b. a =
 ba respectively, then   𝛼A1  is invertible and the 𝑚𝑎𝑝 𝛼 → 𝛼 Al  induces an 

antihomomorphism 𝜋 such that 

(∗)               0 →  𝐼𝑛𝑛 A →  𝐴𝑢𝑡𝑅  A 
𝜋
→ 𝑃𝑖𝑐𝑅𝐴 

is an exact sequence (cf. [26, page 73-74]). If A is an Azumaya R-algebra (that is, the centre 

of A  is R  and A  is a projective A ⨂R A
°P -module) then every A ⨂R A

°P -module M  is 

isomorphic to A ⨂R Z(M) ,  where Z(M) = {m ∈  M: am =  ma for all a}.  [24, Theorem 

3.1]. The correspondence 𝑃 →  A ⨂RP  induces an isomorphism 𝑃𝑖𝑐 R ≅ 𝑃𝑖𝑐𝑅𝐴,  where 
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𝑃𝑖𝑐 R =  𝑃𝑖𝑐𝑅𝑅  denotes the usual Picard group of invertible 𝑅 -modules. Thus for an 

Azumaya algebra A over R we have the exact sequence 

0 →  𝐼𝑛𝑛 A →  𝐴𝑢𝑡𝑅  𝐴
𝜌
→  𝑃𝑖𝑐 R, 

where for 𝛼 ∈ 𝐴𝑢𝑡𝑅  𝐴, 𝜌(𝛼) is represented by 

𝐽𝛼  =  {a ∈ A: α(b)a =  ab     for all b ∈ A}. 

This result is due to Rosenberg and Zelinsky ([50]; cf. also [31]); Knus [44] has shown that 

the range of p is contained in the torsion subgroup of Pic R. 

Let A be Azumaya algebra over C(X) for a compact space X. First of all, it follows from 

[23] that modulo the inners the 𝐶(𝑋)-automorphisms and the 𝐶(𝑋)-algebra automorphisms 

coincide, so that we can write 𝐴𝑢𝑡c(X )𝐴  without causing any confusion. The natural 

equivalence E →  Γ(E) between vector bundles over X and projective 𝐶(𝑋)-modules allow 

us to interpret Pic C(X) as H1(X,𝒴)  ≅ H2(X, Z),  and it's not hard to see that under this 

identification our homomorphism 𝜂 of Theorem (1.2.10) and the Rosenberg-Zelinsky 

homomorphism p coincide. Knus's result tells us that if H2(X, Z) is torsion free then every 

𝐶(𝑋)-automorphism of every n-homogeneous 𝐶∗ −algebra with spectrum X is inner. When 

Kadison and Ringrose in [42, Section 4, example (𝑑)] were looking for a space X for which 

π(C(X,Mn(C)))  ≠  Inn C(X,Mn(C))  ,  they took for X  the projective unitary group 

U(n)/S1;  it turns out that H2(U(n)/S1; Z) ≅  Zn [27, Section 4]. Notice that they had to 

choose different spaces X for different fibre dimensions. 

 Recently Brown, Green and Rieffel [28] have introduced a 𝐶∗-version of the Picard 

group, which we denote by 𝑃𝑖𝑐∗:if A is a 𝐶∗-algebra then 𝑃𝑖𝑐∗A  consists of equivalence 

classes of 𝐴 − 𝐴 − imprimitivity bimodules (cf.[49, Definition 6.10]). Their 𝑃𝑖𝑐∗A 

corresponds to the algebraic PiccA,  and the appropriate generalisation of the exact sequence 

(*) of the preceding is 

0 →  𝐼𝑛𝑛 A →  𝐴𝑢𝑡 𝐴
𝜋
→ 𝑃𝑖𝑐∗ A; 

this is Proposition (1.2.41) of [28]. Brown, Green and Rieffel prove that if A is stable and 

has a strictly positive element (for example, if A  is separable and stable) then the 

antihomomorphism 𝜋  if we surjective [28, Corollary 3.5]. denote by Pic ZM(A)
∗ A  the 

subgroup of Pic∗A  consisting of (classes of) A-A-imprimitivity bimodules X  such that 

ar . x . b =  a . x . rb for all x ∈  X, a, b ∈  A and r ∈  ZM(A) then it is routine that 𝜋(α) ∈
 Pic   ZM(A)

∗ A if and only if α ∈ AutZM(A)A. In particular, for a separable stable continuous 

trace C∗ − algebra we obtain an isomorphism AutZM(A)A Inn⁄  ≅  Pic  ZM(A)
∗ A, which 

together with Theorem (1.2.10) shows that H2(X, Z) ≅ Pic CB(X)
∗ A. We do not know how to 

prove this result directly, although such a proof would be of interest; it would also be 

interesting to find out for what class of C∗ −algebras we do have H2(Â, Z)  ≅ PicZM(A)
∗ A.  

Such a result together with [28, Corollary 3.5] would of course give our Theorem (1.2.10), 

but we observe that this approach will not give the results of since the algebras we consider 

there are not stable, so that Corollary 3.5 of [28] does not apply. 

Let A be a separable continuous trace C∗ −algebra with spectrum X,  and let δ(A) be 

the class in H3(X, Z) associated to A by Dixmier and Douady [34], [32, Section 10.7]; their 

construction goes as follows. If {Ni}, hi  and vij  satisfy the conditions (i) and (ii) of 

Proposition (1.2.15), then Ad (vijvjk)  =  Ad vik on Nijk,  and so there are continuous maps 
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tijk: Nijk  → S
1 such that vijvik  =  tijkvik. A completely routine calculation (see [32, proof 

of 10.7.12]) shows that {Ni, tijk} is a 2-cocycle with coefficients in 𝒴 and so determines an 

element of H2(X,𝒴).  This cohomology class depends only on A [32, 10.7.12] and is denoted 

by γ(A); its canonical image in H3(X, Z)  ≅  H2(X,𝒴) is denoted by δ(A).  Now let α ∈
 Aut A.  Then α  induces a homeomorphism α̃  of X  by sending the primitive ideal Ix  =
{a ∈  A: a(x) =  0} to α(Ix) = Iα̃(x)  and α̃  in turn induces an automorphism 

ã∗ of H3(X, Z).  In fact α̃ fixes the Dixmier-Douady class δ(A). We denote by Homδ(A)X 

the set of homeomorphisms of X with this property. Observe that the homeomorphism α̃ is 

not the natural map α̂: Â  →  Â  induced by  α ; our α̃  =  (α_1)
̂

. We have adopted this 

notation so that the map a → ã / is a homomorphism and not an anti-homomorphism. 

Theorem (1.2.19)[21]: Let A be separable continuous trace C∗ −algebra with spectrum X. 

Then there is an exact sequence 

0 →  AutCb(x)A →  Aut A 
ρ
→Homδ(4)X. 

If  A is stable, then ρ is surjective. 

Proof: If α ∈ Aut A  we set ρ(α) =  α̃: X →  X;  it is easy to check that p is a group 

homomorphism, and Lemma (1.2.4) tells us that ker ρ is AutC
b(x)
 A. It remains to verify that 

ρ(α)∗ fixed δ(A) and that ρ is onto if A is stable. We first show that ρ(α)∗(δ(A))  = δ(A); 
again we reduce to the case where A is stable by passing to α ⨂ id ∈  Aut A ⨂ K(H). As 

before if we identify the spectra of A and A ⨂ K(H) via the correspondence I →  I ⨂ K(H) 
then it is routine to verify that ρ(α)  =  ρ(α ⨂ id) and that a ∈  AutC

b(x)
A exactly when 

α ⨂ id ∈  AutC
b(x)
)A ⨂ K(H).  Further, by [33] and Lemma (1.2.11) we have that δ(A)  =

 δ(A ⨂ K(H)) so that ρ(α) fixes ρ(A) if and only if ρ(α ⨂ id) fixes δ(A ⨂ K(H)).  

So we suppose that A is stable and α ∈ Aut A.  Let {N i}i∈I, hi and vij be as in (i) and (ii) 

of Proposition (1.2.15), so thatγ(A)  is represented by {Ni, tijk)  where vijvjk  =  tijkvik .  

Under the homeomorphism a this cocycle is carried to {α̃−1(Ni), tijk ° α̃} and we must show 

that this also represents  γ(A).  We observe that if A =  Γ0(E) then the automorphism a 
induces isomorphisms αx: Ex → Eα̃(x) and if Y ⊂ X is compact, then 

αY(f)(α̃(x)) = αx(f(x))      (x ∈ Y) 

defines an isomorphism αY: Γ(E|Y ) → Γ(E|ã(Y)) (cf. the argument of Lemma 1.2.4). We 

define 

g
i
: α ̃−1 (N̅̅̅i)  ×  K(H)→E|α ̃−1(N̅̅̅i)

by (g
i
)
y
 = ( α−1)

α̃(Y)
° (hi)α̃(Y); 

the preceding observation shows that the  g𝔦ʼ𝑠 are isomorphisms of fields. If we alsodefine 

wij: α̃
−1(N̅ij)  → U(H) by wij  =  vij ° α̃, then a calculation gives 

Ad wij(y)  =  (gi
−1gj)y      for y ∈  α̃

−1(N̅ij), 

so that the cover {α̃−1(N𝔦)} and the g𝔦 ʼs,w𝔦𝔧ʼs also satisfy (i) and (ii) of Proposition (1.2.15). 

Thus if we set siJkwik = wijwik then the cocycle α̃−1(Ni), siJk) also represents the class 

γ(A) in H2(X,𝒴) by [32, 10.7.12 (iii)]. But another calculation shows that sijk = tijk ° α̃, 

so we have proved that α̃∗(γ(A))  =  γ(A) and hence that ρ(α) ∈  Homδ(A)X. 
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Finally, we prove that ρ is surjective if A is stable. Let ϕ ∈  Homδ(A)X,  so that ϕ∗and 

(ϕ−1)∗ ∶  H3(X, Z) H3(X, Z) both fix δ(A). If 𝓎 denotes the sheaf of germs of Aut K(H)-
valuied functions, then Dixmier and Douady defined a map ∆: H1(X, 𝓎 ) →  H2(X,𝓎) and 

proved that it is bijective [34,Lemma 22]; if {Ni, Ad vij} as above determine c ∈  H1(X,𝓎), 

then ∆(c)  is represented by {Ni, tijk}  and so equals γ(A) .  It is clear the maps 

(ϕ−1)∗: H1(X,𝓎)  →  H1(X,𝓎and (ϕ−1)∗: H1(X,𝓎)  →  H1(X,𝓎)commute with ∆; hence 

if (ϕ−1)∗  fixes δ(A) then {N1Ad vij} and {∅(Ni)9 Ad vij ° ϕ
−1} define the same class in 

H1(X, 𝓎).  This means that there is a common refinement {Mp}p∈P of the covers {Ni} and 

{ϕ(Ni)}, functions τ, σ ∶  P → 1such that Mp  ⊂ Nτ(p) and Mp  ⊂ ϕ(Nσ(p)) and continuous 

maps βP: Mp →  Aut 𝐾(𝐻) such that  

Advτ(p)τ(q) = βp ° (Advσ(p )σ(q)°ϕ
−1) ° βq

−1  onMpq. 

We can regard elements of A variously as collections of maps ai: Ni  →  K(H) satisfying 

ai  =  Ad vijajon Nij or as collections ap: Mp →  K(H) satisfying ap =  Ad vτ(p)τ(q)aq  on 

Mpq.  For a ∈  A we define α(a)  ∈ A b y  α(a)p  =  βp(aσ(p)°ϕ
−1) the calculation 

Advτ(p)τ(q)(α(a)q) =  (Advτ(p)τ(q))βq (aσ(p)°ϕ
−1) = βp[Advτ(p)τ(q)°ϕ

−1](aσ(p)°ϕ
−1) 

= βp(aσ(p)°ϕ
−1) = α(a)p 

shows that α(a) is a well-defined element of A. In fact α is an automorphism of A, and it 

remains to check that ρ(α)  = ϕ  To do this we need to show that a(x)  =  0  implies 

α(a)(ϕ(x))  =  0; but this follows at once from the observation that α(a)(y)  =  0 for 𝑦 ∈
𝑀p if and only if  α(a)p(y)  =  0. 

 We conclude by proving the following theorem of Akemann et al. [3]. The proof is 

only a minor modification of their proof; however, it will show how to prove a similar result 

for other C∗-algebras which arise of bundles. 

Theorem(1.2.20)[21]: Let A  be a  separable continuous trace C∗ − algebra. 

Then every derivation of A is inner. 

Proof: Let A =  Γ0(E) have spectrum 𝑋 and let δ be a self-adjoint derivation of A. Let 

αt  =  exp tδ so that for small t ||αt  −  id|| is small. Now, by 1.15 αt, is in AuiCb(X)A and 

so αt is locally inner. By taking logs one sees that δ is "locally inner" i.e., there is an open 

locally finite cover {Ni}  of X  and elements {xi}  in M{A)  so that for a  in A  which is 

supported on Ni , δ(a) =  xia −  axi If {ρi} is a partition of unity subordinate to {Ni}, then 

x =   ∑ ρixi    is in M(A) and δ =  ad x. 
  We shall now generalise Lance's theorem in two directions: we shall allow locally 

trivial bundles in place of the trivial bundle X ×  B(H), and we shall vary the fibre algebra. 

Throughout this X  will be a separable compact space and B  will be a C∗ -algebra with 

identity; the groups Inn B and U(B) will have their respective norm topologies. We shall be 

concerned with the space A =  Γ(E) of a bundle E over X with fibre B and structure group 

Inn B.  

By Lemma (1.2.1) an automorphism α ∈  Autc(X)A induces automorphisms of the fibres 

Ex; if each of these is inner we say α is pointwise inner, and we denote by Pinn A the group 

of such automorphisms. We shall give conditions on the fibre B  which imply that 

PInn A/Inn A ≅  H2(X, Z) .  The crucial step in our argument is to show that (under 
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conditions on B) a pointwise inner automorphism α of C(X, B) is locally inner in the sense 

that the unitaries implementing the fibre automorphisms αx can be chosen continuously 

near each point. We observe that both Lance [45] and Smith [52] recognised this as a major 

step in their analysis of Aut C(X, B(H)).  The approach has two ingredients: a theorem of 

Kallman and Elliott, and a simple selection theorem argument. As a corollary of this we see 

that in many cases PInn A =  Π(A),  so that the result is a true generalisation of Lance's. We 

also observe that these conditions on the fibre B ensure that H1(A, A)  =  0. We conclude 

by observing that the Dixmier-Douady classification of bundles of C∗ −algebras by third 

Čech cohomology also works in our setting. 

 The following result is due in this generality to Elliott, although the first theorems 

along these lines were proved by Kallman. This is from [37], but we refer to [38] for further 

details. 

Theorem (1.2.21) . Let B be the quotient of an A W∗ −-algebra by a closed two-

sided ideal, and let 𝜙n  be a sequence of automorphisms of B  such that 

‖𝜙nb −  b‖ → 0 for each b ∈  B. Then ‖𝜙n  −  id‖ → 0. 

Corollary(1.2.22)[21]: Let B  be a  quotient of an A W∗ -algebra, X  be a 
separable compact space and α ∈  Autc(x)C(X, B). Then the induced map x →

αx: X →  Aut B  of Lemma (1.2.3) is continuous when Aut B  has the norm 

topology. 

Proposition (1.2.23)[21]: Let 𝐵  be  a  C∗ −algebra with identity  1  such that 

H1(B, B)  =  0. Then, there is  a continuous mapγ: {α ∈  Aut B: ‖α −  id ‖ < √3}  →
U(B) such that  α =  Ad γ (α). 

Proof: Let D∗  be the closed real linear subspace of  L(B)  consisting of self-adjoint 

derivations and let 𝐵∗ be the closed real linear subspace of B consisting of skew-adjoint 

elements. Since H1(B, B)  =  0 we have that 𝑎𝑑: B∗  →  𝐷∗ is a surjection and so by the 

Bartle-Graves selection theorem [59] there is a continuous map : g 𝐷∗  →∗  such that 

𝑎𝑑 (g(d))  =  d for all d ∈ D∗ and (g0)  =  0. Let 𝛼 =  𝑒𝑥𝑝 ° g °𝑙𝑜g, then the argument of 

[58, III. 9.4] applies. 

Theorem(1.2.24)[21]: Let X b e a  separable compact space , and let  B b e  a 
C∗ −algebra with identity satisfying  

( i)  H1(B, B) =  0; 
( ii)  B is the quotient of an A W∗ −algebra by a closed two-sided ideal . 

Then every pointwise inner automorphism of C(X, B) is locally inner. 

Proof: Let 𝛼 ∈  AutC(X)C(X, B) be pointwise inner, so that the map x →  ax of Lemma 

(1.2.3). takes values in Inn 𝐵.  By Corollary (1.2.22), x →  αx is continuous, and the result 

now follows from Proposition (1.2.23), see [48]. 

  We now turn to the more general situation where the 𝐶∗-algebras are spaces of  bundles. 

The first result shows that our pointwise inner automorphisms coincide in many cases with 

the iT-inner automorphisms of Kadison and Ringrose. 

Proposition (1.2.25)[21]: Let B be a von Neumann  algebra,let  E be   a  bundle 

over X w i t h  fibre B  and structure  group Inn B  and let  A = Γ(E). Then the 
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pointwise inner automorphisms  of A are precisely the π-inner automorphisms 

of A. 

Proof: Suppose first that α  is π -inner. Since Zϕ((A))  ⊆ Z((ϕA)̅̅ ̅̅ ̅̅ ̅)  for any 

representation  ϕ  of 𝐴  (where ϕ(A)̅̅̅̅̅ denotes the weak closure of ϕA) ), it follows 

immediately that α is a 𝐶(𝑋)-automorphism and so induces automorphisms αxof the fibres 

Ex.  If B acts faithfully as a von Neumann algebra on the Hilbert space H,  then we can use 

the representation a → ∑ a(x)⨁
x   on     ∑ H⨁x   to see that 𝛼 is pointwise inner. 

Conversely, suppose that 𝛼  is pointwise inner and 𝜙: A →  B(H)  is a faithful 

representation such that ϕ(1)  =  1. We can choose an open cover {Ni}i=1
n  of X such that 

𝐸|𝑁̅𝑖 is trivial, and by Theorem (1.2.24) we can assume (byshrinking the 𝑁𝑖  ʼs if necessary) 

that the induced automorphisms 𝛼𝑖  of C(𝑁̅𝑖 , B) are inner. Consider the finite increasing 

sequence 0 =  I0  ⊂  I1  ⊂ . . . ⊂ 𝐼𝑛  =  A  of ideals of A  corresponding to the open sets 

ϕ,Nl ∪ N1,∪  N2, … ., N1 ∪. . .∪  Nn  =  X. For each K =  1,… , n, Ik−1 and Ik are fixed by 

α and the induced automorphism of Ik/Ik−1 is inner. It follows immediately that α a is π-

inner (cf. [36]). 

Corollary(1.2.26)[21]: If B  is a  von Neumann algebra, then the  π -inner 

automor-phisms of C(X, B) are precisely the  locally inner automorphisms . 

Proof: This is a combination of Theorem (1.2.24). and Proposition (1.2.25) for the trivial 

bundle X ×  B. 

 Let 𝐵 be a 𝐶∗-algebra with identity satisfying the hypotheses of Theorem (1.2.24), 

and let E be a bundle over X with fibre B and structure group Inn B. Then the transition 

functions of E form a cocycle {Ni, ϕij: 1 ≤ I ≤ n} with coefficients in the sheaf of germs of 

Inn 𝐵-valued functions. Using Proposition (1.2.23) and a covering argument like that of 

[32,10.7.11] we can refine the cover {Ni} so that the maps ϕijhave the form Ad vij  for 

continuous maps vij: N ij →  U(B). If α is a point wise inner automorphism of A,  then by 

Theorem (1.2.24) we can shrink the 𝑁𝑖
,𝑠 again so that the automorphisms induced by 𝛼 on 

C(N̅i, B) are all inner. Provided the centre of  B is trivial, the arguments of go through in 

this case, and there is a homomorphism η: PInn A →  H1(X, S). We obtain the following 

theorem: 

Theorem(1.2.27)[21]:   Let 𝐵 bea  C∗-algebra with  identity such that 

( i )   Z(B)  = C1 ; 
( i i )   H1(B, B) =  0; 
(iii)  B is the quotient of an A W∗-algebra by a closed  two-sided ideal . 

Let X be a separable compact space, let  E be  a bundle  over X with fibre  B and 

structure group  Inn B, and let A =  Γ(E).  Then there is an exact sequence  

0 →  𝐼𝑛𝑛 A  → 𝑃𝐼𝑛𝑛 A
𝜂
→ H2(X, Z). 

 If in additionU(B)iscontractible ,then  η is  surjective.  

 We now consider the case where the fibres do not have trivial centre. Again let B be 

a C∗-algebra with identity satisfying (i) and (ii) of Theorem (1.2.24), and let E be a bundle 

over X with fibre B and group 𝐼𝑛𝑛 B; we write A = Γ(E). The same construction associates 

to each 𝛼 ∈  𝑃𝐼𝑛𝑛 A 𝑎  1-cocycle with coefficients in the sheaf 𝓎  of U(Z(B)) - valued 

functions. Now Z(B)is a commutative  C∗ − algebra, and hence isomorphic to C(Y) for the 
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compact space Y =  Z(B)
̂
,  under this isomorphism U(Z(B))  is carried to the group 

C(Y, S1) of continuous functions from Y to the circle S1.  Let 𝓎 denote the sheaf of germs 

of 𝐶(𝑦, 𝑅)-valued functions; then the map 𝑓 →  𝑒𝑥𝑝 2πif induces a short exact sequence of 

sheaves: 

0 → C(Y, Z) → 𝓎 → 𝔗 → 0. 
The sheaf 𝓎 is fine, and so the corresponding exact sequence of cohomology implies that 

H1(X, 𝔗) = H2(X, C(Y, Z)).  The group 𝐶(𝑌, 𝑍) is just H°(Y, Z)  (it is easily seen that 

𝐶( Y, 𝑍) is discrete as a subset of 𝐶( Y , 𝑅)) and our theorem becomes.  

Theorem (1.2.28)[21]: Let B be a C∗-algebra with identity such that  

(i) H1(B, B)  =  0; 
(ii) B is a quotient of an A W∗ −algebra. 

Let E  be a  bundle over a  separable compact space X  with fibre B  and 

structure group InnB, and let A =  Γ(E). There is an exact sequence 

0 → Inn , A →  PInn A 
η
→ H2(X,H°(Z(B)

̂
, Z)); 

if U(B) is contractible, then η is surjective. 

As we have already noted, hypotheses (i) and (ii) are automatically satisfied if B is an 

AW∗-algebra. The question of contractibility of U(B) though, is an interesting one. Kuiper's 

famous theorem asserts that U(H) is contractible, and Breuer [29] has extended this to show 

that for any properly infinite semifinite countably decomposable von Neumann algebra B 

the group U(B) is contractible (in particular, if B is a type 1∞ or 11∞ algebra acting on a 

separable space H ) .  Araki, Smith and Smith [23] and Handelman [40] have shown that this 

is not the case for von Neumann algebras of type 111 by computing 𝜋1(U{B)).  It has been 

conjectured that U(B) will always be contractible if B is properly infinite. 

 For the algebra A =  C(X, B(H)) Lance proved that the group 𝐼𝑛𝑛 A  coincides 

with the connected component γ (A) of the identity in 𝐴𝑢𝑡 A. That InnA ⊂  γ(A) is an 

immediate consequence of Kuiper's theorem, and so this also holds for A =  C(X, B) 
whenever U(B) is contractible. The converse inclusion will be true for C(X, B) whenever 

the hypotheses of Theorem (1.2.24) hold for B. Putting this observation together with 

Proposition (1.2.25) and Theorem (1.2.28) gives the following direct generalisation of 

Lance's main theorem [45,Theorem 4.3]: 

Theorem(1.2.29)[21]: Let X be a separable compact  space, let  B be a properly 

infinite semifinite countably  decomposable von Neumann algebra, and let  Y 

be the spectrum of the centre of B. Then  

π(C(X, B)) ∕ γ(C(x, B)  ≅  H2(X,H°(Y, Z)). 

    We conclude by observing that the Dixmier-Douady classification of locally trivial 

bundles of elementary 𝐶∗-algebras also works for the bundles we have been considering. 

Proposition  (1.2.30)[21]: Let B be a C∗ −algebra with identity  and suppose 

that 

 ( i ) 𝐴𝑑: U(B) →  𝐼𝑛𝑛 B is a fibre bundle; 

( i i )  U(B) is contractible . 
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Then for each paracompact space  X  there is a  one-to-one correspondence 

between  H3(X, H°(Z(B)
̂
 , Z)) and the set of isomorphism classes of bundles over 

X with  fibre B and structure group  Inn B.  

Proof:Let ℊ,𝔄  respectively denote the sheaves of germs of Inn B  and 𝑈(𝐵) -valued 

functions. Then isomorphism classes of bundles over X  with fibre B  and group Inn B 

correspond to the cohomology classes i n  H1(X, ℊ). The fibre of the bundle U(B) →  Inn B 

is the set U(B)⋂ Z(B),  which can be identified with C(Z, (B)
̂
, S1).  If we denote by 𝔗 the 

sheaf of germs of C(Z, (B)
̂
, S1)-valued functions, then the fact that U(B)  → Inn B is a 

bundle says there is a short exact sequence of sheaves 

0 → 𝔗 → 𝔄 → ℊ → 0 

Since U(B) is contractible,𝔄 is soft and there is a bijection of H1(X, ℊ) onto H2(X,𝔗) [34]. 

H2(X,𝔗)  ≅  H3(X, C(Z(B)
̂
, Z))  =  H3(X,H°(Z(B)

̂
, Z)) and we're done. 

Corollary (1.2.31)[370]: Let pr ∈ K(H) be  a rank one  projection. Then there 

is a continuous map  γ𝑟: M =  { 𝜙
𝑟 ∈ Aut K(H): ‖ 𝜙𝑟(pr) − pr‖ < 1} → U(H)such that 

Ad°γ is the identity on  M. Further , if ∑  r ‖ 𝜙
𝑟 − id𝑟‖ <  ε ≤

1

2
 then ∑  r ‖γ𝑟  (𝜙

𝑟) −

1 ‖  <  4ε . 

Proof: Suppose that 𝜙𝑟 ∈ M; then ∑  r 𝜙
𝑟  (pr)pr ≠ 0, and ∑  r 𝑣(𝜙

𝑟)  = ∑  r 𝜙
𝑟  (pr)pr /

‖𝜙𝑟  (pr)pr‖ defines a continuous map of M into K(H).  Then v (𝜙𝑟)∗ v(𝜙𝑟) is a positive 

element of prK(H)pr  of norm one, and so ∑  r v (𝜙
𝑟)∗ v(𝜙𝑟) = ∑  r p

r; similarly 

∑  r v(𝜙
𝑟)v (𝜙𝑟)∗  =  ∑  r 𝜙

𝑟(pr) thus by the lemma  

∑ 

r

γ𝑟(𝜙
𝑟)(hpr) =∑ 

r

 𝜙𝑟(h)v(𝜙𝑟)      (hpr  ∈ K(H). pr, 𝜙𝑟 ∈  M) 

defines a unitary operator γ𝑟(𝜙
𝑟)  ∈ U(H) and 𝜙𝑟 = ∑  r Adr γ𝑟(𝜙

𝑟) . It is easy to verify 

that γ is continuous, and a computation shows that if ∑  r ‖𝜙
𝑟 − idr ‖ <  ε ≤  1/2, then 

∑  r ‖v(𝜙
𝑟)  − pr‖ <  3ε and ∑  r ‖γ𝑟(𝜙

𝑟) −  1 ‖ <  4ε, which completes the proof.  
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Chapter 2 

Automorphisms and Countable Degree-1 Saturation 

We introduce notions of metric 𝜔1-trees and coherent families of Polish spaces and 

develop their theory parallel to the classical theory of trees of height 𝜔1  and coherent 

families indexed by a 𝜎-directed ordering. We present unified proofs of several properties 

of the corona of 𝜎-unital C∗-algebras such as AA-CRISP,𝑆𝐴𝑊∗, being sub-𝜎-Stonean in the 

sense of Kirchberg, and the conclusion of Kasparov's Technical Theorem. 

We obtain results about the quotient of these Banach algebras by their ideal of compact 

operators being 𝐶∗‑algebras which hve the countable degree -1 saturation propertyin the 

model theory sense of I. We also obtain results about quasicentral approximate units, 

multipliers and duality. 

Section (2.1): Automorphisms of all Calkin Algebras 

For an infinite-dimensional complex Hilbert space 𝐻.  Let ℬ(𝐻) be its algebra of 

bounded linear operators, 𝒦(𝐻)its ideal of compact operators and 𝐶(𝐻) = ℬ(𝐻)/𝒦(𝐻)the 

Calkin algebra. Answering a question first asked by Brown-Douglas-Fillmore, in [109] and 

[104] it was proved that the existence of outer automorphisms of the Calkin algebra 

associated with a separable 𝐻 is independent from ZFC. We consider the existence of outer 

automorphisms of the Calkin algebra associated with an arbitrary complex, infinite-

dimensional Hilbert space. 

PFA stands for the Proper Forcing Axiom, MA for Martin's Axiom and TA stands for 

Todorcevic's Axiom (see e.g., [111] or [107] for PFA and TA and [106] for MA). It is well-

known that both MA and TA are consequences of PFA. 

Theorem (2.1.1)[99]: TA implies all automorphisms of the Calkin algebra on a separable, 

infinite-dimensional Hilbert space are inner.  

All of these results are part of the program of finding set-theoretic rigidity results for 

algebraic quotient structures. This program can be traced back to Shelah's seminal 

construction of a model of ZFC in which all automorphisms of 𝒫(ℕ)/Fin are trivial ([110]). 

At present we have a non-unified collection of results and it is unclear how far-reaching this 

phenomenon is (see [101], [102], [103] and [104]). 

The idea of the proofs of Theorem (2.1.11) and Theorem (2.1.23) is taken from the 

analogous Velickovic's results on automorphisms of the Boolean algebra 𝒫(𝒦)/Fin in 

[112].  

If Φ is an automorphism of 𝒫(𝜔1)/Fin then there is a closed unbounded set 𝐶 ⊆
𝜔1 such that for every 𝛼 ∈ C  the  restriction of Φ to 𝒫(𝛼)/Fin is an automorphism of 

𝒫(𝛼)/Fin. Since MA and TA imply that all automorphisms of 𝒫(𝜔)/Fin are trivial ([13]), 

for each 𝛼 ∈ 𝐶  we can fix a map ℎ𝛼: 𝛼 → 𝛼  such that the map 𝒫(𝛼)  ∋  𝐴 →  ℎ𝛼[𝐴]  ∈
 𝒫(𝛼) is a representation of the restriction of 𝛷to 𝒫(𝛼)/Fin. 

For 𝛼 <  𝛽 < 𝛾 with 𝛽 and 𝛾 in 𝐶  we have that ℎ𝛽  ↾ 𝛼 and ℎ𝛾  ↾ 𝛼  agree modulo finite. 

Therefore 

𝑇 = {ℎ𝛽  ↾ 𝛼 ∶  𝛼 < 𝛽, 𝛽 ∈  𝐶}, 

considered as a tree with respect to the extension ordering, has countable levels. 

Automorphism Φis trivial if and only if 𝑇 has a cofinal branch. For every 𝑓: 𝜔1 → 2 the tree 

𝑇[𝑓 ]  =  {𝑓 𝑜 𝑡 ∶  𝑡 ∈  𝑇} 
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has a cofinal branch, determined by 𝑌 such that [𝑌]𝐹𝑖𝑛  = 𝛷([𝑋]𝐹𝑖𝑛), where 𝑓 =  𝜒𝑥. On 

the other hand, if 𝑓 is added by forcing with finite conditions ℙ (i.e., if 𝑓̇ codes a set of ℵ1 

side-by-side Cohen reals over 𝑉) then ℙ forces that 𝑇[𝑓̇] has no cofinal branches. Applying 

𝑀𝐴 to the poset for adding 𝑓̇followed by the ccc poset for specializing 𝑇 [𝑓̇] one obtains a 

contradiction. 

Velickovic's proof of triviality of automorphisms of 𝒫(𝑘)/Fin for 𝑘 ≥ ℵ2 uses a PFA-

reflection argument, in which the above proof is preceded by a Levy collapse of 𝑘 to ℵ1. 

While the structure of our proof of Theorem (2.1.11) loosely resembles the above sketch, 

a number of nontrivial additions and modifications were required. For example, it is not 

clear whether for every automorphism 𝛷 of 𝐶(ℓ2(ℵ1)) the set 𝐶 of countable ordinals 𝛼 

such that the restriction of 𝛷 to 𝐶(ℓ2(𝛼)) is an automorphism of the latter algebra is closed 

and unbounded. This follows from 𝑀𝐴+ 𝑇𝐴 by Theorem (2.1.11), but I don't know whether 

this fact is true in ZFC. This problem is dealt. An another inconvenience was caused by the 

fact that the natural 'quantized' analogue of the poset for adding ℵ1 Cohen reals is not ccc 

(Lemma 2.1.14), as well as the expected non-commutativity complications. 

Also, the appropriate analogues of Velickovic's trees 𝑇 and 𝑇[𝑓] are continuous rather 

than discrete. Therefore the proof of Theorem (2.1.11) required introduction and analysis of 

'metric 𝑤1-trees,' analogous to the classical theory of 𝑤1-trees. It is 'purely set-theoretic' in 

the sense that 𝐶∗-algebras are not being mentioned in it. 

Metric 𝑤1-trees and metric coherent families are introduced and treated using MA 

and PFA, few simple and well-known general facts about inner automorphisms of 

𝐶∗‑algebras. We define analogues of trees 𝑇 and 𝑇[𝑓 ] from Velickovic's proof, and we 

analyze 𝑇 [𝒯] for an appropriately defined generic operator proof of Theorem (2.1.23) and 

brief concluding remarks can be found. 

The background on 𝐶∗‑algebras and set theory are [100] and [106], respectively. 

Applications of combinatorial set theory to 𝐶∗‑algebras can be found in [113] and [105]. 

We introduce a continuous version of Aronszajn trees. In operator algebras 

'contraction' commonly refers to a map that is distance-non-increasing. In some other areas 

of mathematics such maps are referred to as 1-Lipshitz and 'contraction' refers to a distance-

decreasing map. The latter type of a map is referred to as a strict contraction by operator 

algebraists. In what follows I use the operator-algebra ic terminology, hence a contraction 

𝑓 is assumed to satisfy 𝑑(𝒳,𝒴) ≥ 𝑑(𝑓(𝒳), 𝑓(𝒴)). Other than this concession, the theory 

of operator algebras does not make appearance. 

A metric 𝜔1-tree is a family 𝑇 = (𝑋𝛼 , 𝑑𝛼 , 𝜋𝛽𝑎 , for 𝛼 ≤  𝛽 <  𝜔1), such that 

 (i) 𝑋𝛼 is a complete metric space with compatible metric 𝑑𝛼. 

 (ii) 𝜋𝛽𝛼 ∶ 𝑋𝛽 − 𝑋𝛼 is a contractive surjection, 

 (iii) projections 𝜋𝛽𝛼 are commuting and 𝜋𝛼𝛼 = idX𝛼 for all 𝛼. 

If all spaces 𝑋𝛼 are separable we say 𝑇 is a Polish 𝜔1-tree. If in addition the inverse limit 

lim
𝛼←
𝑋𝛼 is empty then we say that 𝑇 is a Polish Aronszajn tree. Otherwise, the elements of 

the inverse lim
←𝑎
𝑋𝛼 are considered to be branches through 𝑇. All branches and all e-branches 

are assumed to be cofinal. 

When each 𝑑𝑎  is a discrete metric then the above definitions reduce to the usual 

definitions of 𝜔1  -trees and Aronszajn trees (see e.g., [106]). Similarly, 𝜀 -branches, 𝜀 -
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antichains and e-special trees as defined below are branches, antichains, and special trees, 

respectively, when 0 < 𝜀 < 1.            
Spaces 𝑋𝛼 are assumed to be disjoint and we shall identify 𝑇 with the union ⋃ 𝑋𝛼𝛼  of its 

levels when convenient and the projections are clear. On 𝑇 we have a map Lev: 𝑇 →  𝜔1 

defined by 𝐿𝑒𝑣(𝓍)  =  𝛼 if and only if 𝓍 ∈  𝑋𝛼. 

It will be convenient to write 𝜋𝛼 for the map ⋃ 𝜋𝛽,𝛼𝛽≥𝛼  from 𝑇 into 𝑇𝛼. Define a map 𝜌 

on 𝑇2 as follows. For 𝒳,𝒴 in 𝑇 let 𝛼 = min(𝐿𝑒𝑣(𝒳), 𝐿𝑒𝑣(𝒴)) and let 

𝜌(𝒳,𝒴) =  𝑑𝛼(𝜋𝛼(𝒳), 𝜋𝛼 (𝒴)). 

Note that 𝜌 is not a metric or even a quasi-metric. The triangle inequality is violated by any 

triple such that 𝓍 ≠  𝑧 𝑏𝑢𝑡 𝒴 =  𝜋𝛼(𝓍)  =  𝜋𝛼(𝑧). 

For 𝜀 >  0 a subset 𝐴 of 𝑇 is an 𝜀-anticha 𝜌 in of 𝑇 if (𝒳,𝒴)  >  𝜀 for all distinct 𝒳 and 𝒴 

in 𝐴. We say that 𝑇 is 𝑒-special if there are 𝜀-antichains 𝐴𝑛 ,  for 𝑛 ∈  ℕ,  such that 𝑋𝛼  ∩
 ∪𝑛  𝐴𝑛 is dense in 𝑋𝛼 ,  for all 𝛼 <  𝜔1. 

For 𝜀 >  0 a subset 𝐴 of 𝑇 is an 𝜀-branch if 𝐴 =  {𝓍𝛼 ∶ 𝛼  <  𝑤1}, 𝐿𝑒𝑣(𝒳𝛼)  =  𝛼 for all 

𝑎, and 𝜌(𝑥𝛼 , 𝑥𝛽)  ≤  𝜀 for all 𝑎, 𝛽. 𝐴 subtree of 𝑇 is a subset 𝑆 ⊆  T that is closed under 

projection maps and intersects every level 𝑋𝛼. 

Lemma (2.1.2)[99]: The following are equivalent for every metric 𝑊1-tree 𝑇 and 𝜀 >  0. 

(i) 𝑇has an 𝜀-branch, 

(ii) There is 𝐵 ⊆  T that intersects cofinally many levels such that     𝜌(𝒳,𝒴) ≤ 𝜀 for all 

𝒳,𝒴 in 𝐵,  

(iii) 𝑇has 𝑎 subtree of diameter ≤ 𝜀.  

Proof: For 𝐵 ⊆ 𝑇  let its downwards closure 𝑆(𝐵)  be the subset of 𝑇  such that its 

intersection with 𝑋𝛼 is the metric closure of {𝜋𝛼(𝑥) ∶  𝑥 ∈  𝐵, 𝛼 ≤  𝐿𝑒𝑣(𝑥)}. Since each 𝜋𝛼 

us p-nonincreasing, the '𝜌-diameter' of 𝑆(𝐵) is equal to the '𝜌-diameter' of 𝐵. This shows 

that (i) implies (iii), and the other implications do not require a proof.         

Lemma (2.1.3)[99]: Assume 𝑇 is 𝑎 metric 𝜔1-tree such that each of its subtrees has an e-

branch for every 𝜀 >  0. Then 𝑇 has 𝑎 branch. 

Proof:  Choose 𝐵n, for 𝑛 ∈  ℕ, so that 𝐵nis a 1/𝑛-branch and 𝐵𝑛+1  ⊆  S(Bn). Then for 

every 𝛼 we have that 𝐵𝑛  ∩  X𝛼, for 𝑛 ∈ ℕ, is a decreasing sequence of subsets of 𝑋𝛼 with 

diameters converging to 0. If 𝑥𝛼 is the unique point in ∩𝑛 (𝐵𝑛 ∩ X𝛼) thenthe fact that the 

projections are commuting contractions easily implies that 𝑥𝛼 , for 𝛼 <  𝜔1, is a branch of 

𝑇.  

There is a Polish Aronszajn tree with an 𝜀-branch for all 𝜀 >  0 but no branches. To see 

this, fix any special Aronszajn tree 𝑇. Let 𝑋 𝛼 be the disjoint union of countably many copies 

of the 𝛼-th level of 𝑇 and define 𝑑𝛼  so that the the 𝑛-th copy has diameter 1/𝑛 and the 

distance between two distinct copies is 1. With the natural projection maps, the 𝑛-th copy 

of 𝑇 includes a 1 /𝑛-branch but 𝑇 has no branches. 

In the following lemma and elsewhere no attempt was made to find optimal numerical 

estimates. 

Lemma (2.1.4)[99]: If 𝑇 is an 𝜀-special metric 𝜔1-tree then it has no 𝜀/2-branches. 
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Proof: Let An, for 𝑛 ∈ ℕ, be 𝜀-antichains with dense union in each level. Assume 𝑥𝛼, for 

𝛼 <  𝜔1, is an 𝜀-branch. Let 𝑛 be such that 𝑑𝛼(𝑥𝛼 , 𝑧𝛼)  <  ε/4 for some 𝑧𝛼 ∈ 𝐴𝑛 ∩ 𝑋𝛼for 

uncountably many 𝛼 . Since projections are contractions, for such 𝛼 <  𝛽  we have 

𝜌(𝑧𝛼 , 𝑧𝛽)  < 𝜀, a contradiction.  

The proof of the following lemma is a straightforward modification of the well-known 

analogous fact for 𝜔1-trees. 

Lemma (2.1.5)[99]: (MA). Assume 𝑇 is 𝑎 Polish 𝜔1-tree with no 𝜀-branches. Then 𝑇 is 

𝜀/2-special. 

Proof: For each 𝛼 fix a countable dense subset 𝑍𝛼 of 𝑋𝛼 . Let ℙ0 be the poset of finite 𝜀/2-

antichains included in ∪𝛼  𝑍𝛼 ordered with p ≥  q 𝑖𝑓 p ⊆  q. 

We shall prove ℙ0 is ccc. Fix p𝜶, 𝛼 < 𝜔1in ℙ0. Since each 𝑍𝛼 is countable, by a ∆-system 

argument we can find 𝛼̅, an uncountable 𝐽 ⊆  ω1, and (𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑍 = ⋃ 𝑍𝛽𝛽≤𝛼̅  ) p̅  ⊆  𝑍 

and q̅  ⊆  𝑍  so that the following hold for all 𝛼 ∈  𝐽 . First, p𝜶 = p̅ 𝑈 q𝜶.  Second, 𝜋𝛼̅ 

maps q𝜶   injectively onto q̅. Third, 𝛾(𝛼)  =  𝑚𝑖𝑛{𝐿𝑒𝑣(𝓍) ∶  𝓍 ∈  q𝜶} converges to 𝜔1. 

It suffices to find 𝛼 <  𝛽 in 𝐽 such that q𝛼 𝑈 q𝜷 is an 𝜀/2-antichain. Let 𝑛 =  |q̅| and fix 

an enumeration  q𝛼 = {𝑧𝑎(𝑖) ∶  𝑖 <  𝑛} for all 𝛼 ∈  J. Let 𝒰 be a uniform ultrafilter on 𝐽. 
Assuming 𝛼 and 𝛽 as above cannot be found, there are 𝑖 <  𝑗 <  𝑛 such that the set 𝐽1 =
 {𝛼 ∈  𝐽 ∶  {β ∶  𝜌(𝑧𝛼(𝑖), 𝑧𝛽(𝑗))  <  𝜀/2}  ∈ 𝒰} belongs to 𝒰 . But then 𝜌(𝑧𝛼(𝑖), 𝑧𝛾(𝑖))  <

 𝜀 for all 𝛼 < 𝛾 in 𝐽1, and therefore {𝑧𝛼(𝑖) ∶  𝛼 ∈  𝐽1} defines an 𝜀-branch of 𝑇.  

This proof that ℙ0 is ccc shows that it is powefully ccc, i.e., the finitely supported product 

ℙ0
<𝜔

 of countably many copies of ℙ is ccc. Apply MA to the ccc poset ℙ = ℙ0
<𝜔and ℵ1 

many dense sets assuring that ℙ ads countably many  𝜀-antichains 𝐴𝑛 whose union is equal 

to ⋃ 𝑍𝛼𝜶  .  

 The material of this plays a role only in the proof of Theorem (2.1.23). 

A system 𝔽 = (𝑋𝜆, 𝑑𝜆, 𝜋𝜆,𝜆: 𝜆 <  𝜆
′ 𝑖𝑛 Λ) is a coherent family of Polish spaces if 

 (i) Λ is upwards 𝜎-directed set and a lower semi-lattice, 

 (ii) 𝑋𝜆 is a Polish space with compatible metric 𝑑𝜆,  
 (iii)  𝜋𝜆,𝜆:  𝑋𝜆′  →  𝑋𝜆 is a contractive surjection, 

(iv) projections 𝜋𝜆,𝜆are commuting and 𝜋𝜆𝜆 =  idx𝜆 for all 𝜆. 

The family is trivial if lim
⟵𝜆
𝑋𝜆 ≠ 0. Hence if Λ = 𝜔1 with its natural ordering then 𝔽 is a 

Polish 𝜔1-tree. 

Spaces 𝑋𝜆 are assumed to be disjoint and we shall identify 𝔽 with the union ⋃ 𝑋𝜆𝜆 of its 

levels when convenient and when the choice of projections is clear from the context. On 𝔽 

we have a map Lev: 𝔽 ⟶ 𝛬  defined by Lev(𝑥)  =  𝜆 if and only if 𝑥 ∈  𝑋𝜆 . It will be 

convenient to write 𝜋𝜆 for the map⋃ 𝜋𝜆′𝜆𝜆′≥𝜆 . 

Define a map 𝜌 on 𝔽2 as follows. For 𝑥, 𝑦 in 𝔽 let 𝜆 =  𝐿𝑒𝑣(𝑥) ⋀ 𝐿𝑒𝑣(𝑦) and let 

𝜌(𝑥, 𝑦)  =  𝑑𝜆(𝜋𝜆(𝑥), 𝜋𝜆(𝑦)). 

For 𝜀 >  0 a subset 𝐴 of 𝑇 is an 𝜀-antichain of 𝕋 if 𝜌(𝑥, 𝑦)  >  𝜀 for all distinct 𝑥 and 𝑦 in 

𝐴. 𝐴 set {𝑥𝜆 ∶  𝜆 ∈ Λ} is an 𝜀-branch of 𝔽 if 𝑥𝜆  ∈  𝑋𝜆 for all 𝜆 and 𝑝(𝑥𝜆, 𝑥𝜆′)  ≤  𝜀 for all 𝜆 

and 𝜆′ '. 
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If 𝑌𝜆  ⊆ 𝑋𝜆 is a nonempty Polish subspace for all 𝜆 and the family 𝑌𝜆 , for 𝜆 ∈ 𝛬   , A G A, 

is closed under the projection maps then (with 𝑑𝜆
′  denoting the restriction of 𝑑𝜆 to 𝑌𝜆 we say 

that 𝔽′ = (𝑌𝜆, 𝑑𝜆, 𝜋𝜆′𝜆, 𝑓𝑜𝑟 𝜆 <  𝜆
′ 𝑖𝑛 Λ) is a cofinal subfamily of 𝔽.  

Proof of the following is analogous to the proof of Lemma (2.1.3). 

Lemma (2.1.6)[99]: Assume 𝔽 is 𝑎 coherent family of Polish spaces such that each of its 

cofinal subfamilies has an 𝜀-branch for every 𝜀 >  0. Then 𝔽 is trivial.  

Assume 𝔽 is 𝑎 coherent family of Polish spaces. If 𝑓: 𝜔1  → 𝔽  is a strictly increasing 

map then we say the Polish 𝜔1 − tree (𝑋𝑓(𝛼), 𝑑𝑓(𝛼), 𝜋𝑓(𝛽)𝑓(𝛼), 𝛼 ≤ 𝛽 <  𝜔1) is a Polish sub 

tree of 𝔽. 

Lemma(2.1.7)[99]: (PFA). Assume 𝔽 = (X𝜆, d𝜆, 𝜋𝜆′𝜆 ∶  𝜆 <  𝜆
′ 𝑖𝑛 Λ) is 𝑎 coherent family 

of Polish spaces with no 𝜀-branches. Then 𝔽 has an 𝜀 ∕ 6 −special Polish subtree. 

Proof: Let 𝕡 denote the 𝜎-closed collapse of |Λ| to ℵ1. Then 𝕡 forces that there is a strictly 

increasing, cofinal map 𝑓: 𝜔1  ⟶  Λ. We first prove that 𝕡 forces the Polish 𝜔1-tree 𝑇𝑓  =

 (𝑋𝑓(𝛼), 𝑑𝑓(𝛼), 𝜋𝑓(𝛽)𝑓(𝛼), 𝛼 ≤  𝛽 <  𝜔1) has no 𝜀/3-branches. 

Assume otherwise and let 𝐵 be a name for an 𝜀/3-branch of 𝑇f. Let 𝜃 =  (2|Λ|)+ and 

let 𝑀 be a countable elementary submodel of 𝐻𝜃 containing 𝔽,ℙ, and a name 𝑓 ̇ for 𝑓. Let 

𝐷𝑛, for 𝑛 ∈  ℕ, enumerate all dense open subsets of ℙ that belong to 𝑀. Pick conditions 

P𝒔, 𝒳𝑠 and 𝒴𝑠 for 𝑠 ∈  2<𝑁, satisfying the following for all 𝑠. 

(i) P𝒔 ≥ P𝒕 𝑖𝑓 𝑡 extends 𝑠, 
(ii) P𝒔  ∈  𝑀 ∩  𝐷𝑛, where 𝑛 =  |𝑠|, 
(iii) P𝒔  ⊩  𝓍̃𝑠  ∈ 𝐵, 

(iv)𝓍𝑠 ∈  𝑀, and 

(vi)𝜌(𝓍𝑆0, 𝓍𝑆1) ≥ 𝜀. 

These objects are chosen by recursion. If 𝑃𝒔 has been chosen, then the set {𝓍 ∈ 𝔽 ∶  (∃𝚚 ≤
 P𝐬)𝚚 ⊩  𝓍 ∈ Ḃ} is not an 𝜀-branch and therefore we can choose 𝓍𝑠𝑜  and 𝓍𝑠1 in this set 

such that 𝜌(𝓍𝑠0, 𝓍𝑠1)  ≥  𝜀. Let P𝒔𝟎 and P𝒔𝟏 be (necessarily incompatible) extensions of P𝒔 
forcing that 𝓍𝑠𝑜 and 𝓍𝑠1, respectively, belong to Ḃ. Since all the relevant parameters are in, 

 , P𝑠𝑜 , P𝑠1 , 𝓍𝑠𝑜 and 𝓍𝑠1 can also be chosen to belong to 𝑀 .  

Since Λ is 𝜎-directed, let 𝜆(𝑀) ∈ 𝛬  be an upper bound for 𝑀 ∩ 𝛬. For each 𝑔 ∈ 2ℕ let 

𝑝𝑔 be (𝑀,ℙ)-generic condition extending all 𝑝𝑔|𝑛 and deciding 𝓍𝑔 ∈  𝑋𝜆(𝑀) in 𝐵̇. For 𝑔 ≠

 𝑔′ let 𝑠 be the longest common initial segment of 𝑔  and 𝑔′'. We may assume 𝑔 extends 𝑠0 

and 𝑔′  extends 𝑠1 . Let 𝛼 =  min(𝐿𝑒𝑣(𝓍𝑠0), 𝐿𝑒𝑣(𝓍𝑠1))  and let 𝒴0, 𝒴1, 𝓍0, 𝓍1  be the 

projections of 𝓍𝑔, 𝓍𝑔 , 𝓍𝑠0 and 𝓍𝑠1, respectively, to 𝑋α. Then 

𝑑𝛼(𝒴0, 𝒴1)  ≥  𝑑𝑎(𝑥0, 𝑥1)  − 𝑑𝑎(𝒴0, 𝑥0)  − 𝑑𝑎(𝒴1, 𝑥1)  ≥  𝜀/3, 

and therefore 𝑑𝜆(𝑀)(𝑥𝑔, 𝑥𝑔′) ≥  𝜀/3.   This contradicts the assumed separability of 𝑋𝜆(𝑀) 

Since ℙ forces that 𝔽 has no 𝜀/3-branches, by Lemma (2.1.5) we have a ℙ-name for a ccc 

poset that 𝜀 ∕ 6 −specializes 𝑇f . By applying PFA to the iteration and an appropriate 

collection of dense sets we obtain the desired conclusion.  

Coherent families of discrete Polish spaces and their uniformization using PFA have been 

used. See e.g., [111] and [107]. 
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We state and show some well-known results about inner automorphisms of 𝐶∗ −algebras. 

Recall that for a partial isometry 𝑣in algebra 𝐴𝑐 by Ad 𝑣 we denote the conjugation map 

Ad 𝑣(𝑎) = 𝑣𝑎𝑣∗. 

Lemma (2.1.8)[99]: Assume that unitaries 𝑣  and 𝑤  in  𝑎   𝐶∗ − algebra   𝐴  are such that 

𝐴𝑑 𝑣 and 𝐴𝑑𝑤 agree on 𝐴. Then 𝑣w∗  ∈  Z(A). 

Proof: We have 𝑣𝑎𝑣∗  =  𝑤𝑎𝑤∗ and therefore 𝑤∗𝑣𝑎 =  𝑎𝑤∗𝑣 for all 𝑎 ∈  𝐴.  

In the following 𝑎̇  denotes the image of 𝑎 ∈ ℬ(𝐻)  in the Calkin algebra under the 

quotient map, not a forcing name. 

Lemma(2.1.9)[99]: If 𝑣 and 𝑤 in ℬ(𝐻) are such that 𝑣 and 𝑤 are unitaries in 𝐶(H) and 
(𝐴𝑑 𝑣)𝑎 − (𝐴𝑑 𝑤)𝑎 is compact for all 𝑎 ∈  ℬ(𝐻),  then there is 𝑧 ∈  𝕋 such that 𝑣 —  𝑧𝑤 

is compact. 

Proof: We first check (a well-known fact) that 𝑍(𝐶(𝐻))  =  ℂ. Since it is a 𝐶∗ −algebra, it 

suffices to see that the only self-adjoint elements of 𝑍(𝐶(𝐻)) are scalar multiples of the 

identity. Assume 𝑎̇ is self-adjoint and its essential spectrum is not a singleton, say it contains 

some 𝜆1  < 𝜆2. Fix 𝜀 <  |𝜆1 — 𝜆2|/3. In ℬ(𝐻) fix infinite -dimensional projections 𝑝 and 

𝑞 such that ‖𝑝𝑎𝑝 — 𝜆1𝑝‖  <  𝜀 and ‖𝑞𝑎𝑞 — 𝜆2𝑞‖  <  𝜀. 𝐴 noncompact partial isometry 𝑣 

such that 𝑣𝑣∗  ≤  𝑝 and 𝑣∗𝑣 ≤  𝑞 clearly does not commute with a modulo the compacts. 

By Lemma (2.1.8) applied to 𝑣̇ and 𝑤̇ and the above there is a scalar 𝑧 such that 𝑧𝑣 ̇ =  𝑤̇, 

as required.  

Lemma(2.1.10)[99]: Assume 𝐻 is an infinite-dimensional Hilbert space and Φ and 𝛹 are 

automorphisms of 𝐶(𝐻) that agree on the corner 𝑝̇𝐶(𝐻)𝑝̇ for every projection 𝑝 ∈  ℬ(𝐻) 
with separable range. Then Φ = Ψ.  

Proof: We may assume 𝐻 is nonseparable. Assume the contrary and let 𝑎 ∈  ℬ(𝐻) be such 

that 𝑏̇  =  Φ(𝑎̇) —  Ψ(𝑎̇)  ≠  0. Let 𝑟 be a projection with separable range such that 𝑟𝑏𝑟 is 

not compact and let 𝑝  be such that Φ(𝑝̇)  =  𝑟̇.  By our assumption, Ψ(𝑝̇)  =  𝑟̇. 
Also 𝑟̇Ψ(𝑎̇)𝑟̇  =  Ψ(𝑝̇𝑎̇𝑝̇)  =  Φ(𝑝̇𝑎̇𝑝̇)  =  𝑟̇Φ(𝑎̇)𝑟̇, contradicting the choice of 𝑎. 

Theorem (2.1.11)[99]: MA and TA together imply all automorphisms of the Calkin algebra 

associated with Hilbert space with basis of cardinality𝒩1 are inner. 

Proof. Let 𝐻 denote ℓ2(ℵ1). We assume 𝛷 is an automorphism of 𝐶(𝐻) and Φ∗: ℬ(𝐻)  ⟶
ℬ(𝐻) is its representation, i.e., any map such that the diagram 

 

 

commutes. Since every projection in 𝐶(𝐻) lifts to a projection in ℬ(𝐻) ([113]) we may 

assume Φ∗ maps projections to projections. 

Lemma (2.1.12)[99]: If 𝑝 is 𝑎 projection in ℬ(𝐻) with separable range, then Φ∗(𝑝) is 𝑎 

projection with separable range and Φ(𝑝̇𝐶(𝐻)𝑝̇)  = Φ(𝑝̇)𝐶(𝐻)Φ(𝑝̇). 



 

37 

Proof: Since a nonzero projection in 𝐶(𝐻) generates the minimal nontrivial ideal of 𝐶(𝐻) 
if and only if it is of the form 𝑞̇ for some 𝑞 with a separable range, the first claim follows. 

For the second part note that 𝐴 =  𝑝̇𝐶(𝐻)𝑝̇ is a hereditary subalgebra (i.e., if 0 ≤  𝑎 ≤  𝑏 

for 𝑎 ∈  𝐶(𝐻) and 𝑏 ∈  𝐴, then 𝑎 ∈  𝐴) and therefore 𝛷 maps it to a hereditary subalgebra.

  

A straightfoward recursive construction produces an increasing family of projections 

with separable range 𝑝𝛼, 𝛼 <  𝜔1 in ℬ(𝐻) such that 

(i) ⋁𝛼<w1  p𝛼  =  1 and for a limit 𝛿 we have 𝑝𝛿  =  ⋁𝛼<𝛿pα, 

(ii) pQ and each 𝑝 𝛼+1— 𝑝𝛼 are noncompact, 

(iii) for some projection 𝑟𝛼 such that 𝑟̇𝛼  =  Φ(𝑝̇𝛼) we have 𝑝𝛼  ≤  𝑟𝛼+1 and 𝑟𝛼  ≤ 𝑝𝛼+1
. 

For convenience we write p−1  = 0. For each 𝛼 fix a basis of the range p𝛼+1 — p𝛼  and 

enumerate it as 𝑒𝛽, for 𝛼 . 𝜔 ≤ 𝛽 < (𝛼 + 1).𝜔. We therefore have a basis (𝑒𝑎)𝑎<𝜔1  for 𝐻 

such that 

 (iv) 𝑝𝛼  is the closed linear span of {𝑒𝛽 ∶  𝛽 <  𝛼 . 𝜔}. 

For every 𝛼 <  𝜔1 Lemma (2.1.12) implies that the restriction of Φ to 𝑝̇𝛼𝐶(𝐻)𝑝̇𝛼  is an 

isomorphism between Calkin algebras associated with separable Hilbert spaces, 𝑝𝛼[𝐻] and 

𝑟𝛼[𝐻]. Therefore by Theorem (2.1.1) we can fix a partial isometry 𝑣𝛼 such that 

(v)   𝑣𝛼𝑣𝛼
∗  ≤  𝑟𝛼 , 𝑣𝛼

∗𝑣𝛼  ≤  𝑝𝛼 , and Ad 𝑣𝛼 is a representation of Φ on 𝑝̇𝛼𝐶(𝐸)𝑝̇𝛼.  

For each 𝛼 >  1 by Lemma (2.1.9) we can find 𝑧𝛼 ∈ 𝕋 such that 𝑣0 − 𝑧𝛼𝑣𝛼𝑝0 is compact.

  

Replace 𝑣𝛼 with 𝑧𝛼𝑣𝛼 and note that Ad 𝑣𝛼 still satisfies (vi). Let us prove that in  

addition (with 𝑎 =𝒦 𝑏 standing for '𝑎 −  𝑏 is compact') 

(vi)𝑣𝛼  =
𝒦  𝑣𝛽𝑝𝛼 whenever 𝛼 <  𝛽. 

By Lemma (2.1.9), there is 𝑧 ∈  𝕋 such that 𝑣𝑎 — 𝑧𝑣𝛽𝑝𝑎  is compact. Since 𝑝0 is non-

compact and since 𝑣𝑎𝑝0 =
𝒦  𝑣0  =

𝒦  𝑣𝛽𝑝0, we must have 𝑧 = 1. 

 For 𝑎 ∈ ℬ(𝐻) define the support of 𝑎 as 

𝑠𝑢𝑝𝑝(𝑎) = {𝛼 <  𝜔1 ∶  ||𝑎𝑒𝛼||  >  0 𝑜𝑟 ||𝑎
∗𝑒𝛼||  >  0}. 

All compact operators are countably supported and the set of finitely supported operators is 

a dense subset of 𝒦(𝐻). An easy analogue of the ∆-system lemma (e.g., [106]) is worth 

stating explicitly (here 𝐻 =  ℓ2(ℵ1) and 𝑝𝛼 are as in (4)). 

Lemma (2.1.13)[99]: Assume 𝑎𝛼 , 𝛼 <  𝜔1, belong to 𝒦(𝐻). Then for every 𝜀 >  0 there 

is 𝑎 stationary 𝑋 ⊆  𝜔1, 𝑎 finitely supported projection 𝑟,  and an operator 𝑎 such 𝛼 that 

𝑟𝑎𝑟 =  𝑎 and 

(a) ‖𝑝𝛼(𝑟𝑎𝛼𝑟 — 𝑎𝛼)𝑝𝛼 ‖ <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ∈  𝑋, 
(b) ‖𝑝𝛼(𝑎 — 𝑎𝛼)𝑝𝛼  ‖ <  𝜀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝛼 ∈  𝑋,, and 

(c) ||𝑝𝛼𝑎𝛼𝑝𝛼 — 𝑝𝛽𝑎𝛽𝑝𝛽||  <  2𝜀 for all 𝑎 <  𝛽 in 𝑋. 

Proof: For 𝑎𝛼 find a finitely supported 𝑝𝛼 with complex rational coefficients with support 

in 𝑝𝛼 such that ‖𝑝𝛼(𝑎𝛼 — 𝑏𝛼)𝑝𝛼 ‖ <  𝜀/2. By the Pressing Down Lemma ([106]) we can 

find a stationary set 𝑋0 such that all 𝑏𝛼 with 𝛼 ∈  𝑋0 have the same support, 𝑆. Let 𝑟 be the 

projection to span{𝑒𝑖 ∶  𝑖 ∈  𝑆}. By a counting argument we can refine 𝑋0 further and find 

𝑎. The third inequality is an immediate consequence of the second.  
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For 𝛼 <  𝜔1 let (with 𝑟𝛼 and 𝑝𝛼  as in (3)) 

𝑋𝛼  =  {𝑟𝛼+1𝜔𝑝𝛼 ∶  𝜔 ∈  ℬ(𝐻), 𝜔 =
𝒦  𝑣𝛼}. 

Note the 'extra room' provided by defining 𝑋𝛼 in this way instead of the apparently more 

natural {𝑟𝛼𝜔𝑝𝛼 ∶  𝜔 ∈  ℬ(𝐻), 𝜔 =
𝒦  𝑣𝛼}. Let us prove a few properties of 𝑋𝛼. 

(vii) 𝑋𝛼 is a norm-separable complete metric space. 

(viii) If 𝛼 <  𝛽 then the map 𝜋𝛽𝛼: 𝑋𝛽 → Xα defined by 

𝜋𝛽𝛼(𝜔)  =  𝑟𝛼+1𝜔𝑝𝛼  

 is a surjection and a contraction. 

Only the latter property requires a proof. It is clear that the range of 𝜋𝛽𝛼 is included in 𝑋𝛼 

and that the map is contraction. For 𝑢 ∈  X𝛼 let ω =  𝑣β +  𝑢 − r𝛼+1𝑣βp𝛼. Then 𝜔 − 𝑣𝛽 

is compact since 𝑢 ∈  𝑋𝛼 and clearly 𝑟𝛼+1 𝜔𝑝𝛼 = 𝑟𝛼+1𝑢𝑝 𝛼 =  𝑢.  

Consider the Polish 𝜔1-tree 𝑇 with levels 𝑋𝛼 and connecting maps 𝜋𝛼𝛽. 

Lemma (2.1.14)[99]: The following are equivalent. 

(ix)  Φ is inner. 

   (x)There is 𝑎 𝑣 ∈  ℬ(H) such that 𝑣̇ is 𝑎 unitary in 𝐶(𝐻) and for all 𝛼 <  𝜔1 we have 

𝑟𝛼+1𝑣𝑝𝛼  ∈  𝑋𝛼 . 
  (xi) 𝑇 has a branch. 

Proof: Clearly (10) and (11) are equivalent, hence it suffices to prove (9) implies (10) and 

that (10) implies (11). Assume Φ is inner and 𝜈 implements it. Then by Lemma (2.1.9) for 

every 𝛼 <  𝜔1  there is 𝑧𝛼 ∈ 𝕋  such that 𝑧𝛼𝑣𝑝𝛼 − 𝑣𝛼  is compact. Since 𝑣𝛼  𝑝0 − 𝑣0  is 

compact for each 𝛼  and 𝑝0  is noncompact, we have 𝑧𝛼  =  𝑝0  for all 𝛼 . Therefore 

𝑧0𝑣 defines a branch of 𝑇. 

Now assume (11) and fix a 𝑣 that defines a branch of 𝑇. Then the automorphism of 𝐶(𝐻) 
with representation 𝐴𝑑 𝑣 agrees with Φ on the ideal of all operators with separable range. 

By Lemma (2.1.10), this automorphism agrees with Φ on all of 𝐶(𝐻), hence (9) follows.  

A minor modification of the proof that (10) implies (11) above gives an another equivalent 

reformulation of Φ being inner. Although we shall not need it, it deserves mention: 

  (xii) Every subtree of 𝑇 h as a branch.  

We proceed with the analysis of 𝑇 and the corresponding 'local trees' 𝑇[𝑎].  

For 𝑏 ∈  ℬ(𝐻) and 𝛼 <  𝜔1 let 

𝑍[𝑏]𝛼 = {𝑝𝛼𝜔𝑏𝜔
∗𝑝𝛼 ∶  𝜔 ∈  𝑋𝛼+1}. 

Then for every 𝑐 ∈  𝑍[𝑏]𝛼  we have 𝑝𝛼Φ∗(𝑏)𝑝𝛼  =
𝒦  𝑐 because 

𝑝𝛼𝜔𝑏𝜔
∗𝑝𝛼  =

𝒦  pαυ𝛼+1p𝛼+1bp𝛼+1υ 𝛼 +1
∗ pα =

𝒦  pα Φ∗(p𝛼+1bp𝛼+1)p𝛼  

=𝒦  pαr𝛼+1Φ∗(b)r𝛼+1 pα  =
𝒦  pαΦ∗(b)pα. 

Also, for 𝛼 <  𝛽  the map 𝜔̅𝛽𝛼
𝑏  (denoted 𝜔̅𝛽𝛼  when 𝑏  is clear from the context) from 

𝑍[𝑏]𝛽  𝑡𝑜 𝑍[𝑏]𝛼 defined by 

𝜔̅𝛽𝛼𝑐)  =  𝑝𝛼𝐶𝑝𝛼 

is clearly a contractive surjection. 

For 𝑎 ∈ ℬ(𝐻) 𝑙𝑒𝑡 𝑇[𝑎]  denote the Polish 𝜔1 -tree with levels 𝑍[𝑎]𝛼  and commuting 

projections 𝜔̅𝛽𝛼. By 'subtree' we always mean a downwards closed subtree of height 𝜔1 . 
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Lemma(2.1.15)[99]: For every 𝑎 ∈ ℬ(H) every subtree 𝑆 of 𝑇[𝑎] has 𝑎 branch.  

Proof: Let 𝑏 =  Φ∗(𝑎). For every 𝑎 < 𝜔1 fix 𝑤𝛼  ∈  𝑋𝛼+1 such that 

𝑏𝛼  =  𝑝𝛼𝜔𝛼𝑎𝜔𝛼
∗𝑝𝛼 

belongs to 𝑆 ∩  𝑍 [𝑎]𝛼. Let 𝑢𝛼  =  p𝛼ωα. 

Fix 𝜀 >  0. Recall that the fixed basis ea, for 𝑎 <  𝜔1, of 𝐻 spans all 𝑝𝛼 (𝑠𝑒𝑒 (4)). Apply 

'∆ -system' Lemma(2.1.13)to operators 𝑝𝛼(𝑏 − 𝑏𝛼)𝑝𝛼  to find uncountable 𝐽 ⊆  𝜔1  and 

finitely supported 𝑐 and 𝑐𝛼 , 𝛼 ∈  𝐽, with disjoint supports, so that 

‖(𝑏 − 𝑏𝛼) − (𝑐 + 𝑐𝛼)‖  <  𝜀 𝑎𝑛𝑑 ‖𝑝𝛼(𝑏 − 𝑏𝛼)𝑝𝑎 −  𝑐‖ <  𝜀. 

By going to a further subset of 𝐽 we may assume that for 𝛼 <  𝛽 in 𝐽 the support of 𝑐𝛼 is 

included in 𝛽 . 𝜔 (or more naturally stated, that 𝑝𝛽𝑐𝛼𝑝𝛽 = 𝑐𝛼). For each 𝛼 ∈  𝐽 let 𝛼+ be 

the minimal element of 𝐽 above 𝛼 and let 𝑏𝛼
′  =  𝑝𝛼(𝑏𝛼+ )𝑝𝛼 . For 𝛼 in 𝐽 we have ||𝑏𝛼

′  −
(𝑝𝛼𝑏𝑝𝛼 − 𝑐)|| < 𝜀and therefore ||𝑏𝛼

′ − 𝑝𝛼𝑏𝛽
′ 𝑝𝛼 ||  <  2𝜀  for 𝛼 <  𝛽  in 𝐽 . Hence 𝑏𝛼

′ , for 

𝛼 ∈  𝐽, defines a 2𝜀 -branch in 𝑇[𝑎]. Since 𝑆 has a 2𝜀 -branch for an arbitrarily small 𝜀 it 
has a branch by Lemma (2.1.3).  

We apply Martin's Axiom. First, we add a generic operator T to ℬ(𝐻) by a poset with 

finite conditions which forces that 𝑇[T] has a branch. Second, we use the properties of T to 

argue that 𝑇 has a branch. 

 For a Hilbert space 𝐾 with a fixed basis 𝑒𝑗 , 𝑗 ∈  𝐽, let 𝕡(𝐾) be the forcing defined as 

follows. A condition in 𝕡(𝐾) is a pair (𝐹,𝑀) where 𝐹 is a finite subset of 𝐽 and 𝑀 is an 

𝐹 𝑥 𝐹 matrix with entries in the complex rationals, ℚ +  𝑖ℚ, such that the operator norm of 

𝑀 satisfies ‖𝑀‖  <  1. We order 𝕡(𝐾)by extension, setting (𝐹′,𝑀′)  ≤  (𝐹,𝑀) if 𝐹′ ⊇  𝐹 

and 𝑀′ ↾  𝐹 𝑥 𝐹 ≡  𝑀. 

Lemma (2.1.16)[99]: Poset 𝕡(𝐾) is ccc if and only if 𝐾 is separable. 

Proof: if 𝐾 is separable then 𝕡(𝐾) is countable, so we only need to show the other direction. 

This direction will not be used in our proof, but we nevertheless include it since it shows 

why Lemma (2.1.17) below does not use ℙ( 𝐻). 

We may assume 0 ∈  𝐽. For each 𝑗 ∈  𝐽 \ {0} define a condition 𝑎j  =  (𝐹
𝑗, 𝑀𝑗) by 𝐹𝑗  =

 {0, 𝑗} and the (0, 𝑗) entry of 𝑀𝑗 is equal to 1/√2, while the other three entries are 0. Then 

the norm of any matrix including 𝑀𝑗  and 𝑀𝑘  is at least 1 , hence 𝑎j , for 𝑗 ∈  𝐽 , is an 

uncountable antichain.  

  By (2) in § (2.1.12) the projection 

𝑆𝛼  =  𝑃𝛼+1 − 𝑃𝛼 

has an infinite-dimensional and separable range. Let 

𝒟 =  {𝑎 ∈  ℬ(𝐻) ∶  𝑎 =  ∑ 𝑠𝛼𝑎𝑠𝛼
𝛼<𝑤1

 } 

where the sum is taken in the strong operator topology. This subalgebra of ℬ(𝐻) is an 

analogue of algebras 𝒟[𝐸⃗ ] that played a prominent part in the proof of Theorem (2.1.1) in 
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[104]. Although much of the theory of 𝒟[𝐸⃗ ] has analogues in the nonseparable case, we 

shall not develop this theory since the role of 𝒟 in the proof of Theorem (2.1.11) is different. 

For each 𝛼 <  𝜔1  let 𝐻𝛼  =  𝑠𝛼𝐻, with the basis {𝑒𝜉 ∶  𝛼 . 𝜔 ≤  𝜉 <  (𝛼 +  1).𝜔} and 

let ℙ𝛼  be ℙ(𝐻𝛼). The finitely supported product ℙ  of ℙ𝛼 , for 𝛼 < 𝜔1 is ccc. Actually, 

being a finitely supported product of countable posets, it is forcing-equivalent to the poset 

for adding ℵ1 Cohen reals. 

If 𝐺̇  ⊆  ℙ  is a generic filter, then it defines a sesquilinear form whose norm is, by 

genericity, equal to 1. This in turn defines an operator on 𝐻 in the unit ball of ℬ(𝐻) ([108]) 

This operator belongs to the von Neumann algebra 𝒟 and we let T denote its ℙ-name. 

Lemma(2.1.17)[99]: Poset ℙ forces that every subtree of 𝑇[T] has 𝑎 branch. 

Proof: If not, then by Lemma (2.1.15) we fix a condition 𝑝 ∈  ℙ deciding 𝜀 >  0 such that 

some subtree 𝑇′[T] of 𝑇 [T] has no 𝜀-branch and consider ℙ ∗ 𝕊̇ (below 𝑝) where 𝕊̇ is a ccc 

poset for 𝜀/2-specializing 𝑇′[T].  By applying 𝑀𝐴  we can find 𝑎 ∈  ℬ(𝐻)  and an 𝜀/2-

special subtree of 𝑇[𝑎] . By Lemma (2.1.4) this subtree has no branches, and this 

contradicts Lemma (2.1.15).  

Fix ε >  0. By Lemma (2.1.17), if 𝑆 is a subtree of 𝑇 then for 𝛼 <  𝜔1 we can fix 𝜔𝛼 and 

a condition a𝛂  in 𝕡 that forces Ad(pαωα) T belongs to a cofinal ε-branch of T[T]. Here 

𝑤𝛼 ∈  𝑆 ∩ 𝑋𝛼+1  and 𝜔𝛼 is in the ground model. Identify a𝛂  with a finitely supported 

operator in ℬ(𝐻)  and note that it belongs to the algebra 𝒟  as defined. Apply Lemma 

(2.1.13) to {Ad(pαwα)a𝛂} to find a finitely supported 𝑏 such that 

(xiii)  ||𝑏 −  Ad(pαωα)a𝛂||  < 𝜀 

for all 𝛼 in a stationary set J0. Since the coefficients of a𝛂 are complex rationals, by the ∆-

system lemma and a counting argument there are a stationary set J1  ⊆  J0 , a finitely-

supported projection q, and a such that 

  (xiv)  qaq =  a and 𝑝𝛂a𝛂𝑝𝛂  =  a 

for all 𝛼 ∈  𝐽1. Note that a𝛂  =  a + (I − 𝑝𝛂)𝑎𝛂(𝐼 − 𝑝𝛂) for all 𝛼 ∈  𝐽1. Find 𝛼̅ such that 

𝑃𝛼̅𝑞 =  𝑞. Applying Lemma (2.1.10) to (ωβ − να̅)pα̅ find a stationary 𝐽 ⊆  𝐽1 such that 

 (xv)  ||(ωβ − ωγ)pα̅||  <  ε 

for all 𝛽 < γ  in J . Let 𝑞𝛂  denote the support of a𝛂 . For 𝛽 ∈  𝐽 𝑙𝑒𝑡 𝑢𝛽  =  𝜔𝛽𝑝𝛽 . Then 

for α + 1 ≤  β we have 𝑝𝛼𝑢𝛽  =
𝒦  𝑝𝛂 𝜔𝛽. 

Preparations for the proof of Lemma(2.1.22)take up the remainder, with the main points 

being Claim(2.1.20) and Lemma(2.1.21). 

Claim(2.1.18)[99]:  If 𝑎 ∈  𝒟, 𝛼 <  𝛽 are in 𝐽, 𝑞𝛼𝑎𝑞 𝛼 = a𝛼 , and 𝑞𝛽𝑎𝑞𝛽 = a𝛃, then 

‖𝐴𝑑(𝑝𝛼𝜔𝛼)𝑎 −  𝐴𝑑(𝑝𝛼𝜔𝛽)𝑎‖ ≤  𝜀. 

Proof: Otherwise, there is 𝛿 >  0 and a finitely supported projection 𝑠 ≥  𝑞𝛼 𝑉 𝑞𝛽 such 

that for every 𝑐 ∈  𝒟  satisfying 𝑠𝑐𝑠 =  𝑠𝑎𝑠  we have  ‖𝐴𝑑(𝑝𝛼𝜔𝛼)𝑐 −  𝐴𝑑(𝑝𝛼𝜔𝛽)𝑐‖  >

 𝜀 + 𝛿.  

Making a small change to coefficients of 𝑠𝑎𝑠 one obtains a condition in ℙ forcing that 

‖𝐴𝑑(𝑝𝛼𝜔𝛼)𝑇 −  𝐴𝑑(𝑝𝑎𝜔𝛽)ᴛ‖  >  𝜀,  a contradiction  
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Claim(2.1.19)[99]: Assume 𝑎  and 𝑏  are in 𝒟, 𝑞𝑎𝑞 =  𝑞𝑏𝑞 =  0, 𝑝𝛼𝑎𝑝𝛼+𝜔  =  𝑝𝛼𝑏𝑝𝛼+𝑤, 
and 𝛼 +  ω < 𝛽   𝑓𝑜𝑟 𝛽 ∈  𝐽. Then 

‖𝐴𝑑(𝑝𝛼𝜔𝛽)(𝑎 +  a𝜷) −  𝐴𝑑(𝑝𝛼𝜔𝛽)(𝑏 + a𝜷)||  ≤  2𝜀. 

Proof: Assume otherwise and let 

𝛿 =  ‖Ad(𝑝𝛼𝜔𝛽)(𝑎 + a𝜷) −  𝐴𝑑(𝑝𝛼𝜔𝛽)(𝑏 + a𝜷)|| −  2ε. 

For 𝑛 <  𝜔 write 𝑠𝑛  =  𝑝𝛼+𝜔 − 𝑝𝛼+𝑛 .  By continuity fix 𝑛 < 𝜔  such that for all 𝑐 ∈

 sn𝒟 (=  𝑠𝑛𝒟𝑠𝑛 𝑠𝑖𝑛𝑐𝑒 𝑠𝑛 in the commutant of 𝒟) with ‖𝑐‖  ≤  1 we have 

‖𝐴𝑑(𝑝𝛼𝜔𝛽)(𝑎 + a𝜷) −  𝐴𝑑(𝑝𝛼𝜔𝛽)(1 − 𝑠𝑛)(𝑎 + a𝜷)  +  𝑐)‖  <  𝛿/2 

and 

‖ 𝐴𝑑(𝑝𝛼𝜔𝛽)(𝑎 + a𝜷) − 𝐴𝑑(𝑝𝛼𝜔𝛽)(1 − 𝑠𝑛)(𝑏 + a𝜷)  +  𝑐)‖  <  𝛿/2. 

Let 𝑐 =  a 𝛂+𝐧 −  a. Then Claim (2.1.18). applied to (1 − 𝑠𝑛)(𝑎 + a𝜷)  +  𝑐 and to (1 −

 𝑠𝑛)(𝑏 + a𝜷)  +  𝑐 implies 

‖𝐴𝑑(𝑝𝛼𝜔𝛽) ((1 − 𝑠𝑛)(𝑎 + a𝜷) +  𝑐) − 𝐴𝑑(𝑝𝛼𝜔𝛼+𝑛) ((1 − 𝑠𝑛)(𝑎 + a𝜷) +  𝑐)‖ ≤ 𝜀 

‖𝐴𝑑(𝑝𝛼𝜔𝛽) ((1 − 𝑠𝑛)(𝑎 + a𝜷) +  𝑐) − 𝐴𝑑(𝑝𝛼𝜔𝛼+𝑛) ((1 − 𝑠𝑛)(𝑏 + a𝜷) +  𝑐)‖ ≤ 𝜀 

leading to 2ε +  δ <  2ε +  δ.  

Claim (2.1.20)[99]: For 𝛼 +  𝜔 <  𝛽 < 𝛾 such that 𝛽 and 𝛾 are in 𝐽 we have 

∆=  ‖𝐴𝑑(𝑝𝛼𝑢𝛽)𝑎 −  𝐴𝑑(𝑝𝛼𝑢𝛾)𝑎‖  ≤  5𝜀  

for all 𝑎 ∈  𝒟 with‖𝑎‖  ≤  1 and (1 − 𝑝β)𝑎 =  0.  

Proof: Fix 𝑎 ∈  𝒟 with ‖𝑎‖  ≤  1. We have that 𝒄 =  a𝜷  +  (1 − 𝑝𝛾) a𝛾 is a condition 

in ℙ with support 𝑞′  =  𝑞𝛽  𝑉 𝑞𝛾 extending both a𝜷 and 𝑎𝜸. Let 

𝑎′ =  𝑎 − 𝑞′𝑎𝑞 ′ +  𝒄. 
With 𝛼̅ as in (15) we have 𝑝𝛼̅𝑎 =  𝑎𝑝𝛼̅ since 𝑎 ∈ 𝒟. Therefore 

𝐴𝑑(𝑝𝛼𝑢𝛽  )𝑎 −  𝐴𝑑(𝑝𝛼𝑢𝛽  )𝑎
′  

=  𝐴𝑑(𝑝𝛼𝑢𝛽𝑝𝛼̅   )(𝑎 − 𝑎
′) + 𝐴𝑑(𝑝𝛼𝑢𝛽  (𝑝𝛽 − 𝑝𝛼̅ ))(𝑎 − 𝑎

′) 

=  𝐴𝑑(𝑝𝛼𝑢𝛽𝑝𝛼̅)(𝑎 − 𝑎
′). 

By this and an analogous computation for 𝛾 we have 

𝐴𝑑(𝑝𝛼𝑢𝛽  )𝑎 −  𝐴𝑑(𝑝𝛼𝑢𝛾)𝑎 =  𝐴𝑑(𝑝𝛼𝑢𝛽𝑝𝛼̅)(𝑎 − 𝑎
′) −  𝐴𝑑(𝑝𝛼𝑢𝛾𝑝𝛼̅)(𝑎 − 𝑎

′) 

+ 𝐴𝑑(𝑝𝛼𝑢𝛽  )𝑎
′ −  𝐴𝑑(𝑝𝛼𝑢𝛾)𝑎

′ 

Using (15) and 𝑝𝛽  a𝜷  =  𝑝𝛾  a 𝜸 =  a we conclude that each of the first two summands has 

norm ≤  𝜀, hence ∆ is within 2𝜀 of ‖𝐴𝑑(𝑝𝛼𝑢𝛽)𝑎
′ −  𝐴𝑑(𝑝𝛼𝑢𝛾)𝑎

′‖. 𝑆𝑖𝑛𝑐𝑒𝑎′  ∈  𝒟 we have 

(1 − 𝑝𝛽)𝑎
′  =  (1 − 𝑝𝛽)a𝜷 and the following. 

𝐴𝑑(𝑝𝛼𝑢𝛽  )𝑎
′  =  𝐴𝑑(𝑝𝛼𝜔𝛽  )𝑎

′ −  𝐴𝑑(𝜔𝛽  (1 − 𝑝𝛽  ))a𝜷. 

By this and an analogous computation for 𝛾 we have 

𝐴𝑑(𝑝𝛼𝑢𝛽  )𝑎
′ −  𝐴𝑑(𝑝𝛼𝑢𝛾  )𝑎

′ =  𝐴𝑑(𝑝𝛼𝜔𝛽)𝑎
′ −  𝐴𝑑(𝑝𝛼𝜔𝛾 )𝑎′ 

+ 𝐴𝑑 (𝜔𝛽  (1 − 𝑝𝛽  )) 𝑎𝜷 −  𝐴𝑑(𝜔𝛾 (1 − 𝑝𝛾))a𝜸. 

By Claim (2.1.18) the first difference has norm ≤ 𝜀 and by (13) the second difference has 

norm ≤  2𝜀. The conclusion follows.  
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We are now within definitions and computations from completing the proof. In order 

to complement Claim(2.1.20) in the proof of Lemma (2.1.22), we digress a little bit. For 

𝛼 <  𝜔1  define the following metrics on 𝑋𝛼+1  (only 𝑑4  and 𝑑2  will be needed in our 

proof). 

𝑑1,𝛼(𝑢, 𝜔)  =  ‖𝑢 −  𝜔‖ 

𝑑2,𝛼(𝑢, 𝜔) =      𝑠𝑢𝑝
𝑎∈𝒟,‖𝑎‖=1

‖ 𝐴𝑑 𝑢𝑎 −  𝐴𝑑 𝜔𝑎‖      

𝑑2,𝛼(𝑢, 𝜔) =      𝑠𝑢𝑝
𝑎∈ℬ(𝐻),‖𝑎‖=1

‖ 𝐴𝑑 𝑢𝑎 −  𝐴𝑑 𝜔𝑎‖      

  𝑑4,𝛼(𝑢, 𝜔) ‖𝑝𝛼 (𝑢 −  𝜔)‖ 
We shall drop the subscript a whenever it is clear from the  context. 

Lemma (2.1.21)[99]: For all 𝛼, on 𝑋𝛼+1 we have 𝑑4 ≤ d2  ≤  d3  ≤  2d1. 

Proof: The inequality 𝑑2  ≤  𝑑3  is trivial, and 𝑑3  ≤  2𝑑1  follows from the following 

computation. 

‖𝐴𝑑 𝑢𝑎 −  𝐴𝑑 𝑤𝑎‖ ≤  ‖𝑢𝑎𝑢∗ −  𝑢𝑎𝑤∗‖ + ‖𝑢𝑎𝑤∗ −  𝑤𝑎𝑤∗‖
≤  ‖𝑢𝑎‖. ‖𝑢∗ − 𝑤∗‖ + ‖𝑢 −  𝑤‖ . ‖𝑢𝑎‖ 

It remains to prove 𝑑4  ≤ 𝑑2. 

Let 𝑣,𝑤 ∈ 𝑋𝛼+1 be given, and put 𝑑 =  ‖𝑝𝛼(𝑣 −  𝑤)‖. Fix 𝛿 >  0 and a unit vector 𝜉 

such that ‖(𝑣∗ − 𝑤∗)𝑝𝛼𝜉‖ >  𝑑 −  𝛿. Clearly we may assume 𝑝𝛼𝜉 =  ξ. Let 𝜁 be a unit 

vector colinear with 𝑣∗𝜉 − 𝑤∗𝜉 and let 𝜄 be a unit vector orthogonal to 𝜁 such that 𝑣∗𝜉 and 

𝑤∗𝜉 belong to the linear span of 𝜁 and 𝜄. Fix scalars 𝑥, 𝑦, 𝑥′𝑦′ such that 

𝑣∗𝜉  =  𝑥𝜁 +  𝑦𝜄 
𝑤∗𝜉 =  𝑥′ 𝜉 + 𝑦′ 𝜄 

Since 𝑣∗𝜉 − 𝑤∗𝜉 is colinear with 𝜁, we have 𝑦 =  𝑦′. Therefore ‖𝑣∗𝜉 − 𝑤∗𝜉‖  =  |𝑥 −
 𝑥′|. 
Find representations 𝜁 =  ∑ 𝑥𝛾𝜁𝛾𝛾<𝛼  and 𝜄 =  ∑ 𝑦𝛾𝜄𝛾𝛾<𝛼  so that 𝜁𝛾  and 𝜄𝛾  belong to the 

range of  𝑠𝛾 = 𝑝𝛾+1 − 𝑝𝛾 for all 𝛾. Since the range of 𝑠𝛾 is infinite-dimensional and since 

𝑣 −  𝑤 is compact, we can find a unit vector 𝑣𝛾 in this range orthogonal to both 𝜁𝛾 and 𝜄𝛾 

and such that ‖𝜐𝑣𝛾‖ =  1 but ‖𝜐𝑣𝛾 − 𝑤𝑣𝛾 ‖  <  𝛿/𝑑. Let 

 

𝑣 =  ∑ 𝑥𝛾𝑣𝛾
𝛾<𝛼

 

Then 𝜁, 𝜄, and 𝑣 are mutually orthogonal unit vectors and the rank two operator 𝑎 ∈  ℬ(𝐻) 
defined by 𝑎(𝑣)  =  𝜁 and 𝑎(𝜁)  =  𝑣 has norm equal to one. Moreover, 𝑎 ∈  𝒟, since for 

each 𝛾  the operator 𝑎𝑠 𝛾 = 𝑠𝛾𝑎  is just the rank-two operator which transposes the 

orthogonal unit vectors 𝑣𝛾  and 𝜁𝛾 . Note that ((𝐴𝑑 𝑣)𝑎)𝜉 =  𝑣𝑎𝑣∗𝜉 =  𝑣𝑎(𝑥𝜁 +  𝑦𝜄)  =

 𝑥𝑤𝑣 and ((𝐴𝑑𝑤)𝑎)𝜉 =  𝑤𝑎𝑤∗𝜉 =  𝑤𝑎(𝑥′𝜁 +  𝑦𝜄)  =  𝑥′𝑤𝑣. Hence, 

‖((𝐴𝑑𝑣)𝑎 − (𝐴𝑑𝑤)𝑎)𝜉‖  =  ||(𝑥 − 𝑥′)𝑤𝑣|| =  |𝑥 − 𝑥′| >  𝑑 −  𝛿. 

Since 𝛿 >  0 was arbitrary, we conclude that 𝑑2(𝑣, 𝑤) ≥  𝑑.  

Lemma(2.1.22)[99]: The set {𝑟𝛂+2𝑢𝛽𝑝𝛼+1 ∶  𝛼 + 𝜔 <  𝛽, 𝛽 ∈  𝐽} is 𝑎 5𝜀-branch of  𝑇. 
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Proof. In order to show {𝑟𝛼+2𝑢𝛽𝑝𝛼+1 ∶ 𝛼 +  𝜔 <  𝛽, 𝛽 ∈  𝐽} is a 5𝜀-branch, it suffices to 

show that ‖𝑝𝛼+3(𝑢𝛽  — 𝑢𝛽)𝑝𝛼+2‖ ≤  5𝜀 whenever 𝛼 +  𝜔 <  𝛽 < 𝛾 for 𝛽, 𝛾 in 𝐽. But the 

inequality  𝑑4 ,𝛼+1 ≤ 𝑑2 ,𝛼+1 from Lemma (2.1.21) implies 

‖𝑃𝛼+3(𝑢𝛽 − 𝑢𝛾)𝑃𝛼+2‖  ≤  𝑠𝑢𝑝
𝑎∈𝒟
‖𝐴𝑑(𝑝𝛼+3𝑢𝛽𝑝𝛼+2)𝑎 −  𝐴𝑑(𝑝𝛼+3𝑢𝛾𝑝𝛼+2) 𝑎‖   

and the right hand side is ≤  5𝜀 by Claim (2.1.20)  

Since 𝜀 was arbitrary, Lemma (2.1.22) and Lemma (2.1.3) imply that 𝑇 has a cofinal 

branch. By Lemma (2.1.14), Φ is inner. 

Theorem (2.1.23)[99]: PFA implies all automorphisms of every Calkin algebra are inner. 

The only use of TA in the present is implicit via the following result from [104]. 

Proof. The proof of Theorem (2.1.23) is reasonably similar to the proof of the analogous 

result from [112]. All we need is the analysis of coherent families of Polish spaces and a 

fragment of PFA. Fix 𝑘 > ℵ2 , write 𝐻 =  ℓ2(K) and let Φ be an automorphism of the 

Calkin algebra 𝐶(𝐻).  Fix a basis {𝑒𝛼 ∶  𝛼 <  𝑘}  of H and denote the projection to 

𝑠𝑝𝑎𝑛{𝑒𝛼 ∶  𝛼 ∈  𝜆}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  by𝑝𝜆 

Recall that 𝒫𝑤1(K) denotes the family of all countable subsets of 𝑘. This set is 𝜎 −directed 

under the inclusion and it is a lower semilattice. For every countable subset 𝜆 ⊆  𝑘  fix 

projection 𝑟𝜆with separable range such that Φ(𝑝̇𝜆) =  𝑟̇𝜆. For 𝜆 <  𝜆′ in 𝛬 we have 𝑟̇𝜆 ≤ 𝑟̇𝜆′ 
but not necessarily 𝑟𝜆 ≤ 𝑟̇𝜆′ . By [104] we can fix a partial isometry 𝑣𝜆  such that Ad 𝑣𝜆 

implements the restriction of Φ to 𝑝̇𝜆𝐶(𝐻)𝑝̇𝜆. For 𝜆 ∈  𝒫𝑤𝟏  (𝑘) let 

𝑋𝜆 = {𝑟𝜆𝑤𝑝𝜆 ∶  𝑤 ∈ ℬ(𝐻),𝑤 =
𝓚  𝑣𝜆}. 

Let us prove a few properties of 𝑋𝜆. 

(xvi) 𝑋𝜆 is a norm-separable complete metric space. 

(xvii) If 𝜆 ⊆  𝜆′then the map 𝜋𝜆′𝜆 ∶  𝑋𝜆′  → 𝜆𝜆 Xv defined by 

𝜋𝜆′𝜆(𝑤)  = 𝑟𝜆𝑤𝑝𝜆 

is a contraction. 

The proof is analogous to the proof of (viii). Consider the 

coherent family of Polish spaces 

𝔽 =  (𝑋𝜆, 𝜋𝜆′𝜆, 𝜋𝜆′𝜆, for 𝜆 ∈  𝒫𝑤𝟏(𝑘)). 

The omitted proof of the following uses Lemma (2.1.10) and is analogous to the proof of 

Lemma (2.1.14). 

Lemma (2.1.24)[99]: The following are equivalent. 

  (xviii) Φ is inner. 

  (xix) There is 𝑣 ∈  ℬ(𝐻) such that 𝑣̇ is 𝑎 unitary in 𝐶(𝐻) and for all 𝜆 ∈  𝒫𝑤𝟏  Κ(𝑘) we 

have 𝑟𝜆𝑣𝑝𝜆  ∈ 𝑋𝜆. 
(xx) The coherent family of Polish spaces 𝔽 is trivial.  



 

44 

If 𝛷 is not inner, then by Lemma (2.1.24) and Lemma (2.1.6) there is an 𝜺 >  0 and 

a cofinal subfamiy 𝔽′ ' of 𝔽 with no 𝜺 − branches. By PFA and Lemma (2.1.7), there is a 

strictly increasing map 𝑓: 𝑤1 —𝔽 such that the Polish 𝑤1-tree (X𝒇(𝛼), d𝑓(𝛼), 𝜋𝑓(𝛽)𝑓(𝛼), 𝛼 ≤

β < 𝑤1) is 𝜀/6 −special. Then 𝑍 =  ⋃ 𝑓[𝑤1] is an ℵ1-sized subset of 𝑘. Let 𝐶(𝑍) denote 

the Calkin algebra associated with ℬ(ℓ2(𝑍)). By modifying the proof of Lemma (2.1.7) and 

meeting some additional dense sets, we can assure that the restriction Φ𝒛 of Φ to 𝐶(𝑍) is an 

automorphism of 𝐶(𝑍).  
Theorem (2.1.11) implies Φ𝒛 is inner and Lemma (2.1.14) implies Φ𝒛 is outer. This 

contradiction concludes the proof of Theorem (2.1.23). 

Corollary(2.1.25)[370]: The set {𝑟α2+2𝑢𝛽2𝑝𝛼2+1 ∶  𝛼
2 +𝜔 < 𝛽2, 𝛽2  ∈  𝐽} is 𝑎 5𝜀-branch 

of  𝑇. 

Proof. In order to show {𝑟𝛼2+2𝑢𝛽2𝑝𝛼2+1 ∶ 𝛼
2 +  𝜔 <  𝛽2, 𝛽2 ∈  𝐽}  is a 5𝜀 -branch, it 

suffices to show that ‖𝑝𝛼2+3(𝑢𝛽2  — 𝑢𝛽2)𝑝𝛼2+2‖ ≤  5𝜀 whenever 𝛼2  +  𝜔 <  𝛽2 < 𝛾2 for 

𝛽2, 𝛾2 in 𝐽. But the inequality  𝑑4 ,𝛼2+1 ≤ 𝑑2 ,𝛼2+1 from Lemma (2.1.21) implies 

‖𝑃𝛼2+3(𝑢𝛽2 − 𝑢𝛾2)𝑃𝛼2+2‖  

≤  𝑠𝑢𝑝
𝑎∈𝒟
‖𝐴𝑑(𝑝𝛼2+3𝑢𝛽2𝑝𝛼2+2)𝑎 −  𝐴𝑑(𝑝𝛼2+3𝑢𝛾2𝑝𝛼2+2) 𝑎‖   

and the right hand side is ≤  5𝜀 by Claim (2.1.20). 

Section (2.2): Corona Algebras 

 

We shall investigate the degree of countable saturation of coronas (see Definition (2.2.2) 

and paragraph following it). This property is shared by ultra products associated with no 

principal ultra filers on ℕ in its full form. The following summarizes the results. All ultra 

filters are no principal ultra filters on ℕ. 

Theorem (2.2.1)[114]: Assume a C∗-algebra M is in one of the following forms: 

   (i) the corona of a  σ-unital C∗-algebra, 

   (ii) an ultraproduct of a sequence of C∗-algebras, 

   (iii) an ultrapower of a  C∗-algebra, 

      (iv)  ∏𝑛 A𝑛/ ⨂𝑛 A𝑛, for unital C∗‑algebras An, 
   (v) the relative commutant of a separable subalgebra of an algebra that is in one of the 

forms (i)-(iv). 

Then M satisfies each of the following (see below for definitions):  

   (vi) It is SAW∗ 

   (vii) It has AA-CRISP (asymptotically abelian, countable Riesz separation property), 

   (viii) The conclusion of Kasparov's technical Theorem, 

   (ix) It is sub-a-Stonean in the sense of Kirchberg, 

   (x) Every derivation of a separable subalgebra of M is of the form 𝛿𝑏 for some b ∈  M. 

Proof. Each of these classes of C∗-algebras is countably degree-1 saturated (Definition 

(2.2.2). For (i) this is Theorem (1.2.4). For (ii) and (iii) this is a consequence of Los's 

Theorem (see e.g., [104]). Every algebra as in (iv) is the corona of ⨁𝑛 A𝑛so this is a special 

case of (i). For (v) this is Lemma (2.2.9). 
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Property (vi) now follows by Proposition (2.2.12), (vii) follows by Proposition (2.2.12),  

(viii) follows by Proposition (2.2.13), (ix) follows by Proposition (2.2.16), and (x) follows 

by Proposition (2.2.17).  

 The assertion 'every approximately inner automorphism of a separable subal-gebra of M 

is implemented by a unitary in M’ ' is true for algebras as in (ii), (iii) or the corresponding 

instance of (iv) Lemma (2.2.19). However this is not true in the case when 𝑀 is the Calkin 

algebra (see Proposition (2.2.27)). 

By [121] no SAW∗-algebra can be written as a tensor product of two infinite-dimensional 

C∗-algebras. By Theorem (2.2.1), this applies to every C∗-algebra M satisfying any of (i)-

(v). 

We demonstrate that the degree of saturation of the Calkin algebra is rather mild. 

For 𝐹 ⊆ ℝ and 𝜀 >  0 we write 𝐹𝜀  =  {𝑥 ∈  ℝ ∶  dist(𝑥, 𝐹) ≤ ε}. Given a 𝐶 ∗-algebra 𝐴, a 

degree 1∗ -polynomial in variables 𝑥𝑗 , for 𝑗 ∈  ℕ , with coefficients in 𝐴  is a linear 

combination of terms of the form 𝑎𝑥𝑗𝑏, 𝑎𝑥𝑗
∗𝑏 and 𝑎 with 𝑎, 𝑏 in A. We write 𝑀≤1 for the 

unit ball of a 𝐶∗-algebra 𝑀. 

Definition (2.2.2)[114]: A metric structure 𝑀 is countably degree-1 saturated if for every 

countable family of degree-1∗ -polynomials 𝑃𝑛(𝑥̅) with coefficients in 𝑀 and variables 𝑥𝑛, 

for 𝑛 ∈  ℕ , and every family of compact sets 𝐾𝑛  ⊆  ℝ,  for 𝑛 ∈  ℕ , the following are 

equivalent. 

(i) There are 𝑏𝑛  ∈  𝑀≤1, for 𝑛 ∈  ℕ , such that 𝑃𝑛(𝑏̅) ∈  𝐾𝑛 for all 𝑛. 

(ii) For every 𝑚 ∈  ℕ there are 𝑏𝑛  ∈  𝑀≤1,, for 𝑛 ∈  ℕ, such that 𝑃𝑛(𝑏̅) ∈  (𝐾𝑛)1/𝑚  for all 

𝑛 ≤  𝑚. 

More generally, if 𝛷 is a class of ∗‑polynomials, we say that 𝑀 is countably Φ-saturated 

if for every countable family of ∗‑polynomials 𝑃𝑛(𝑥̅)  in 𝛷  with coefficients in 𝑀  and 

variables 𝑥𝑛 , for 𝑛 ∈  ℕ , and every family of compact sets 𝐾𝑛  ⊆  ℝ , for 𝑛 ∈  ℕ  the 

assertions (i) and (ii) above are equivalent. 

 If 𝛷 is the class of all ∗‑polynomials then instead of 𝛷 -saturated we say count-ably 

quantifier-free saturated. 

By compactness we obtain an equivalent definition if we require each 𝐾𝑛 to be a 

singleton. 

 With the obvious definition of degree-n saturated' one might expect to have a proper 

hierarchy of levels of saturation. 

Lemma (2.2.3)[114]: An algebra that is degree‑2 saturated is necessarily quantifier-free 

saturated. 

Proof. Assume 𝐶 is degree‑2 saturated and 𝑡 is a consistent countable quanti-fier free type 

over C. By compactness and the Stone-Weierstrass approximation Theorem we may assume 

that 𝑡  consists of formulas of the form ‖𝑃(𝑥̅)‖  =  𝑟  for a polynomial 𝑃 . By adding a 

countable set of new variables {𝑧𝑖}and formulas ‖𝑥𝑦 − 𝑍𝑖  ‖ = 0 for distinct variables 𝑥 

and 𝑦  occurring in 𝑡 , one can reduce the degree of all polynomials occurring in 𝑡 . By 

repeating this procedure countably many times one obtains a  new type 𝑡 in countably many 
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variables such that 𝑡′ does not contain polynomials of degree higher than 2, it is consistent, 

and a realization of 𝑡′ gives a realization of 𝑡.  

 In the following it is assumed that each 𝑃𝑛 is a ∗‑polynomial with coefficients in 𝑀,  and 

reference to the ambient algebra 𝑀 is omitted whenever it is clear from the context. An 

expression of the form 𝑃𝑛(𝑥̅)  ∈  𝐾𝑛 is called a condition (over 𝑀) .  A set of conditions is a 

type (over 𝑀) .  If all conditions involve only polynomials in 𝛷 then we say that the type is 

a 𝛷 -type. If all coefficients of polynomials occurring in type 𝑡 belong to a set 𝑋 ⊆ 𝑀 then 

we say 𝑡 is a type over 𝑋. A type satisfying (2) is approximately finitely satisfiable (in 𝑀), 

or more succinctly consistent with 𝑀, and a type satisfying (1) is realized (in 𝑀) by b. In 

the latter case we also say that 𝑀 realizes this type. Thus 𝑀 is countably 𝛷-saturated if and 

only if every consistent 𝛷-type over a countable subset of 𝑀 is realized in 𝑀.  

Recall that the multiplier algebra 𝑀(𝐴) of a C∗-algebra 𝐴 is defined to be the idealizer of 

𝐴 in any nondegenerate representation of 𝐴 (see e.g., [100]). The corona of 𝐴 is the quotient 

𝑀 (𝐴) /𝐴. 

Corollary (2.2.4)[114]: If 𝐴 is α 𝜎-unital C∗-algebra then 𝑀𝑛(𝐶(𝐴)) is countably degree-1 

saturated for every n ∈ ℕ. 

Proof. The universality property of the multiplier algebra easily implies that 𝑀(𝑀𝑛(𝐴)) and 

𝑀𝑛(𝑀(𝐴)) are isomorphic, via the natural isomorphism that fixes 𝐴. Therefore 𝑀𝑛(𝐶(𝐴)) 

is isomorphic to C(Mn(A)) and we can apply Theorem (2.2.26).  

 The following will be proved as Theorem (2.2.23). 

Theorem (2.2.5)[114]: Assume 𝐴 is a 𝜎‑unital C∗-algebra such that for every separable 

subalgebra 𝐵  of 𝑀(𝐴) there is a  𝐵 -quasicentral approximate unit for 𝐴  consisting of 

projections. Then its corona C(A) is countably quantifier-free saturated. 

We shall show that the Calkin algebra fails the conclusion of Theorem (2.2.5), and 

therefore that Theorem (2.2.42) essentially gives an optimal conclusion in its case. 

Most of the applications require only types with a single variable, or so-called 1-types. 

We shall occasionally use shortcuts such as a =  b for ‖a − b‖  =  0 or a ≤  b for b − a 
being positive (the latter assuming both a  and b are positive) in order to simplify the 

notation. We say that 𝑐 𝜀‑realizes type 𝑡 if for all conditions ‖P(𝑥)‖t ∈  K in 𝑡 we have 

‖𝑃(𝑐)‖  ∈  (𝐾)𝜀. Therefore a type is consistent if and only if each of its finite subsets is 𝜀-
realized for each 𝜀 >  0. 

We start with a self-strengthening of the notion of approximate finite satisfiability, 

stated only for 1-types. 

Lemma (2.2.6)[114]: If Φ includes all degree‑1 ∗‑polynomials and 𝐶  is countably Φ -
saturated then every countable Φ -type 𝑡 that is approximately finitely satisfiable by self-

adjoint (positive) elements is realized by a self-adjoint (positive) element. 

Moreover, if 𝑡  is approximately finitely satisfiable by self-adjoint elements whose 

spectrum is included in the interval [𝑟, 𝑠], then 𝑡 is realized by a self-adjoint element whose 

spectrum is included in [𝑟, 𝑠]. 
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Proof. If 𝑡 is approximately finitely satisfiable by a self-adjoint element, then the type 𝑡𝟏 

obtained by adding 𝑥 =  𝑥∗  to 𝑡 is still approximately finitely satisfi-able and countable, 

and therefore realized. Any realization of 𝑡𝟏is a self-adjoint realization of 𝑡. 
Now assume 𝑡 is approximately finitely satisfiable by positive elements. By compactness, 

there is 𝑟 ∈ 𝐾 such that 𝑡 ⋃ {‖𝑥 ‖ =  𝑟} is approximately finitely satisfiable by a positive 

element. Let 𝑡𝟐  =   𝑡⋃{‖𝑥‖  =  𝑟, 𝑥 =  𝑥
∗, ‖𝑥 —  𝑟 . 1‖  ≤  𝑟}.  A simple continuous 

functional calculus argument shows that for a self-adjoint 𝑏 we have that 𝑏 ≥ 0 if and ony 

if ‖𝑏 −‖ ‖𝑏‖‖. 1‖  ‖𝑏‖. The proof is completed analogously to the case of a self-adjoint 

operator. 

Now assume 𝑡  is approximately finitely satisfiable by elements whose spectrum is 

included in [𝑟, 𝑠]. Add conditions ‖𝑥 − 𝑥∗‖ = 0 and ‖𝑥 − (𝑟 +  𝑠)/2 ‖ ≤  (𝑠 − 𝑟)/2 to 𝑡. 
The second condition is satisfied by a self-adjoint element iff its spectrum is included in the 

interval [𝑟, 𝑠]. Therefore the new type is approximately finitely satisfiable and its realization 

is as required.  

The assumption of Lemma (2.2.6) is necessarily stronger than the assumption of 

Lemma (2.2.6). 

Lemma (2.2.7)[114]: If 𝐶  is countably quantifier-free saturated then every countable 

quantifier-free type that is approximately finitely satisfiable by a unitary (projection) is 

realized by a unitary (projection, respectively). 

Proof.  This is just like the proof of Lemma (2.2.6), but adding conditions 𝑥𝑥∗ = 1 and 

𝑥∗𝑥 = 1 in the unitary case and 𝑥 = 𝑥∗ and 𝑥2 = 𝑥 in the projection case.  

 In Proposition (2.2.27) and Proposition (2.2.28) we prove that there is a countable type 

over the Calkin algebra that is approximately finitely satisfiable by a unitary but not realized 

by a unitary. By Lemma(2.2.7), the Calkin algebra is not quantifier-free saturated. 

Largeness of countably saturated C∗-algebras If 𝐶 is a finite-dimensional C∗-algebra 

then its unit ball is compact, and this easily implies that 𝐶 is count-ably saturated. 

Proposition (2.2.8)[114]: If 𝐶  is countably degree‑1 saturated then it is either finite-

dimensional or nonseparable. In the latter case, 𝐶 even has no separable maximal abelian 

subalgebras. 

Proof. Assume 𝐶  is infinite-dimensional and let 𝐴  be its masa. Then 𝐴  is infinite-

dimensional and there is a sequence of positive operators 𝑎𝑛, for 𝑛 𝐺 ℕ, of norm 1 such that 

‖𝑎𝑚 − 𝑎𝑛‖  = 1 (cf. [126] or [120]). 

 Assume 𝐴 is separable, and fix a countable dense subset 𝑏𝑛, for 𝑛 ∈  ℕ, of its unit ball. 

The type 𝑡 consisting of all conditions of the form ‖𝑥 − 𝑏𝑛‖  ≥  1/2 and 𝑥𝑏𝑛  =  𝑏𝑛𝑥, for 

𝑛 ∈ 𝑁, together with ‖𝑥 ‖ =  1, is consistent. This is because each of its finite subsets is 

realized by 𝑎𝑚  for a large enough 𝑚 . Otherwise, there are 𝑛, 𝑖  and 𝑗  such that 
‖𝑏𝑛 — 𝑎𝑖  ‖ <  1/2 and ‖𝑏𝑛 — 𝑎𝑖  ‖ <  1/2. By countable saturation some 𝑐 ∈  𝐶 realizes 

𝑡. Then 𝑐 ∈  𝐴′ \ 𝐴, contradicting the assumed maximality of 𝐴.  

Lemma (2.2.9)[114]: Assume 𝐶  is countably Φ-saturated and Φ includes all degree‑1 

polynomials. If 𝐴  is a  separable subalgebra of 𝐶  then the relative commutant of 𝐴  is 

countably Φ -saturated. 
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Moreover, if 𝐶 is infinite-dimensional then 𝐴′ ∩ 𝐶 is nonseparable. 

Proof. Let 𝑎𝑛, for 𝑛 ∈ ℕ, enumerate a countable dense subset of the unit ball of 𝐴. The 

relative commutant type over 𝐴, 𝑡𝒓𝒄,  consists of all formulas of the form 

  (i) ‖𝑎𝑛𝑥 − 𝑥𝑎𝑛‖  =  0,   for 𝑛 ∈ ℕ. 

If 𝑡  is a finitely approximately finitely satisfiable Φ-type over 𝐴′ ∩ 𝐶  then 𝑡 ∪  𝑡𝒓𝒄  is an 

approximately finitely satisfiable Φ -type over 𝐶. Also, an element c of 𝐶 realizes 𝑡 ∪ 𝑡𝒓𝒄 
if and only if 𝑐 ∈  𝐴′ ∩ 𝐶 and c realizes 𝑡. Since 𝑡 was an arbitrary Φ-type, countable Φ-

saturation of 𝐴′ ∩ 𝐶 follows. 

Now assume 𝐶 is infinite-dimensional. By enlarging 𝐴 if necessary, we can assume it is 

infinite-dimensional. Expand 𝑡𝒓𝒄 by adding all formulas of the form 

  (ii) ‖𝑎𝑛𝑥 − 𝑎𝑛‖  ≥ 1/2. 

We denote the resulting type by 𝑡. We shall prove that 𝑡 is approximately finitely satisfiable. 

This follows from the proof of [120]. First, if 𝐴 is a continuous trace, infinite-dimensional 

algebra then its center 𝑍(𝐴) is infinite-dimensional. Therefore 𝑍(A) includes a sequence of 

contractions 𝑓𝑛, for 𝑛 ∈ ℕ, such that ‖𝑓𝑚 − 𝑓𝑛‖ = 1 if 𝑚 ≠ 𝑛 (this is a consequence of 

Gelfand-Naimark Theorem, see e.g., the proof of [120]), and therefore 𝑡 is approximately 

finitely satisfiable by 𝑓𝑚𝑠. 
 If 𝐴 is not a continuous trace algebra, then by  [1] it has a nontrivial central sequence. 

Elements of such a sequence witness that 𝑡 is approximately finitely satistiable. 

By countable saturation, 𝑡 is realized in 𝐶. 𝐴 realization of 𝑡 in 𝐶 is at a distance ≥  1 /2 

from 𝐴, and therefore we have proved that 𝐴′ ∩  𝐶 ⊈  𝐴. 

 Now assume 𝐴  is a separable, not necessarily infinite-dimensional, subalgebra of 𝐶 . 

Since 𝐶 is infinite-dimensional, find infinite-dimensional 𝐴0 such that 𝐴 ⊆  𝐴0  ⊆  𝐶. By 

using the above, build an increasing chain of separable subalgebras of 𝐶, 𝐴𝛾, for 𝛾 <  ℵ1, 

such that 𝐴𝛾
′ ∩ 𝐴𝛾+1 is nontrivial for all 𝛾. This shows that 𝐴′ ∩  𝐶 intersects 𝐴𝛾+1 \ 𝐴𝛾 for 

all 𝛾, and it is therefore nonseparable.   

In the following there is a clear analogy with the theory of gaps in 𝒫(ℕ)/𝐹in. 

Definition (2.2.10)[114]: Two subalgebras 𝐴, 𝐵 of an algebra 𝐶 are orthogonal if 𝑎𝑏 =  0 

for all 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. They are separated if there is a positive element 𝑐 ∈ 𝐶 such that 

𝑐𝑎𝑐 = 𝑎 for all 𝑎 ∈ 𝐴 and 𝑐𝑏 = 0 for all 𝑏 ∈ 𝐵. 

A 𝐶∗ -algebra 𝐶  has AA-CRISP (asymptotically abelian, countable Riesz separation 

property) if the following holds: Assume 𝑎𝑛, 𝑏𝑛, for 𝑛 ∈ ℕ, are positive elements of 𝐶 such 

that 

 

𝑎𝑛  ≤  𝑎𝑛+𝟏  ≤  𝑏𝑛+𝟏  ≤  𝑏𝑛 

for all 𝑛. Furthermore assume 𝐷 is a separable subset of 𝐶 such that for every 𝑑 ∈  𝐷 we 

have 

lim
𝑛
‖𝑎𝑛, 𝑑‖  = 0. 

Then there exists a positive 𝑐 ∈ 𝐶 such that 𝑎𝑛 ≤ 𝑐 ≤  𝑏𝑛 for all 𝑛 and [𝑐, 𝑑]  =  0 for all 

𝑑 ∈ 𝐷. 
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 By Theorem (2.2.26) the following is a strengthening of the result that every corona of a 

𝜎‑unital 𝐶∗‑algebra has AA-CRISP ([127]). 

Proposition (2.2.11)[114]:  Every countably degree‑1 saturated C∗‑algebra C has AA-

CRISP. 

Proof. By scaling, we may assume that ‖b1‖ = 1. Fix a countable dense subset { 𝑑𝑛} of 𝐷 

and let  𝑡 be the type consisting of the following conditions: 𝑎𝑛 < 𝑥, 𝑥 <  𝑏𝑛 and [𝑑𝑛, 𝑥] =
0, for all 𝑛 ∈ ℕ. If to is any finite subset of 𝑡 and 𝜀 >  0,  then for a large enough 𝑛 we have 

that 𝑎𝑛 𝜀-approximately realizes 𝑡𝟎. By countable saturation of 𝐶, some 𝑐 ∈ 𝐶 realizes 𝑡. 
This c satisfies the requirements of the AA-CRISP for 𝑎𝑛, 𝑏𝑛 and 𝐷.  

Recall that a 𝐶∗-algebra 𝐶 is an 𝑆𝐴𝑊∗-algebra if any two 𝜎-unital subalgebras 𝐴 and 𝐵 

of 𝐶 are orthogonal if and only if they are separated. By Theorem (2.2.26) the following is 

a strengthening of the result that every corona of a 𝜎-unital 𝐶∗-algebra is an 𝑆𝐴𝑊∗-algebra 

([127]). (By [127], CRISP implies 𝑆𝐴𝑊∗ but we include a simple direct proof below.) 

Proposition (2.2.12)[114]:  Every countably degree-1 saturated C∗-algebra C is an SAW∗-

algebra. 

Proof. Assume 𝐴 and 𝐵 are 𝜎-unital subalgebras of 𝐶 such that 𝑎𝑏 = 0 for all 𝑎 = 𝐴 and 

all 𝑏 ∈ 𝐵. Let 𝑎𝑛, for 𝑛 ∈ ℕ and 𝑎𝑛,  for 𝑛 ∈ ℕ,  be an approximate identity of 𝐴 and 𝐵,  
respectively. Consider type 𝑡𝐴𝐵 consisting of the following expressions, for all 𝑛. 

 (i) 𝑎𝑛𝑥 =  𝑎𝑛,
 

 (ii) 𝑥𝑏𝑛  =  0
 

      (iii)𝑥 =  𝑥∗ . 

Every finite subset of 𝑡𝐴𝐵 is 𝜀‑realized by 𝑎𝑛 for a large enough 𝑛. If 𝑐 realizes 𝑡𝐴𝐵, then 

𝑎𝑐 =  𝑎 for all 𝑎 ∈  𝐴 and 𝑐𝑏 =  0 for all 𝑏 ∈  𝐵. Moreover, 𝑐 is self-adjoint by (iii) and 

|𝑐| still satisfies the above.  

Assume 𝐵, 𝐶  and 𝐷 are subalgebras of a 𝐶∗-algebra 𝑀. We say that 𝐷 derives 𝐵 if for 

every 𝑑 ∈  𝐷 the derivation 𝛿𝑑(𝑥)  =  𝑑𝑥 —  𝑥𝑑 maps 𝐵  into itself. The following is an 

extension of Higson's formulation of Kasparov's Technical Theorem ([124], also [127]). 

We say that a 𝐶∗-algebra 𝑀 has KTT if the following holds: Assume 𝐴, 𝐵, and 𝐶  are 

subalgebras of 𝑀 such that 𝐴 ⊥ 𝐵  and 𝐶  derives 𝐵. Furthermore assume 𝐴 and 𝐵 are a-

unital and 𝐶 is separable. Then there is a positive element 𝑑 ∈  𝑀 such that 𝑑 ∈  𝐶′ ∩  𝑀, 
the map 𝑥 ⟼ 𝑥𝑑 is the identity on 𝐵, and the map 𝑥 ⟼ 𝑑𝑥 annihilates A. 

Proposition (2.2.13)[114]:  Every countably degree‑1 saturated C∗-algebra has KTT. 

Proof. Assume 𝐴, 𝐵 and 𝐶 are as above. Since 𝐵 is a-unital we can fix a strictly positive 

element 𝑏 ∈  𝐵. Then 𝑏1/𝑛, for 𝑛 ∈  ℕ, is an approximate unit for 𝐵. An easy computation 

demonstrates that for every 𝑐 ∈  𝐶 the commutators [𝑏1/𝑛, 𝑐] strictly converge to 0 (see the 

first paragraph of the proof of Theorem 8.1 in [127]). They therefore converge to 0 weakly. 

The Hahn-Banach Theorem combined with the separability of 𝐶 now shows that one can 

extract an approximate unit (𝑒𝑚) for B in the convex closure of {𝑏1/𝑛 ∶  𝑛 ∈  ℕ} such that 

the commutators [𝑒𝑚, 𝑐] norm-converge to 0 for every 𝑐 ∈ 𝐶. 
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In other words, 𝐵 has an approximate unit (𝑒𝑚) which is 𝐶-quasicentral. Fix a countable 

approximate unit (𝑓𝑛) of 𝐴 and a countable dense subset {𝑐𝑚} of 𝐶 . Consider the type 𝑡 
consisting of the following conditions, for all 𝑚 and all 𝑛. 

‖𝑒𝑛𝑥 − 𝑒𝑛‖ = 0 

‖𝑥𝑓𝑛‖ = 0 

   ‖[𝑐𝑚 , 𝑥]‖ = 0 

 ‖𝑥 ‑ 𝑥∗‖ = 0. 

For every finite subset 𝐹 of this type and every 𝜀 > 0 there exists an 𝑚 large enough so that 

all the conditions in 𝐹 are e-satisfied with 𝑥 = 𝑒𝑚. Therefore the type 𝑡 is consistent and by 

countable degree‑1 saturation it is satisfied by some 𝑑0. Then 𝑑 =  |𝑑0| is as required.  

 𝐴  𝐶∗ -algebra 𝑀  is sub-Stonean if for all 𝑏  and 𝑐  in 𝑀  such that 𝑏𝑐 =  0  there are 

positive contractions 𝑓 and 𝑔 such that 𝑏𝑓 = 𝑏, 𝑔𝑐 = 𝑐 and 𝑓𝑔 =  0. By considering 𝐵 =
 𝐶∗(𝑏) and 𝐶 =  𝐶∗(𝑐) and noting that 𝐵 and 𝐶 are orthogonal, one easily sees that every 

𝑆𝐴𝑊∗ algebra is sub-Stonean. The following strengthening was introduced by Kirchberg 

[125]. 

Definition (2.2.14)[114]: A 𝐶∗-algebra 𝐶 is sub‑𝜎‑Stonean if for every separable sub-

algebra 𝐴 of 𝐶 and all positive 𝑏 and 𝑐 in 𝐶 such that 𝑏𝐴𝑐 = { 0} there are contractions 𝑓 

and g in 𝐴′ ∩ 𝐶 such that 𝑓𝑔 = 0, 𝑓𝑏 = 𝑏 and 𝑔𝑐 = 𝑐. 

The fact that for a separable 𝐶∗-algebra 𝐴 the relative commutant of 𝐴 in its ultrapower 

associated with a nonprincipal ultrafilter on ℕ  (as well as the related algebra 𝐹(𝐴)  =
 (𝐴′ ∩ 𝐴𝒰)/𝐴𝑛𝑛(𝐴, 𝐴𝒰) , see [125]) is sub-a Stonean was used in [125] to deduce many 

other properties of the relative commutant. Several proofs in [125], can easily be recast in 

the language of logic for metric structures. 

Before we strengthen Kirchberg's result by proving countably degree-1 saturated algebras 

are sub-𝜎-Stonean (Proposition (2.2.16)) we show a lemma. 

Lemma (2.2.15)[114]: Assume 𝑀  is countably degree-1 saturated and 𝐵  is a  separable 

subalgebra. If 𝐼 is a (closed, two-sided) ideal of 𝐵 then there is a contraction 𝑓𝐺 𝑀 ∩ 𝐵′ 
such that 𝑎𝑓 = 𝑎 for all 𝑎 ∈ 𝐼. 

If moreover 𝑐 ∈ 𝑀 is such that 𝑐 = { 0} , then we can choose 𝑓 so that 𝑓𝑐 = 0 and 𝑓𝐼𝑐 =
 { 0}. 

Proof.  Fix a countable dense subset 𝑎𝑛, for 𝑛 ∈ ℕ, of I and a countable dense subset 𝑏𝑛, 
for 𝑛 ∈ ℕ,on 𝐵. Consider type 𝑡 consisting of the following conditions. 

(i) ‖𝑎𝑛𝑥 − 𝑎𝑛‖  =  0 for all 𝑛 ∈  ℕ, 

(ii) ‖𝑏𝑛𝑥 −  𝑥𝑏𝑛‖  =  0 for all 𝑛 ∈  ℕ. 

(iii) 𝑥𝑐 =  0, and 

(iv) 𝑥𝑎𝑛 𝑐 = 0 for all 𝑛 ∈ ℕ. 

We prove that 𝑡  is consistent, and moreover that it is finitely approximately 

satisfiable by a contraction. By [118] I has a 𝐵-quasicentral approximate unit 𝑒𝑛, for 𝑛 ∈ ℕ, 
consisting of positive elements. Since 𝐵𝑐 = {0} we have 𝑒𝑛𝑐 = 0,  as well as 𝑒𝑛𝑎𝑚𝑐 = 0 

for all 𝑚 and all 𝑛. Therefore every finite fragment of 𝑡 is arbitrarily well approximately 

satisfiable by 𝑒𝑛 for all large enough 𝑛. By Lemma (2.2.6) (applied with [𝑟, 𝑠]  =  [0,1]) and 
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saturation of 𝑀 there is a contraction 𝑓 ∈ 𝑀 that realizes 𝑡. Then 𝑓𝑎 = 𝑎 for all 𝑎 ∈ 𝐼, 𝑓 ∈
𝐵′ ∩ 𝑀, 𝑓 𝐴𝑐 = {0}, and 𝑓𝑐 = 0,  as required.  

Proposition (2.2.16)[114]: Every countably degree-1 saturated, C∗-algebra is sub-𝜎-

Stonean. 

Proof. Fix 𝐴, 𝑏  and 𝑐  as in Definition (2.2.14). By applying Lemma (2.2.15) find a 

contraction 𝑓 ∈  𝑀 ∩ 𝐴′ such that 𝑏𝑓 = 𝑏, 𝑓𝑐 = 0 and 𝑓𝐴𝑐 = {0}. Now let 𝐶 =  𝐶∗ (𝐴, 𝑐) 
and let 𝐽 be the ideal of 𝐶 generated by 𝑐. By applying Lemma (2.2.15) again (with left and 

right sides switched) with 𝑐 replaced by 𝑓 we find a contraction 𝑔 ∈ 𝑀 ∩  𝐴′ such that 

𝑓𝑔 = 0,  and 𝑔𝑐 =  𝑐.  

By Theorem (2.2.26) the following is a strengthening of the result that every derivation 

of a separable subalgebra of the corona of a a-unital 𝐶∗-algebra is inner ([127]). 

Proposition (2.2.17)[114]: Assume 𝐶 is a countably degree-1 saturated C∗-algebra and 𝐵 

is a separable subalgebra. Then every derivation 𝛿  of 𝐵 is of the form 𝛿𝑐 for some 𝑐 ∈ 𝐶. 

Proof. Fix a countable dense subset 𝐵0 of 𝐵. Consider the type 𝑡𝜹 consisting of following 

conditions, for 𝑏 ∈ 𝐵0. 

(i) ||‖ 𝑥𝑏 − 𝑏𝑥 − 𝛿(𝑏)‖  = 0. 

By [28] this type is consistent and if 𝑐 realizes it then 𝛿(𝑏)  =  𝛿𝑐(𝑏) for all 𝑏 ∈  𝐵.  

 [109] proved that the Continuum Hypothesis implies that the Calkin algebra has 2ℵ1 
outer automorphisms. Since 𝑘 < 2𝐾  for all cardinals 𝑘, this conclusion implies that the 

Calkin algebra has outer automorphisms. A simpler proof of Phillips-Weaver's result was 

given in [8]. The proof of Theorem (2.2.21) below is in the spirit of [109], but instead of 

results about 𝐾𝐾-theory it uses countable quantifier-free saturation. 

Recall that the character density of a 𝐶∗-algebra is the smallest cardinality of a dense 

subset. The following remark refers to the full countable saturation in logic for countable 

structures, not considered in (cf. [104]). The standard back-and-forth method shows that a 

fully countably saturated 𝐶∗ -algebra of character density ℵ1  has 2ℵ1  automorphisms. 

Therefore, the Continuum Hypothesis implies that 𝑀 has 2ℵ1 automorphisms whenever 𝑀 

is an ultrapower of a separable 𝐶∗-algebra, a relative commutant of a separable 𝐶∗-algebra 

in its ultrapower, or an algebra of the form ∏n An/ ⨁n An for a sequence of separable unital 

𝐶∗ -algebras 𝐴𝑛 , for 𝑛 ∈  ℕ . Since ℵ1  is always less than 2ℵ1 , in this situation, the 

automorphism group is strictly larger than the group of inner automorphisms. These issues 

will be treated in an upcoming  joint with David Sherman. In the following we show how to 

construct 2ℵ1  automorphisms in a situation where the algebra is only quantifier-free 

saturated. 

Before proceeding to prove Theorem (2.2.21) we note that every countably saturated 

metric structure of character density ℵ1 has 2ℵ1 automorphisms. We don't know whether the 

Continuum Hypothesis implies that every corona of a separable 𝐶∗ -algebra has 2ℵ1 
automorphisms (but see [118]). 

 By Theorem (2.2.21) and Theorem (2.2.23) we have the following: 

Corollary (2.2.18)[114]: Assume the Continuum Hypothesis. Assume 𝐴 is a C∗- algebra 

such that for every separable subalgebra 𝐵 of 𝑀( 𝐴) there is a 𝐵-quasi- central approximate 
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unit for 𝐴 consisting of projections and the center of 𝐶( 𝐴) is separable. Then 𝐶(𝐴) has 2ℵ1 
outer automorphisms. 

Recall that an automorphism Φ of a 𝐶∗-algebra 𝐶 is approximately inner if for every 𝜀 >
 0 and every finite set 𝐹, there is a unitary 𝑢 such that ‖Φ(𝑎) −  𝑢𝑎𝑢∗ ‖ <  𝜀 for all 𝑎 ∈ 𝐹. 

An approximately inner ∗‑ isomorphism from a subalgebra of 𝐶  into 𝐶  is defined 

analogously. 

Lemma (2.2.19)[114]: Assume 𝐶 is a countably quantifier-free saturated C∗-algebra and 𝐵 

is its separable subalgebra. If Φ: 𝐵 →  𝐶  is an approximately inner ∗‑isomorphism then 

there is a unitary 𝑢 ∈  𝐶 such that Φ( 𝑏) = 𝑢𝑏𝑢∗ for all 𝑏 ∈ 𝐵. 

Proof. This is essentially a consequence of Lemma (2.2.7) Fix a countable dense subset 𝐵0 
of 𝐵. Consider the type 𝑡𝚽consisting of all conditions of the form ‖𝑥𝑏𝑥∗ −Φ(𝑏)‖ = 0 for 

𝑏 ∈ 𝐵0together with 𝑥𝑥∗ =  1 and 𝑥∗𝑥 = 1. The assumption that Φ is approximately inner 

is equivalent to the assertion that 𝑡𝚽 is consistent. Since 𝐵0  is countable, by countable 

quantifier-free saturation there exists 𝑢 ∈  𝐶(𝐴) that realizes 𝑡𝚽. Such u is a unitary which 

implements Φ.    

Lemma (2.2.20)[114]:  Assume 𝐶 is 𝑎 countably quantifier-free saturated, simple 𝐶∗ -

algebra whose center is separable. If Φ  is an automorphism of 𝐶  and 𝐴  is 𝑎  separable 

subalgebra of 𝐶 then there is an automorphism Φ′of 𝐶 distinct from Φ whose restriction to 

A is identical to the restriction of Φ to 𝐴. Moreover, if Φ is inner then Φ′can be chosen to 

be inner. 

Theorem (2.2.21)[114]:  If 𝐶  is a  countably quantifier-free saturated C∗ -algebra of 

character density ℵ1 whose center is separable then 𝐶 has 2ℵ1automorphisms. 

Proof. By using Lemma (2.2.19) and Lemma (2.2.20) we can construct a complete binary 

tree of height ℵ1  whose branches correspond to distinct automorphisms. This standard 

construction is similar to the one given in [109] but much easier, since in our case the limit 

stages are covered by Lemma (2.2.19), and in [109] most of the effort was made in the limit 

stages. 

 The strict topology on 𝑀(𝐴) is the topology induced by the family of seminorms 

‖(𝑥 − 𝑦)𝑎‖, where a ranges over 𝐴. If 𝐴 is separable then the strict topology on 𝑀(𝐴) has 

a compatible metric,‖ (𝑥 − 𝑦)𝑎‖, where a is any strictly positive element of 𝐴. 

    We note that for any sequence of 𝐶∗-algebras 𝐴𝑛, for 𝑛 ∈  ℕ, the algebra 

∏𝑛 𝐴𝑛/⊕𝑛  𝐴𝑛 is fully countably saturated. This is a straightforward analogue of a well-

known result in classical model theory (cf. [104], [116]). 

The proof of Theorem (2.2.5) is a warmup for the proof of Theorem (2.2.26). In 

Proposition (2.2.28) we shall see that the conclusion of Theorem (2.2.23) does not follow 

from the assumptions of Theorem (2.2.26) Let us start by recalling the statement of Theorem 

(2.2.5) 

We shall write 𝑏̅ for an n-tuple, hence 

𝑏̅  =  (𝑏1, . . . , 𝑏𝑛) 



 

53 

in order to simplify the notation. We also write 

𝑞𝑏̅  =  (𝑞𝑏1, . . . , 𝑞𝑏𝑛).  

In our proof of Theorem (2.2.23) we shall need the following fact. 

Lemma (2.2.22)[114]: Assume 𝑃(𝑥1, . . . , 𝑥𝑛) is 𝑎∗-polynomial with coefficients in a 𝐶∗-
algebra 𝐶. Then there is constant 𝐾 <  ∞, depending only on 𝑃,  such that for all a and 

𝑏1 , . . . , 𝑏𝑛 in 𝐶 we have 

‖[𝑎, 𝑃(𝑏̅)]‖  ≤  𝐾max
𝑐
 ‖[𝑎, 𝑐]‖ ‖𝑎‖ max

𝑗≤𝑛
 ‖𝑏𝑗‖  

where c ranges over coefficients of  Pand 𝑏1, . . . , b.n   

If in addition q is a projection then we have 

‖qP (𝑏̅)  −  𝑞𝑃 (𝑞𝑏̅)𝑞‖ ≤  K max
𝑐
‖[q, c]‖ ‖a‖ max

𝑗≤𝑛
‖𝑏𝑗‖ . 

Proof. The existence of constant 𝐾 satisfying the first inequality can be 

proved by a straightforward induction on the complexity of 𝑃. For the second inequality 

use the first one and the fact that 𝑞 =  𝑞𝑑+1,  where d is the degree of 𝑃 in order to find a 

large enough 𝐾.  

Theorem (2.2.23)[114]:  Assume 𝐴 is 𝑎 𝜎-unital 𝐶∗-algebra such that for every separable 

subalgebra 𝐵  of 𝑀(𝐴)  there is 𝑎   𝐵 -quasicentral approximate unit for 𝐴  consisting of 

projections. Then its corona 𝐶(𝐴) is countably quantifier-free saturated. 

Proof. Fix a countable quantifier-free type 𝑡  over 𝐶(𝐴)  and enumerate all polynomials 

occurring in it as 𝑃𝑛(𝑥̅), for 𝑛 ∈ ℕ. By re-enumerating and adding redundancies we may 

assume that all variables of 𝑃𝑛  are among 𝑥1, . . . , 𝑥𝑛. Let 𝑃𝑛
0(𝑥̅) be a polynomial over M(A) 

corresponding to 𝑃𝑛(𝑥). Let Kn  be a constant corresponding to𝑃𝑛
0  as given by Lemma 

(2.2.22) Let 𝐵  be a separable subalgebra of 𝑀(𝐴)  such that all coefficients of all 

polynomials 𝑃𝑛
0 (𝑥̅) belong to 𝐵. 

Let 𝑟𝑛 for 𝑛 ∈  ℕ be such that 𝑡 is the set of conditions ‖𝑃𝑛(𝑥̅)‖  =  𝑟𝑛 for 𝑛 ∈  ℕ. For all 

𝑛 fix 𝑏1
𝑛, . . . , 𝑏𝑛

𝑛  such that 

|‖𝜋 (𝑃𝑗
0(𝑏1

𝑛, … , 𝑏𝑛
𝑛))‖ − 𝑟𝑛| < 2

−𝑛 

for all j ≤ 𝑛 and ‖𝑏𝑘
𝑛 ‖ ≤  2. The latter is possible by our assumption that the condition 

‖𝑥𝑛 ‖ ≤  1 belongs to 𝑡 for all 𝑘. 

Let 𝑞𝑛, for 𝑛 ∈  ℕ, be a 𝐵-quasicentral approximate unit for 𝐴 consisting of projections. 

By going to a subsequence we may assume the following apply for all 𝑗 ≤ 𝑛 (with 𝑞0 = 0): 

(i)  ‖[𝑞𝑛, 𝑎]‖ <  2
−𝑛𝐾𝑛

−1 when a ranges over coefficients of 𝑃𝑗
0 and all 𝑏1

𝑗
, . . . , 𝑏𝑗

𝑗
,  

(ii) |‖(𝑞𝑛+1  −  𝑞𝑛)𝑃𝑗
0(𝑏1

𝑗
, . . . , 𝑏𝑗

𝑗
)(𝑞𝑛+1  −  𝑞𝑛)‖ − 𝑟𝑛|  <  1/𝑛, 

Let 

𝑃𝑛  =  𝑞𝑛+1 − 𝑞𝑛 

For every 𝑘 the series ∑ 𝑃𝑛𝑏𝑘
𝑛𝑃𝑛𝑛  is convergent with respect to the strict topology. Let 𝑏𝑘 be 

equal to the sum of this series. By the second inequality of Lemma (2.2.22) and (i) we have 

that for all 𝑘 ≤  𝑛 
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(iii) |‖𝑝𝑛 𝑃𝑘
0(𝑏1, . . . , 𝑏𝑘  )‖  − ‖𝑝𝑛 𝑃

0 (𝑃𝑛𝑏1𝑃𝑛, . . . , 𝑃𝑛𝑏𝑘𝑃𝑛 )𝑃𝑛‖|  <  2
−𝑛. 

Since 𝑝𝑛𝑏𝑘𝑝𝑛  =  𝑝𝑛𝑏𝑘
𝑛𝑝𝑛, we conclude that 

‖𝑃𝑘 (𝜋(𝑏̅))‖ = ‖𝜋 (𝑃𝑗
0(𝑏̅))‖ = lim

𝑛
𝑠𝑢𝑝 ‖𝑃𝑛𝑃𝑗

0(𝑃𝑛𝑏1
𝑛𝑃𝑛, . . . , 𝑃𝑛𝑏𝑗

𝑛𝑃𝑛)‖ =  𝑟𝑛 

Therefore 𝜋(𝑏𝑛), for 𝑛 ∈  ℕ , realizes 𝑡 in 𝐶(𝐴)  
We shall use [127] which states that if 0 ≤ 𝑎 ≤ 1 and ‖𝑏‖  =  1, then ‖[𝑎, 𝑏]‖  ≤

 𝜀 ≤  1/4 implies ‖[𝑎1/2, 𝑏]‖  ≤  5𝜀1/2/4. We shall also need the following lemma. 

Lemma (2.2.24)[114]: Assume 𝑎  and 𝑏  are positive operators. Then  ‖𝑎 +  b‖ ≥
 max(‖a‖, ‖b‖).  

Proof. We may assume 1 = ‖𝑎 ‖ ≥  ‖𝑏‖. Fix 𝜀 >  0 and let 𝜉 be a unit vector such that 

𝜂 =  𝜉 −  𝑎𝜉  satisfies  ‖𝜂‖  < 𝜀 .Then 𝑅𝑒(𝑎𝜉|𝑏𝜉) =  𝑅𝑒(𝜉|𝑏𝜉) +  𝑅𝑒(𝜂|𝑏𝜉) ≥
 𝑅𝑒(𝜂|𝑏𝜉) > − 𝜀 since 𝑏 ≥  0. We therefore have 

‖(𝑎 +  𝑏)𝜉 ‖2 = ((𝑎 +  𝑏)𝜉|(𝑎 +  𝑏)𝜉) 

= ‖𝑎𝜉‖2  + ‖𝑏𝜉‖2  +  2𝑅𝑒(𝑎𝜉|𝑏𝜉) >  1 + ‖𝑏𝜉‖2 −  2𝜀 

and since 𝜀 >  0 was arbitrary the conclusion follows.  

Lemma (2.2.25)[114]: Assume 𝑀  is 𝑎  𝐶∗ -algebra and 𝑎  𝜎 -unital 𝐶∗ -algebra 𝐴  is an 

essential ideal of 𝑀. Furthermore assume 𝐹𝑛, for 𝑛 ∈ ℕ, is an increasing sequence of finite 

subsets of the unit ball of 𝑀  and 𝜀𝑛 , for 𝑛 ∈ ℕ , is a decreasing sequence of positive 

numbers converging to 0. Then 𝐴 has an approximate unit 𝑒𝑛 , for 𝑛 ∈ ℕ such that with 

(setting 𝑒−1 = 0)  

𝑓𝑛  =  (𝑒𝑛+1 — 𝑒𝑛)
1\2  

for all 𝑛 and all 𝑎 ∈  𝐹𝑛 we have the following: 

(iv) ‖[𝑎, 𝑓𝑛]‖  ≤  𝜀𝑛, 

(v) ‖𝑓𝑛𝑎𝑓𝑛‖  ≥  ‖𝜋(𝑎)‖ − 𝜀𝑛 (where 𝜋: 𝑀 →  𝑀/𝐴 is the quotient map), 

(vi)  ‖𝑓𝑚𝑓𝑛‖  = 0 if |𝑚 —  𝑛|  ≥  2, 

(vii) ‖[𝑓𝑛, 𝑓𝑛+1]‖  ≤  𝜀𝑛. 

Proof. In order to take care of the condition(vi)we do the following. Let ℎ be a strictly 

positive element of 𝐴. By continuous functional calculus we choose an approximate unit 

(𝑒𝑛
−1)  of 𝐴 satisfying (vi). 

Let 𝛿𝑛 = (4𝜀𝑛/25)
2. By [118] inside the convex closure this approximate unit we can find 

another approximate unit(𝑒𝑛
0)of 𝐴 such that 

(viii) ‖𝑒𝑛
0𝑎 −  𝑎𝑒𝑛

0‖ ≤  𝛿𝑛 for all 𝑎 ∈  𝐹𝑛  ∪  {𝑒𝑛
0 ∶  𝑖 <  𝑛}. 

We can moreover assure that there is an increasing sequence of natural numbers 𝑚(𝑛),  for 

𝑛 ∈  ℕ,  such that 𝑒𝑛
0 is in the convex closure of {𝑒𝑘

−1 ∶  𝑚(𝑛) ≤ 𝑘 < 𝑚(𝑛 +  1)}. This will 

assure every subsequence (𝑒𝑛) of (𝑒𝑛
0) satisfies (vi). 

For such a subsequence (𝑒𝑛)and 𝑓𝑛defined as above we will have (iv) and (vii) by the 

choice of 𝛿𝑛 and [127]. Since 𝐴 is an essential ideal of 𝑀, there is a faithful representation 

𝛼: 𝑀 → 𝐵(𝐻)such that 𝛼 [𝐴] is an essential ideal of 𝐵(𝐻) (this is essentially by [100]). In 

particular 𝛼(𝑒𝑛) strongly converges to 1𝐻. Therefore for every 𝑎 ∈ 𝑀, 𝑚 ∈ ℕ, and 𝜀 > 0 

there is 𝑛 large enough so that‖𝛼(𝑎(𝑒𝑛 − 𝑒𝑚))‖ ≥ ‖𝛼(𝑎)‖ −  𝜀. Using this observation we 
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can recursively find a subsequence (𝑒𝑛) of (𝑒𝑛
0) such that ‖(𝑒𝑛+1 − 𝑒𝑛)𝑎‖ ≥  ‖𝜋(𝑎)‖ −

 𝛿𝑛 for all 𝑎 ∈ 𝐹𝑛.Therefore ‖𝑓𝑛𝑎𝑓𝑛‖ ≥ ‖𝜋(𝑎)‖ − 𝜀𝑛 for all 𝑎 ∈ 𝐹𝑛 and (v) holds.   

Fix a 𝜎 -unital 𝐶∗ -algebra A; let 𝑀 = 𝑀(𝐴) ,  and 𝜀𝑛 = 2
−𝑛.  Now by applying 

Lemma(2.2.25) we get 𝐴,𝑀, 𝐹𝑛, (en)  and (𝑓𝑛) , for 𝑛 ∈ ℕ . We shall show that in this 

situation these objects have the additional properties in formulas (ix)-(xvi) below. 

(ix) The series ∑ 𝑓𝑛
2

𝑛  strictly converges to 1. 

Since 𝐴 is 𝑐-unital, we can pick a strictly positive 𝑎 ∈  𝐴. Therefore the strict topology is 

given by compatible metric 𝑑(𝑏, 𝑐) = ‖𝑎(𝑏 −  𝑐)‖. Fix 𝜀 >  0. Let 𝑛 be large enough so 

that ‖𝑎𝑒𝑛+1 − 𝑎‖  <  𝜀. Since 1 − 𝑒𝑛+1  = ∑ 𝑓𝑗
2∞

𝑗=𝑛+1 , (ix) follows. 

(x) For every sequence (𝑏𝑗) in the unit ball of 𝑀 the series  ∑ 𝑓𝑗  𝑏𝑗  𝑓𝑗𝑗  is strictly 

convergent. 

We first note that 0 ≤ 𝑐 ≤ 𝑑  implies ‖𝑐𝑏‖  ≤ ‖𝑑𝑏‖for all 𝑏 . This is because ‖𝑐𝑏 ‖2 =
‖𝑏∗𝑐2𝑏 ‖ ≤  ‖𝑏∗𝑑2𝑏 ‖ = ‖𝑑𝑏‖2. 

 Since every element 𝑏 of a 𝐶∗-algebra is a linear combination of four positive elements 

𝑏 =  𝑐0 − 𝑐1 + 𝑖𝑐2 − 𝑖𝑐3 , we may assume 𝑏𝑗 ≥ 0  for all 𝑗 . Fix 𝜀 >  0  and find 𝑛  large 

enough so that (with 𝑎 ∈ A  strictly positive) ‖∑ (𝑓𝑗
2)𝑎∞

𝑗=𝑛 ‖  <  𝜀.  Then 0 <

 ∑ 𝑓𝑗  𝑏𝑗  𝑓𝑗 𝑗≥𝑛  ≤ ∑ 𝑓𝑗
2

𝑗≥𝑛 .  Therefore by the above inequality applied with 𝑐 = ∑ 𝑓𝑗  𝑏𝑗  𝑓𝑗 𝑗≥𝑛  

and 𝑑 = ∑ 𝑓𝑗
2

𝑗≥𝑛  we have ‖𝑐𝑎‖  ≤  ‖𝑑𝑎‖  ≤  𝜀. 

(xi)  ‖∑ 𝑓𝑗𝑥𝑗𝑓𝑗𝑗  ‖ <  𝑠𝑢𝑝𝑗  ‖𝑓𝑗𝑥𝑗𝑓𝑗‖ for every norm-bounded sequence (𝑥𝑗). 

(xii) If in addition sup
𝑗
‖𝑓𝑗𝑥𝑗𝑓𝑗‖ =  sup

𝑗
‖𝑥𝑗‖  then we moreover have the equality in (xi). 

In order to prove (xi) consider the 𝐶∗-algebra 𝑁 = ∏ℕ 𝑀. Each map 

𝑁 ∋ (𝑥𝑘)𝑘∈ℕ  ↦ 𝑓𝑗  𝑥𝑗  𝑓𝑗  ∈ 𝑀 

for j ∈ ℕ is completely positive on 𝑁, and therefore for each n ∈ ℕ  the map (𝑥𝑘)𝑘∈ℕ  ↦
∑ fj𝑥jfjj≤n is completely positive as well. The supremum of these maps is also a completely 

positive map. By the assumption that  ∑ 𝑓𝑗
2

𝑗 = 1 this map is also unital, and therefore of 

norm 1. The inequality (xi) follows. 

In order to prove (xii) 𝑙𝑒𝑡 𝛼 = 𝑠𝑢𝑝𝑗  ‖𝑥𝑗‖. We may assume 𝛼 = 1.  Fix ε >  0, unit vector 

ξ , and 𝑛  such that‖(fnxnfn)ξ‖  > 1 − ε . Then ‖fnξ‖ ≥  1 − ε  and therefore |(fn
2ξ|ξ)| =

 ‖fnξ‖ ≥  1 − ε and this implies that ‖ξ − fn
2ξ‖  ≤  ε. Since ∑ 𝑓𝑗

2 
𝑗  =  1, this shows that 

‖∑ (fj𝑥jfj)ξ𝑗 ‖ ≈  ‖(fn𝑥nfn)ξ‖ and the conclusion follows. 

Recall that 𝜋: 𝑀(𝐴) → 𝐶(𝐴) is the quotient map. In the following the norm on the left-

hand side of the equality is computed in the corona and the norm on the right-hand side is 

computed in the multiplier algebra. 

(xiii) ‖π(∑ fj𝑥jfj𝑗 )‖  =  limsupj‖fj𝑥jfj‖ for every bounded sequence (𝑥j) such 

that sup𝑗  ‖fj𝑥jfj‖ =  sup𝑗‖𝑥j‖. 

Since  ∑ fj𝑥jfj
∞
𝑗=0 − ∑ fj𝑥jfj

∞
𝑗=𝑚  is in 𝐴 for all 𝑚 ∈  ℕ, the inequality ≤ follows from (xi) 

and ‖𝜋(𝑎) ‖ ≤  ‖𝑎‖. Similarly, ≥ follows from (xii). 
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 The converse inequality follows by Lemma (2.2.24) 

(xiv) 𝑋(𝑓𝑛) = {𝑎 ∈ 𝑀:∑ ‖[𝑎, 𝑓𝑛]‖𝑛 < ∞}is a subalgebra of 𝑀 including 

𝐶∗(𝑈𝑛 𝐹𝑛). 

Since 𝑏 ∈  𝐹𝑗 implies ‖[𝑏, 𝑓𝑛]‖ ≤  2
−𝑛 for all 𝑛 ≥  𝑗, we have Uj Fj  ⊆  𝑋(𝑓𝑛). 

For 𝑎 and 𝑏  in𝑀  we have [𝑎 +  𝑏, 𝑓𝑛]  =  [𝑎, 𝑓𝑛]  + [𝑏, 𝑓𝑛], ‖[𝑎
∗, 𝑓𝑛]‖  = ‖[𝑎, 𝑓𝑛]‖ and  

‖[𝑎𝑏, 𝑓𝑛]‖ ≤  ‖𝑎‖.  ‖[𝑏, 𝑓𝑛]‖  + ‖𝑏‖ .  ‖[𝑎, 𝑓𝑛]‖. Therefore 𝑋(𝑓𝑛) is a ∗‑subalgebra of 𝑀. 

𝑋(𝑓𝑛) is not necessarily norm-closed but this will be of no consequence. 

(xv) The map 𝛬 =  𝛬(𝑓𝑛) from 𝑀 into 𝑀 defined by 

 

𝛬(𝑎)  =  ∑ 𝑓𝑛𝑎𝑓𝑛
𝑛

  

is completely positive and it satisfies 𝑏 − Λ(𝑏)  ∈  𝐴 for all 𝑏 ∈  𝑋(𝑓𝑛). 

Note that ‖𝛬(𝑏)‖  ≤  ‖𝑏‖ by (xi), and the map is clearly completely positive. Fix 𝑏 ∈  𝑋(𝑓𝑛) 

and 𝜀 >  0. Since 𝑏 ∈  𝑋(𝑓𝑛) the series 𝛿𝑗 = ‖𝑓𝑗𝑏 −  𝑏𝑓𝑗‖ is convergent, and we can pick 𝑛 

large enough to have ∑ ‖𝑓𝑗𝑏 − 𝑏𝑓𝑗‖𝑗≥𝑛   ≤  𝑒. We write 𝑐 ~𝐴 𝑑 for 𝑐 −  𝑑 ∈  𝐴 and 𝑐 ~𝜀  𝑑 

for ‖𝑐 − 𝑑‖  ≤  𝜀 (clearly the latter is not an equivalence relation). We have ∑ 𝑓𝑗𝑏𝑓𝑗𝒋≤𝒏  ∈

𝐴. Also, with 𝛿 =  ∑ 𝛿𝑗𝑗≥𝑛   we have 

(1 −  𝑒𝑛)𝑏 =  ∑ 𝑓𝑗
2𝑏

∞

𝑗=𝑛
  ~𝛿∑ 𝑓𝑗𝑏𝑓𝑗

∞

𝑗=𝑛
 

 

and the conclusion follows. 

(xvi) If 𝑠𝑢𝑝𝑗  ‖𝑥𝑗‖  < ∞ and 𝛿𝑗  =  𝑠𝑢𝑝𝑖≥𝑗   ‖[𝑥𝑗 , 𝑓𝑖]‖ are such that ∑ 𝛿𝑗  <  ∞𝑗   , then 

𝑥 =  ∑ 𝑓𝑗𝑥𝑗𝑓𝑗𝑗  belongs to 𝑋(𝑓𝑛). 

We have𝑓𝑛 (∑ 𝑓𝑗𝑥𝑗𝑓𝑗𝑗 )  = 𝑓𝑛 (∑ 𝑓𝑗𝑥𝑗𝑓𝑗
𝒏+𝟏
𝒋=𝒏−𝟏 ). Since ‖𝑓𝑘, 𝑓𝑘+1‖ ≤  𝜀𝑘 we have 

‖𝑥, 𝑓𝑛‖ ≤∑ ‖fjxjfj, fn‖
𝑛+1

𝑗=𝑛−1
≤ 4𝑠𝑢𝑝𝑗‖𝑥𝑗‖𝜖𝑛−1 + 𝛿𝑛−1 + 𝛿𝑛 + 𝛿𝑛+1 

and the conclusion follows. 

Theorem (2.2.26)[114]: If 𝐴 is a  𝜎‑unital C∗-algebra then its corona 𝐶(𝐴) is countably 

degree-1 saturated. 

Proof. Fix a 𝜎-unital algebra 𝐴 and let 𝜋: 𝑀(𝐴)  →  𝐶(𝐴) be the quotient map. 

Fix degree-1 ∗‑polynomials 𝑃𝑛(𝑥̅) with coefficients in 𝐶(𝐴) and compact subsets 𝐾𝑛 ⊆
 ℝ such that for every 𝑛 the system 

(xvii) ‖𝑃𝑗(𝑥̅)‖  ∈  (𝐾𝑗)𝟏/𝑛    for all 𝑗 ≤ 𝑛 

has a solution in 𝐶( 𝐴). Without a loss of generality all the inequalities of the form ‖𝑥𝑛‖  ≤
 1, for 𝑛 ∈  ℕ, are in the system. By compactness, we can assume each 𝐾𝑛  is a singleton 
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{𝑟𝑛}. Therefore we may assume (xvii) consists of conditions of the form |‖𝑃𝑛(𝑥̅)‖ −  𝑟𝑛 |  ≤
 1/𝑚 , for all 𝑚  and 𝑛 . By re-enumerating 𝑃𝑛′𝑠  and adding redundancies, we may also 

assume that only the variables 𝑥𝑗 , for 𝑗 ≤  𝑛, occur in 𝑃𝑛 for every 𝑛. For each 𝑚 fix an 

approximate solution 𝑥̇𝑗  (𝑚)  =  𝜋 (𝑥 𝑗(𝑚)), for 𝑗 ≤  𝑚, as in (xvii). Therefore 

(xviii)  ‖𝑃𝑘 (𝜋(𝑥̅(𝑚)))‖ − 𝑟𝑘|  ≤  1/𝑚 for all 𝑘 ≤ 𝑚. 

We choose all 𝑥𝑘  (𝑚) to have norm ≤  1. 

Let 𝑃𝑛
0(𝑥̅)  be a polynomial with coefficients in 𝑀(A)  that lift to the corresponding 

coefficients of 𝑃𝑛(𝑥̅).  Let 𝐹𝑛  be a finite subset of 𝑀(𝐴)  such that 𝜋(𝐹𝑛)  includes the 

following: 

(i)  all coefficients of every 𝑃𝑗
0 for 𝑗 ≤  𝑛, 

(ii)  {𝑥𝑘  (𝑚) ∶  𝑘 ≤  𝑚} satisfying (xviii) for all 𝑚 ≤  𝑛, and 

(iii) {P𝑗
0 (𝑥0(𝑗), . . . , 𝑥𝑗  (𝑗)) ∶  𝑗 ≤ 𝑛}. 

With 𝜀𝑛 = 2
−𝑛 𝑙𝑒𝑡 (𝑒𝑛) and (𝑓𝑛)  be as guaranteed by Lemma (2.2.25).Since ‖𝑥𝑗(𝑖)‖ ≤

 1, by (x) we have that 

yi = ∑𝑓𝑗xi(j)fi
i

  

belongs to 𝑀(𝐴)for all i, and (xvi) implies 𝑦𝑖  ∈ 𝑋(𝑓𝑛) for all 𝑖.  

We shall prove ‖(𝑃𝑛𝜋(𝑦̅))‖  =  𝑟𝑛 for all 𝑛. 

By (xi) we have ‖𝑦𝑖  ‖ ≤ 2. Fix 𝑛 and a monomial 𝑎𝑥𝑘𝑏 of 𝑃𝑛
0(𝑥̅).  Then for all 𝑗 ≥  𝑛 we 

have 

‖𝑎𝑓𝑖𝑥𝑘(𝑗)𝑓𝑖𝑏 − 𝑓𝑖𝑎𝑥𝑘(𝑗)𝑏𝑓𝑖‖ ≤ 𝜀𝑗 . (|𝑎| + |𝑏|) 

 

and therefore the sum of these differences is a convergent series in 𝐴 and we have 

(xix)  𝑎(∑ 𝑓𝑖𝑥𝑘(𝑗)𝑓𝑖𝑗 )𝑏~𝐴 ∑ (𝑓𝑖𝑎𝑥𝑘(𝑗)𝑏𝑓𝑖).𝑗  

Since the polynomial 𝑃𝑛
0(𝑥̅) has degree 1, all of its nonconstant monomials are either of the 

form 𝑎𝑥𝑘𝑏 or of the form 𝑎𝑥𝑘
∗𝑏 for some 𝑘, 𝑎 and 𝑏, and by (xix) (writing ∑ 𝑓𝑖𝑦̅𝑓𝑖𝑗  for the 

𝑛 +  1‑ tuple    (∑ 𝑓𝑖𝑦0𝑓𝑖𝑗 , …∑ 𝑓𝑖𝑦𝑛𝑓𝑖𝑗 ) 

𝑃𝑛
0(∑𝑓𝑖𝑦𝑘𝑓𝑖

𝑗

)~𝐴∑𝑓𝑖𝑃𝑛
0(𝑦̅)𝑓𝑖

𝑗

. 

By (xv) we have ∑ 𝑓𝑖𝑦𝑖𝑓𝑖𝑗 ~𝐴 ∑ 𝑓𝑖𝑦𝑖𝑓𝑖𝑗  for all 𝑖 and therefore 

 

𝑃𝑛
0(𝑦̅) ~𝐴 𝑃𝑛

0(∑𝑓𝑖𝑦̅𝑓𝑖
𝑗

)~𝐴∑𝑓𝑖𝑃𝑛
0(𝑦̅)𝑓𝑖

𝑗

. 
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Using this, by (xii) we have that 

 

‖𝑃𝑛(𝜋(𝑦̅))‖  =  ‖𝜋(𝑃𝑛
0(𝑦̅))‖  =  𝑙𝑖𝑚𝑠𝑢𝑝

𝑗
‖𝑓𝑖𝑃𝑛

0(𝑦̅)𝑓𝑗‖   =  𝑟𝑛. 

Therefore 𝜋(𝑦̅) is a solution to the system. Since the inequality was in the system for all 𝑘 

we also have ‖𝑦𝑘‖  ≤ 1 for all 𝑘 and this concludes‖𝑥𝑘‖ ≤ 1 was proof.                

We prove that the Calkin algebra is not countably saturated (cf. [104]). In Proposition 

(2.2.27) we construct a consistent type consisting of universal formulas that is not realized 

in the Calkin algebra. In Proposition (2.2.28) we go a step further and present a proof, due 

to 𝑁. Christopher Phillips, that some consistent quantifier-free type is not realized in the 

Calkin algebra. 

For a unitary 𝑢 in a 𝐶∗‑algebra 𝐴 let 

 

𝜉(𝑢)  =  {𝑗 ∈  ℕ | 𝑢 has 𝑎 𝑗‑th root}. 

By Atkinson's Theorem, every invertible operator in the Calkin algebra is the image of a 

Fredholm operator in ℬ(𝐻) and therefore 𝜉(𝑢) is either ℕ or {𝑗 | 𝑗 divides 𝑚} for some 

𝑚 ∈ ℕ, depending on whether the Fredholm index of 𝑢 is 0 or ±𝑚. 

Recall that a supernatural number is a formal expression of the form ∏ 𝑝𝑝𝑖
𝑘𝑖

𝑖  , where{𝑝𝑖}I 

s the enumeration of primes and each 𝑘𝑖  is a natural number (possibly zero) or ∞. The 

divisibility relation on supernatural numbers is defined in the natural way. 

Proposition (2.2.27)[114]: For any supernatural number 𝑛  the type 𝑡(𝑛)  consisting of 

following conditions is approximately finitely satisfiable, but not realizable, in the Calkin 

algebra. 

(I)  𝑥𝑜𝑥0
∗  =  1, 𝑥0

∗ 𝑥𝑜  =  1, 
(ii)  𝑥𝑘

𝑘  =  𝑥𝑜,  whenever k is a natural number that divides n, 

(iii)  inf||𝑦|| = 𝟏  ||𝑦
𝑘 — 𝑥𝑜|| ≥  1, whenever k is a natural number that does not divide 𝑛. 

In particular, the Calkin algebra is not countably saturated. 

Proof. We have 𝑛 = ∏ 𝑝
𝑗

𝑘𝑗
𝑗 , where (𝑝𝑗)is the increasing enumeration of primes and 𝑘𝑗 ∈

ℕ ∪ {∞}. 
Let s denote the unilateral shift on the underlying Hilbert space 𝐻 and let 𝑠̇ be its image 

in the Calkin algebra. For 𝑙 ∈ ℕ 𝑙𝑒𝑡 𝑛𝑙 = ∏ 𝑃𝑗
𝑙
𝑗=1 . We claim that 

𝜉(𝑠̇𝑛𝑙) = [𝑚 ∈ ℕ | 𝑚 divides 𝑛}. 

The inclusion is trivial. In order to prove the converse inclusion fix 𝑘 ∈ ℕ   that does not 

divide 𝑛𝑙 . Assume for a moment that 𝑠̇𝑛𝑙  has a k-th root 𝑣̇  in 𝐶(𝐻)𝒰 .Let 𝑢  and 𝑤  be 

elements of ℬ(𝐻)  mapped to 𝑠̇𝑛𝑙  and 𝑣̇𝑘  by the quotient map.Then they are Fredholm 

operators with different Fredholm indices and ‖𝜋(𝑢)‖ = ‖𝜋(𝑤)‖  =  1 . Essentially by 

[108] we have ||𝜋(𝑢 − 𝑤)|| ≥  1 ,and therefore 𝑣 =  𝑛(𝑤) is not k-th root of 𝑠̇𝑛𝑙. 
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    Proposition (2.2.28) below was communicated to us by N. Christopher Phillips in [128]. 

While the proof in [128] relied entirely on known results about Pext and a topology on Ext 

(more precisely, [129], [118], [130], and [131]). 

Proposition (2.2.28)[114]: There is a countable degree-1 type over the Calkin algebra that 

is approximately finitely realizable by unitaries but not realizable by a unitary. In particular, 

the Calkin algebra is not countably quantifier-free saturated. 

Proof. We include more details than a 𝐶∗‑algebraist may want to see. Recall that for a 

𝐶∗‑ algebra 𝐴  the abelian semigroup 𝐸𝑥𝑡(𝐴)  is defined as follows: On the set of 

∗‑homomorphisms 𝜋: 𝐴 →  𝐶(𝐻) consider the conjugacy relation by unitaries in 𝐶(𝐻). On 

the set of conjugacy classes define addition by letting 𝜋1 ⨁𝜋2 be the direct sum, where 

𝐶(𝐻) is identified with 𝐶(𝐻⨁𝐻). The only fact about Ext that we shall need is that there 

exists a simple separable 𝐶∗‑algebra A such that 𝐴 is a direct limit of algebras whose Ext 

is trivial, but 𝐸𝑥𝑡(𝐴) is not trivial. For example, the CAR algebra has this property and we 

shall sketch a proof of this well-known fact below. 

Now fix 𝐴  as above and let 𝜋1: 𝐴 →  𝐶(𝐻)  and 𝜋2 ∶  𝐴 →  𝐶(𝐻)  be inequivalent 

∗‑homomorphisms. Since 𝐴 is simple both 𝜋1 and 𝜋2 are injective and 𝐹(𝜋1(𝑎))  =  𝜋2(𝑎) 
defines a map 𝐹 from 𝜋1[𝐴] to 𝜋2[𝐴]. This map is not implemented by a unitary, but if 𝐴 =
 𝑙𝑖𝑚𝑛 𝐴𝑛  so that 𝐸𝑥𝑡 (𝐴𝑛)  is trivial for every 𝑛 , then the restriction of 𝐹 to 𝜋1[𝐴𝑛]  is 

implemented by a unitary. Fix a countable dense subset 𝐷 of 𝜋1[𝐴𝑛]. Then the countable 

degree-1  type 𝑡  consisting of all conditions of the form 𝑥𝑎 =  𝐹(𝑎)𝑥 , for 𝑥 ∈ 𝐷 , is 

approximately finitely realizable by a unitary, but not realizable by a unitary. 

We now sketch a proof that Ext of the CAR algebra 𝐴 = ⨂𝑛 𝑀2 (ℂ) is nontrivial. Write 

𝐴 as a direct limit of 𝑀2𝑛 (ℂ) for 𝑛 ∈ ℕ. While 𝐸𝑥𝑡(𝑀2𝑛 (ℂ)) is trivial, the so-called 

strong Ext of 𝑀2𝑛 (ℂ)   is  not. Two ∗‑  homomorphisms of 𝑀2𝑛 (ℂ) into 𝐶(𝐻)  are 

strongly equivalent if they are conjugate by 𝑢̇ , for aunitary 𝑢 ∈  𝐵(𝐻) . Every unital 

∗‑ homomorphism Φof 𝑀2𝑛 (ℂ)  into 𝐶(𝐻)  is lifted by a  ∗‑ homomorphism Φ0  into 

ℬ(𝐻)and the strong equivalence class of Φ  is uniquely determined by the codimension of 

Φ0(1) modulo 2𝑛. Any unitary 𝑢 in 𝐶(𝐻) that witnesses such Φ is conjugate to the trivial 

representation of 𝑀2𝑛 (ℂ)which necessarily has Fredholm index equal to the codimension 

of Φ0(1) modulo 2𝑛. Now write 𝑀2∞ as ⨂ℕ 𝐴𝑛 where 𝐴𝑛  ≅  𝑀2(ℂ) for all 𝑛. Recursively 

find *-homomorphisms 𝜋1
𝑛 and 𝜋2

𝑛 from ⨂𝑗≤𝑛 𝐴𝑗  into the Calkin algebra so that (i)𝜋𝑗
𝑛+1 

extends 𝜋𝑗
𝑛 for all 𝑛 and 𝑗 =  1, 2, (ii) each 𝜋1

𝑛 has trivial strong Ext class, and (iii) each 𝜋2
𝑛 

has strong Ext class 2𝑛−1 (modulo 2𝑛). The construction is straightforward. The limits 𝜋1 

and 𝜋2 are ∗‑homomorphisms of the CAR algebra into the Calkin algebra such that the first 

one lifts to a homomorphism of the CAR algebra into ℬ(𝐻) and the other one does not. 

Corollary (2.2.29)[370]: Assume 𝑀 is countably degree-1 saturated and 𝐵 is a separable 

subalgebra. If 𝐼 is a (closed, two-sided) ideal of 𝐵 then there is a contraction 𝑓𝑗  𝐺 𝑀 ∩ 𝐵′ 

such that 𝑎𝑗𝑓𝑗 = 𝑎
𝑗 for all 𝑎𝑗 ∈ 𝐼. 

If moreover 𝑐 ∈ 𝑀  is such that 𝑐 = { 0} , then we can choose 𝑓𝑗  so that 𝑓𝑗𝑐 = 0 and 

𝑓𝑗𝐼𝑐 =  { 0}. 

Proof.  Fix a countable dense subset 𝑎𝑛
𝑗
, for 𝑛 ∈ ℕ, of I and a countable dense subset 𝑏𝑛

𝑗
, 

for 𝑛 ∈ ℕ,on 𝐵. Consider type 𝑡 consisting of the following conditions. 
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(i) ∑  𝑗 ‖𝑎𝑛
𝑗
𝑥 − 𝑎𝑛

𝑗
‖  =  0 for all 𝑛 ∈  ℕ, 

(ii) ∑  𝑗 ‖𝑏𝑛
𝑗
𝑥 −  𝑥𝑏𝑛

𝑗
‖  =  0 for all 𝑛 ∈  ℕ. 

(iii) 𝑥𝑐 =  0, and 

(iv) ∑  𝑗 𝑥𝑎𝑛
𝑗
 𝑐 = 0 for all 𝑛 ∈ ℕ. 

We prove that 𝑡  is consistent, and moreover that it is finitely approximately 

satisfiable by a contraction. By [118] I has a 𝐵-quasicentral approximate unit 𝑒𝑛, for 𝑛 ∈ ℕ, 

consisting of positive elements. Since 𝐵𝑐 = {0} we have 𝑒𝑛𝑐 = 0,  as well as 𝑒𝑛𝑎𝑚
𝑗
𝑐 = 0 

for all 𝑚 and all 𝑛. Therefore every finite fragment of 𝑡 is arbitrarily well approximately 

satisfiable by 𝑒𝑛 for all large enough 𝑛. By Lemma (2.2.6) (applied with [𝑟, 𝑠]  =  [0,1]) and 

saturation of 𝑀 there is a contraction 𝑓𝑗 ∈ 𝑀 that realizes 𝑡. Then 𝑓𝑗𝑎
𝑗 = 𝑎𝑗  for all 𝑎𝑗 ∈

𝐼, 𝑓𝑗 ∈ 𝐵′ ∩ 𝑀,∑  𝑗 𝑓𝑗  𝐴𝑐 = {0}, and ∑  𝑗 𝑓𝑗𝑐 = 0,  as required. 

Corollary (2.2.30)[370]: Assume 𝑎  and 𝑎 + 𝜖  are positive operators. Then  ‖𝑎 +  b‖ ≥
 max(‖a‖, ‖a + ε‖).  

Proof. We may assume 1 = ‖𝑎 ‖ ≥  ‖𝑎 + 𝜖‖. Fix 𝜀 >  0 and let 𝜉 be a unit vector such 

that 𝜂 =  𝜉 −  𝑎𝜉  satisfies  ‖𝜂‖  < 𝜀 .Then 𝑅𝑒(𝑎𝜉|(𝑎 + 𝜖)𝜉) =  𝑅𝑒(𝜉|(𝑎 + 𝜖)𝜉) +
 𝑅𝑒(𝜂|(𝑎 + 𝜖)𝜉) ≥  𝑅𝑒(𝜂|(𝑎 + 𝜖)𝜉) > − 𝜀 since 𝑎 + 𝜖 ≥  0. We therefore have 

‖(2𝑎 + 𝜖)𝜉 ‖2 = ((2𝑎 + 𝜖)𝜉|(2𝑎 + 𝜖)𝜉) 

= ‖𝑎𝜉‖2  + ‖(𝑎 + 𝜖)𝜉‖2  +  2𝑅𝑒(𝑎𝜉|(𝑎 + 𝜖)𝜉) >  1 + ‖(𝑎 + 𝜖)𝜉‖2 −  2𝜀 
and since 𝜀 >  0 was arbitrary the conclusion follows. 

Section (2.3): Certain 𝐂∗∗ Algebras Which are Coronas of Banach Algebras 

The study of the commutant modulo the Hilbert–Schmidt class of a normal operator 

with rich spectrum ([140], [133]) has shown that this Banach algebra  together with its ideal 

of compact operators resembles in many ways the pair consisting of the algebra ℬ(ℋ) of 
all operators on a Hilbert space ℋ and  the ideal 𝒦(ℋ)of compact operators and that the 

analog of the Calkin algebra is also a 𝐶∗‑ algebra. The purpose is to develop this analogy. 
We go beyond the case of a normal operator [140] or of a commuting n-tuple of hermitian 

operators [133] and deal with a general non-commuting 𝑛 -tuple of operators and its 
commutant modulo a normed ideal which satisfies a certain quasicentral approximate unit 

condition relative to the n-tuple. The main result we obtain is that countable degree-1 

saturation, in the model theory of ([114]), holds for the analog of the Calkin algebra, which 

is still a 𝐶∗‑algebra. We will refer to countable degree-1 saturation simply as “degree-1 

saturation”, for the sake of brevity. This adds to the list of nice properties of these analogs 

of the Calkin algebra and also adds to the list of 𝐶∗‑algebras satisfying degree -1 saturation 
([114]). We also obtain a few other results. The existence of quasicentral approximate units 

for the ideal of compact operators in the Banach algebra we consider, as well as 

generalizations of some of the multiplier and duality results in [140]. 

The Calkin algebra which we obtain, Give hope that these algebras may be a good 

place to apply extensions of bi-Variant  𝐾-theory beyond 𝐾𝐶∗ −algebras ([136]) and cyclic 
cohomology ([135]). 

We recall certain basic facts about normed ideals of compact operators ([137], [139]) 

and about the invariant 𝒦𝒴(𝒥) where 𝒥 is a normed ideal and τ an n-tuple of operators, 

which we used in the work on normed ideal perturbations of Hilbert space operators 
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([142],[14], [144]). 

The main result is the existence of quasicentral approximate units for the compact 

ideal of the Banach algebras we study. 

The construction we use has some of the flavor of the tridiagonal con-struction we 

used in the original proof of the non-commutative Weyl–von Neumann theorem [143], 

before the concept of quasicentral approximate units was abstracted ([7], [83]).  

The fact that the analogue of the Calkin algebra is a 𝐶∗‑algebra. 

We give the countable degree -1 saturation for the analogue of the Calkin algebra. 

The proof is along similar lines to those of the proof for coronas of 𝐶∗-algebras of Farah and 
Hart ([114]) with the added technical difficulties arising from Banach algebra norms which 

don’t allow continuous functional calculus. We were helped by the fact that in the case of 

the Calkin algebra the main technical lemma and the glueing construction simplify and 

becomes of the tridiagonal construction and the kind of approximately commuting partition 

of unity used to glue parts of operators in [143]. 

We deal with generalizations of multiplier and duality results from [140] to the 

general setting. Here once appropriate assumptions are found, the proofs in [140] generalize 

immediately. 

The term normed ideal will be used as an Abbreviation for symmetrically normed 

ideal ([137], [139]) of compact operators on a separable infinite dimensional complex 

Hilbert space ℋ. 

This is an ideal 0 ≠  ℐ ⊂  ℬ(ℋ) of the algebra of all bounded operators on ℋ which 

is contained in 𝒦(ℋ) the ideal of compact operators and which is endowed with a certain 

norm |  |ℐ with respect to which is a Banach space.The norm is given by|T|ℐ = |T| Φ =
Φ(s1(T) , s2(T) , . . . )  where Φ  is a norming function (see §3 in [137]) and s1(T) ≥
 s2(T ) ≥ . ..are the s-numbers of T . Given a norming function Φ we will use the notation in 

|9| and dente by (𝑆Φ , |  |Φ and 𝑆Φ
(0)
, |  |Φ) the normed ideals which are the set of all compact 

operators 𝑇 so that |T |Φ < ∞ and, respectively, the closure in 𝑆Φ of ℜ(ℋ)the ideal of finite 
rank operators. 

We will always leave out 𝒦(ℋ)as a normed ideal. 

If (ℐ,  | | ℐ) is a normed ideal we shall also use the notation for the closure of ℜ(ℋ) in ℐ. 

Remark that since |  |ℐ =  | | Φ for some norming function Φ, ℐ(0) = 𝑆Φ
(0)

 .Also if | |ℐ =

| |Φ we clearly have 𝑆𝛷
(0)
⊂ ℐ ⊂ 𝑠𝛷  and if 𝑆Φ

(0)
= 𝑠Φ  the function Φ  is called 

“mononorming.  

If ᴛ =  (𝑇𝑗  )1≤𝑗≤𝑛 is an n-tuple of operators the definition of the number 

𝒦ℐ(ᴛ) = lim inf
𝐴∈ℛ1

+(ℋ)
|[𝐴, ᴛ]|ℐ 

from ([142] see also [141], [144]), where (ℐ, | |ℐ) is a normed ideal and 𝑅−
+(ℋ)  =  {𝐴 ∈

 ℛ(ℋ) | 0 ≤  𝐴 ≤  1} the lim inf being with respect to the natural order on ℛ−
+(ℋ)and 

where we use the notation[𝐴, ᴛ ]  = ([𝐴, 𝑇𝑗])1≤𝑗≤𝑛 and |(𝑋𝑗)1≤𝑗≤𝑛|ℐ
 = 𝑚𝑎𝑥1≤𝑗≤𝑛 |𝑋𝑗|ℐ. If 

| |ℐ = | |𝛷 we also write k𝛷(ᴛ)  for kℐ(ᴛ ). 

     We will be mainly interested in the condition 𝑘ℐ(ᴛ ) = 0. Results concerning this are 
summarized in [144]. If ᴛ is an n- tuple of commuting hermitian operators and ℐ = 𝒞𝑛 the 
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Schattenvon  Neumann class, then we have 𝑘𝒞𝑛(ᴛ ) = 0 if 𝑛 ≥ 2. This implies the fact that 

𝑘𝒞2(𝑁 ) = 0if 𝑁 is a normal operator which underlies the results in [140]. 

    We should also recall (see [142] or [141]) that 𝑘ℐ(ᴛ )  =  0 is equivalent to  
𝑘𝒥(ᴛ∐ᴛ ∗

∗) = 0   where ᴛ∗ = (Τ𝑗
∗)1≤𝑗 ≤𝑛   or to 𝑘𝒥(𝑅𝑒 ᴛ ∐1𝑚ᴛ) = 0  where 𝑅𝑒 𝜏 =

 (𝑅𝑒 𝑇𝑗  )1≤𝑗 ≤𝑛 and Imτ = (Im T𝑗  )1≤𝑗 ≤𝑛.  

The condition 𝑘𝒥(ᴛ ) = 0 is also equivalent to the existence of a sequence  ∈ 𝐴𝑛 ∈ ℛ1
+(ℋ) 

such that 𝐴𝑛
𝜔
→1 and |[𝐴𝑛 ,    ᴛ]|𝒥 → 0 𝑎𝑠 𝑛 → ∞ or also to the existence of  a sequence 𝐴𝑛 ↑

1 , 𝐴𝑛 ∈  ℛ1
+(ℋ) satisfying additional conditions like 𝑚 >  𝑛 ⇒ 𝐴𝑚𝐴𝑛 = 𝐴𝑛   and  

𝐴𝑛𝐵𝑛 = 𝐵𝑛 where ℬ𝑛 ∈ ℛ(ℋ) are given and so that |[𝐴𝑛 ,    ᴛ]|𝒥 → 0 as n → ∞. 

Let 𝜏 = (𝑇𝑗  )1≤𝑗≤𝑛, 𝑇𝑗 = 𝑇𝑗
∗, 1 ≤ 𝑗 ≤ 𝑛 be an n-tuple of hermitian operators in ℬ(ℋ)  and let 

(𝒥, | |𝒥)  be a normed ideal we define ℇ(𝜏 ; ℐ)  =  {𝑋 ∈  ℬ(ℋ) | [𝑋, 𝑇𝑗  ]  ∈  ℐ, 1 ≤  𝑗 ≤

 𝑛} and 𝒦(𝜏 ; ℐ)  = ℇ(𝜏 ;  ℐ)  ∩ 𝒦(ℋ) .Then ℇ(𝜏 ;  ℐ)  is a Banach algebra with the norm 

‖|𝑋‖| = ‖𝑋‖ + |[𝑋, 𝜏 ]|ℐ   with an isometric involution ‖|𝑋∗‖| = ‖|𝑋‖|  and 𝒦(𝜏 ; ℐ) is a 
closed two-sided ideal, which is also closed under the involution. We shall denote by 

𝒫(ℋ) the finite-rank hermitian projections. Clearly 𝒫(ℋ) ⊂ ℛ(ℋ) ⊂ 𝒦(𝜏 ; ℐ). 
Proposition(2.3.1)[132]: Assume 𝒦ℐ(𝜏) =  0. 
(a) If 𝑃 ∈ 𝒫(ℋ) and 𝜖 > 0, then there is 𝐴 ∈ 𝑅1

+(ℋ) so that 𝑃 ≤  𝐴 and  ‖|𝐴‖| <  1 +
 𝜖. 
(b) Ifℛ(ℋ) is dense in ℐand   𝑃 ∈ 𝒫(ℋ),𝒦𝑟 ∈ 𝒦(𝜏 ;  ℐ), 1 ≤  𝑟 ≤  𝑚and 𝜖 >  0, then 
there is 𝐴 ∈  ℛ1

+(ℋ) so that 𝑃 ≤  𝐴, ‖|(1 − 𝐴)𝐾𝑟‖| < 𝜖, 1 ≤  𝑟 ≤  𝑚 and‖|𝐴‖| <  1 +
𝜖 .   
Proof: (a) Since 𝒦ℐ(𝜏 ) =  0 there is 𝐴 ∈  ℛ1

+(ℋ), 𝑃 ≤  𝐴 so that|[𝐴, 𝜏 ]|ℐ < 𝜖, which in 
view of the fact that ‖𝐴‖ ≤  1 gives ‖|𝐴‖| < 1 + 𝜖. 
b) Since [𝒦𝑟 , 𝑇𝑗] ∈  ℐ, 1 ≤  𝑟 ≤  𝑚, 1 ≤   𝑗 ≤  𝑛  and ℛ(ℋ)  is dense in ℐ , there is a 

projection 𝑄 ∈ 𝒫(ℋ)  so that |(𝐼 −  𝑄)[𝐾𝑟 , 𝑇𝑗]|ℐ  <  𝜖/4  and  ‖(1 −  𝑄)𝒦𝑟‖ <  𝜖/4, 1 ≤

 𝑟 ≤  𝑚, 1 ≤  𝑗 ≤  𝑛. Clearly, we may assumewithout loss of generality that 𝑃 ≥ 𝑄  and 
‖|𝐾𝑟‖| ≤  1, 1 ≤ 𝑟 ≤ 𝑚.  
Using a), there is 𝐴 ∈  𝑅1

+(ℋ) so that 𝑄 ≤ 𝑃 ≤  𝐴 and  |[𝐴, 𝜏 ]|ℐ  <  𝜖/4.We have 

‖(𝐼 − 𝐴)𝐾𝑟‖ ≤ ‖ (𝐼 − 𝑄)𝐾𝑟‖ <  𝜖/4 
and 

|[(𝐼 −  𝐴)𝒦𝑟, 𝑇]|ℐ ≤ |[𝐴, 𝑡]|ℐ‖𝒦𝑟‖ + max
1≤𝑗≤𝑛

|(𝐼 −  𝐴)[𝒦𝑟 , 𝑇𝑗]|ℐ <  𝜖/4 +  𝜖/4 =  𝜖/2. 

It follows that ‖|(𝐼 − 𝐴)𝐾𝑟‖|  < 𝜖. 
Corollary(2.3.2)[132]: If 𝒦ℐ(𝜏 ) = 0 andℛ(ℋ) is dense in ℐ, then ℛ(ℋ) is dense in 
𝒦(𝜏; ℐ).  
Proposition(2.3.3)[132]: Assume 𝑘ℐ(𝜏 )  =  0 and ℐ

(0) =  ℐ, that is ℛ(ℋ) is dense 
in ℐ.  𝐿𝑒𝑡 𝑋1, . . . , 𝑋𝑚 ∈ ℇ(𝜏 ;  ℐ),𝒦1, . . . , 𝒦3 ∈ 𝒦(𝜏 ;  ℐ), 𝑃 ∈ 𝒫(ℋ)and 𝜖 > 0 be given. 
Then there is 𝐵 ∈ ℛ1

+(ℋ) so that 𝑃 ≤  𝐵, ‖|𝐵‖|  < 1 + 𝜖 
 ‖|(𝐼 −  𝐵)𝐾𝑗‖| < 𝜖, ‖|[𝑋𝑝, 𝐵]‖| < 𝜖 

for 1 ≤  𝑗 ≤  𝑟, 1 ≤  𝑝 ≤  𝑚. 

Proof: Without loss of generality we will assume that 𝑋𝑝  =  𝑋𝑝
∗  , 1 ≤  𝑝 ≤  𝑚. Since 

ℐ =  ℐ(0) there is 𝑃0 ∈ 𝒫(ℋ) so that 𝑃 ≤ 𝑃0 and 

|(𝐼 − 𝑃0)[𝑋𝑝, 𝜏 ]|ℐ  +  |[𝑋𝑝, 𝜏 ](𝐼 − 𝑃0)|ℐ <  𝜖/2. 
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Applying repeatedly Proposition(2.3.1) we can find𝑃𝑠 ∈  𝒫(ℋ), 𝐴𝑠 ∈ ℛ1
+(ℋ), 

𝑃0 ≤ 𝑃1  ≤  𝑃 2 ≤ . . . , 
𝐴0 ≤ 𝐴1 ≤ 𝐴2  ≤ . . . 

so that 𝑃𝑠 ↑  𝐼 as 𝑠 →  ∞ and 𝑃𝑠 ≤ 𝐴𝑠 ≤ 𝑃𝑠+1, (𝐼 − 𝑃s+1)𝑋𝑝𝐴𝑠 =  0, 

(𝐼 − 𝑃𝑠+1)𝑇𝑙𝐴𝑠 =  0, (𝐼 − 𝑃𝑠+1)𝑋𝑝𝐴𝑠 =  0 

(that is 𝑃𝑠+1ℋ ⊃  𝑋𝑝𝐴𝑠ℋ + 𝑇𝑙𝐴𝑠ℋ), ‖|𝐴𝑠‖| < 1 +  𝜖2
−𝑠−1 and ‖|(𝐼 − 𝐴𝑠)𝐾𝑗‖| < 𝜖. For 

1 ≤  𝑝 ≤  𝑚, 1 ≤  𝑙 ≤  𝑛, 1 ≤  𝑗 ≤  𝑟and all 𝑠 ≥ 0.  Let 𝐵 =  𝑁−1 (𝐴1 +⋯+ 𝐴𝑁 ).   

We will show that choosing 𝑁 sufficiently large, 𝐵 will have all the desired properties. 
Clearly, since 𝐴𝑠 ≥  𝑃 , 1 ≤  𝑠 ≤  𝑁 we will also have the same inequality for their 

mean, that is 𝐵 ≥  𝑃 . Similarly, (𝐼 −  𝐵)𝐾𝑗 is the mean of the  (1 − 𝐴𝑠)𝐾𝑗 , 1 ≤  𝑠 ≤  𝑁 

and this gives |(‖𝐼 − 𝐵)𝐾𝑗‖ |  < 𝜖. 

Also, the same kind of argument gives |‖𝐵‖|  <  1 + 𝑁−1𝜖 . 

To prove that ‖|[𝑋𝑝, 𝐵]|‖ < 𝜖 if 𝑁 is large enough we will show that [𝑋𝑝, 𝐵] → 0 and 

|[𝑋𝑝, 𝐵], 𝜏 ]|ℐ →  0 as 𝑁 →  ∞. Remark that the conditions on 𝑃𝑠, 𝐴𝑠, 𝑋𝑝, 𝑇𝑙 imply that in the 

orthogonal sum decomposition 

ℋ = 𝑃0ℋ ⊕ (𝑃1 − 𝑃0)ℋ ⊕ (𝑃2 −  𝑃1)ℋ ⊕ . . . 
we have that 𝐴𝑠  is block-diagonal, while the 𝑋𝑝  and 𝑇1 , being hermitian, are block-

tridiagonal. With the notation 𝑄0 = 𝑃0, 𝑄𝑠 = 𝑃𝑠 − 𝑃𝑠−1, 𝑠 ≥  1 , we have 𝐴𝑠−1  =  𝑄0 +
 ⋯ + 𝑄𝑠−1  +  𝑄𝑠𝐴𝑠−1𝑄𝑠 if 𝑠 ≥  1. It follows that 

‖𝐵 − (𝑄0 + ∑ (1 −
𝑠 − 1

𝑁
)𝑄𝑠

1≤𝑠≤𝑁

)‖ = ‖𝑁−1 ∑ 𝑄𝑠+1𝑄𝑠𝑄𝑠+1
1≤𝑠≤𝑁

‖ ≤ 𝑁−1. 

Hence the tridiagonality gives 

‖[𝐵, 𝑋𝑝]‖  ≤  2𝑁
−1 ‖𝑋𝑝‖ + ‖[𝑄0 + ∑ (1 −

𝑠 − 1

𝑁
)

1≤𝑠≤𝑁

𝑄𝑠, 𝑋𝑝]‖

≤ 2𝑁−1 +𝑁−1 (‖ ∑ 𝑄𝑠+1𝑋𝑝𝑄𝑠
1≤𝑠≤𝑁

‖ + ‖ ∑ 𝑄𝑠𝑋𝑝𝑄𝑠+1
1≤𝑠≤𝑁

‖) ≤ 4𝑁−1‖𝑋𝑝‖ 

and hence [𝐵, 𝑋𝑝]  →  0 as 𝑁 →  ∞. 

Since we may choose 𝑃0  ≠  0 , we have ‖𝐵‖ = 1  and hence ‖|𝐵‖| < 1 + 𝑁
−1𝜖   gives 

|[𝐵, 𝜏 ]|ℐ < 𝜖𝑁
−1 It follows that 

|[[𝐵, 𝑋ℐ], 𝜖]|ℐ ≤  2|[𝐵, 𝜏 ]|ℐ‖𝑋𝑝‖ + |[𝐵, [𝑋𝑝, 𝜏 ]]|ℐ
≤  2𝑁−1 𝜖‖𝑋𝑝‖ +  |(𝐼 −  𝐵)[𝑋𝑝, 𝜏 ]|𝐼 + |[𝑋𝑝, 𝜏 ](𝐼 −  𝐵)|ℐ . 

Since 𝐵 ≥  𝑃0, it follows that  
|(𝐼 −  𝐵)[𝑋𝑝, 𝜏 ]|𝑝 + |[𝑋𝑝, 𝜏 ](𝐼 −  𝐵)| ℐ <  𝜖/2. 

Hence |[𝐵, 𝑋𝑝], τ |ℐ < 𝜖 for 𝑁. 
Corollary(2.3.4)[132]: Assum𝑘ℐ(𝜏 ) = 0  and ℐ

(0) = ℐ . Let 𝑋1, . . . , 𝑋𝑚 ∈ ℰ(τ ;  ℐ)  and a 
sequence Ys ∈  ℛ(ℋ), s ∈ ℕ  be given. Then there is a sequence 𝐴𝑠 ∈  ℛ1

+(ℋ)  so that 
𝐴𝑠𝑌𝑠 = 𝑌𝑠 and 𝐴𝑠𝐴𝑡  = 𝐴𝑡 , 𝐴𝑠𝑋𝑝𝐴𝑡  = 𝑋𝑝𝐴𝑡 𝑖𝑓 𝑠 >  𝑡  and moreover 

As  ↑  I, ‖|As‖| →  1, ‖|(I − As)K‖| →  0, ‖|[Xp, As]‖|  →  0 

as 𝑠 →  ∞ for all 𝑘 ∈ 𝒦(𝜏 ; ℐ) and 1 ≤  𝑝 ≤  𝑚. 

We pass now to the quotient Banach algebra with involution ℰ(𝜏 ;  ℐ)/𝒦(𝜏 ;  ℐ) which we 
shall denote by ℇ/𝒦(𝜏 ;  ℐ). If 𝑝 ∶  ℬ(ℋ)  →  ℬ(ℋ)/𝒦(ℋ)  =  ℬ/𝒦(ℋ) is the canonical 
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homomorphism to the Calkin algebra, which we shall denote by ℬ/𝒦(ℋ), then there is a 
canonical isomorphism of ℰ/𝒦(𝜏 ;  ℐ)and the sub algebra 𝑝(ℰ(𝜏 ;  ℐ)) of ℬ/𝒦(𝜏 ;  ℐ). We 

shall often also denote by 𝑝 the homomorphism ℰ(𝜏 ;  ℐ)  → ℰ/𝒦(𝜏 ;  ℐ).  

Proposition(2.3.5)[132]: We assume 𝑘ℐ(𝜏 )  =  0  and ℐ
(0) = ℐ . Given 𝑋 ∈ ℰ(𝜏 ;  ℐ)  and 

ℰ > 0 there is 𝐴 ∈  𝑅1
+(ℋ) so that 

‖𝐴‖  =  1, ‖|𝐴‖|  <  1 +  𝜖 and  ‖|(𝐼 −  𝐴)𝑋‖| < ‖𝑝(𝑋)‖ + 𝜖 
where the norm of 𝑝(𝑋) is the ℬ/𝒦(ℋ) norm. In particular, the norm of X = 𝒦(τ ;  ℐ) in 
ℰ/𝒦(τ ;  ℐ)  equals the norm of 𝑝(𝑋)  in ℬ/𝒦(ℋ).  Thus algebraic embedding of ℰ/
𝒦(τ ;  ℐ)  into ℬ/𝒦(ℋ)  is isometric and ℰ/𝒦(𝜏 ;  ℐ)  identifies with a 𝐶∗ -subalgebra of 
ℬ/𝒦(ℋ). 
Proof:  We have stated this fact which is an immediate generalizationof results in [140] and 

[134], with a lot of detail, since it will be often used. 

In view of our assumption, that 𝑘ℐ(𝜏 )  =  0,  there are 𝐴𝑛 ↑  𝐼, 𝐴𝑛 ∈ ℛ1
+(ℋ)  so that 

|[𝐴𝑛, τ]|ℐ → 0 as 𝑛 → ∞. then also ‖(𝐼 − 𝐴𝑛)𝑋‖ → ‖𝑝(𝑋)‖ as 𝑛 → ∞.we also have 

|[(𝐼 − 𝐴𝑛)𝑋, 𝜏 ]|ℐ  ≤  |[𝐴𝑛, 𝜏 ]|ℐ  ‖𝑋‖ +  |(𝐼 − 𝐴𝑛)[𝑋, 𝜏 ]|ℐ 
and the first term in the right-hand side →  0 as 𝑛 →  ∞ by the properties of the 𝐴𝑛 , while 

the second also→ 0 since 𝒥(0) = 𝒥 and (𝐼 − 𝐴𝑛)[𝑋, 𝜏 ] converges weakly to 0 as 𝑛 →  ∞. 

The rest of the statement is well explained in the statement of the corollary itself. 

We show what amounts to countable degree-1 saturation of ℇ ∕ 𝒦(τ ;  ℐ)  under the 
assumption that 𝑘ℐ(𝜏 )  =  0, in the model-theory terminology of [134],[114].The result is 

given in Theorem (2.3.8),which is formulated in operator-algebra terms, using one of the 

equivalent definitions of countable degree-1 saturationwhich can be found in [114]. 

We begin with a rather standard technical fact. 

Lemma (2.3.6)[132]: Let 𝐺 = 𝐺∗ ∈ ℇ(𝜏 ;  ℐ)be such that‖|𝐺 − 
3

2
 𝐼‖|  ≤ 1. 

Then 𝐺1∕2 ∈ ℇ(𝜏 ;  ℐ) and there is a universal constant 𝐶, so that 

‖|[G1∕2, X]|‖ ≤  C‖|[G, X]|‖  if X ∈ ℇ(τ ;  ℐ ) 
and 

|[G1∕2, τ ]|ℐ  ≤  C|[G, τ ]|ℐ. 
Proof: The Lemma is an easy consequence of the functional calculus formula  

G1 2⁄ = (2π𝔦)−1∫(𝑧𝐼 −  𝐺)−1z1 2⁄ dz ,

Γ

 

where 𝛤 is the circle |𝑧 −  3/2|  =  5/4, and of the fact that for 𝑧 ∈ Γ we have : 
‖| (𝑧𝐼 −  𝐺)−1|‖ =  4/5‖| (𝑧𝐼 −  𝐺)−1(4/5(𝑧 −  3/2)𝐼 −  4/5(𝐺 −  3/2𝐼))−1|‖

≤  (1 −  4/5)−1  =  5 
and 

[(𝑧𝐼 −  𝐺)−1, X]  =  (𝑧𝐼 −  𝐺)−1[𝐺, X](𝑧𝐼 −  𝐺)−1 

Lemma(2.3.7)[132]:  Assume kℐ(τ )  =  0 and ℐ =  ℐ
(0). Let Mn ∈ ℇ(τ ;  ℐ), 

𝑛 ∈  𝑁, 𝜖𝑚  ↓  0 𝑎𝑠 𝑚 →  ∞,𝑃𝑘 ∈  𝒫(ℋ), 𝑃𝑘  ↑ 𝐼 𝑎𝑠 𝑘 →  ∞  and and increasing function 

𝜑 ∶  ℕ →  ℕbe given. Then there are 𝑅𝑚 ∈  ℛ1
+(ℋ),𝑚 ∈ ℕ so that 

(i) ∑ 𝑅𝑚
2 = 1𝑚≥1  

(ii) the 𝑅𝑚ʼ 𝑠 commute 

(iii) ‖𝑅𝑚‖ = 1  and |[𝑅𝑚, 𝜏 ]|ℐ  <  𝜖𝑚 if 𝑚 ≥  2 
(iv) 𝑅𝑚𝑃𝑛 =  0   if 𝑚 ≥  𝑛 +  2, 𝑛 ≥  1 
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(v) |‖[𝑅𝑚, 𝑀𝑘]‖ |  <  𝜖𝑚 if 𝑘 ≤  𝜑(𝑚),𝑚 ≥  2 
(vi)  𝑅𝑛𝑀𝑘𝑅𝑚  =  0, 𝑅𝑛𝑅𝑚  =  0 
If 𝑘 ≤  𝜑(𝑚), 𝑘 ≤  𝜑(𝑛), |𝑛 –  𝑚| ≥  2,𝑚 ≥  2, 𝑛 ≥  2. 
Proof: There will be no loss of generality to assume that 𝑀1 = 𝐼 and 𝑀𝑘  =  𝑀𝑘

∗ , 𝐾 ∈ ℕ. 
Given 𝛿𝑚 <  1/10 𝛿𝑚  ↓  0 𝑚 →  ∞, we can use Proposition (2.3.1) repeatedly, to find a 
sequence of projections Ek ∈ 𝒫(ℋ), Ek ↑  𝐼  as  𝑘 → ∞  and a sequence of 𝐴𝑘  ∈
 ℛ1
+(ℋ), 𝐴𝑘  ↑  𝐼 as 𝑘 →  ∞, 𝐴1  =  0 satisfying the following conditions: 

Ek  ≥  𝑃𝑘 , Ek ≥ 𝐴𝑘 , (𝐼 − Ek)𝑀𝑝𝐴𝑘  =  0  if 𝑝 ≤ 𝜑(𝑘 +  2) 

and also 

Ak+1  ≥  Ek, ‖Ak+1  −  Ek‖  =  1, 
‖|𝐴𝑘+1|‖  <  1 + 𝛿𝑘+1 

and 

‖|[𝐴𝑘+1, 𝑀𝑝]|‖  <  𝛿𝑘+1 if  𝑝 ≤ 𝜑(𝑘 +  2). 

Note that since the Ek’𝑠  are projections, 0 =  A1  ≤  E1 ≤ A2 ≤ E2 ≤ z ···≤ 𝐸𝑘 ≤
𝐴𝑘+1 ≤ 𝐸𝑘+1  ≤···≤ 𝐼  implies that{Ak| k ≥  1}  ∪ {Ek |k ≥  1   is a set of commuting 

operators. 

With these preparations one would be tempted to define 𝑅𝑛  to be (𝐴𝑛 −
𝐴𝑛−1)

1∕2 ,however this would lead to difficulties with commutators and ‖|·|‖  -norms 

because the square-root function is not diffierentiable at 0.  
We define 

𝐵𝑛 =  𝐼 − (𝐼 − 𝐴𝑛
2)2  =  𝐴𝑛

2(2𝐼 − 𝐴𝑛). 
Then 𝐸𝑛 ≤ 𝐴𝑛+1 ≤ 𝐸𝑛+1  easily gives 𝐸𝑛  ≤  𝐵𝑛+1 ≤ 𝐸𝑛+1  and 𝐴1 =  0  gives 𝐵1 =  0 . It 
is also easily seen that defining 

𝑅𝑛 = (𝐵𝑛 − 𝐵𝑛−1)
1∕2, 𝑛 ≥  2 

𝑅1 =  0 
we have 

𝐵𝑛
1∕2
= 𝐴𝑛(2𝐼 − 𝐴𝑛

2)1∕2 

(𝐼 − 𝐵𝑛−1)
1∕2  =  𝐼 − 𝐴𝑛

2  

 

𝑅𝑛 = (𝐵𝑛(𝐼 − 𝐵𝑛−1))
1∕2 = 𝐵𝑛

1∕2
(𝐼 − 𝐵𝑛−1)

1∕2 

=  𝐴𝑛(2𝐼 − 𝐴𝑛
2)1∕2(𝐼 − 𝐴𝑛−1

2 ). 
Then for 𝑛 ≥  2 we have 

‖|(2𝐼 − 𝐴𝑛
2)  −  3/2𝐼 |‖  =  |‖𝐴𝑛

2  −  1/2𝐼 ‖| 
=  ‖𝐴2  −  1/2𝐼‖ +  |[𝐴𝑛

2 , 𝜏 ]|ℐ 
≤  1/2 +  2 ‖𝐴𝑛‖ |[𝐴𝑛, 𝜏 ]| ℐ ≤  1/2 +  2𝛿𝑛 ≤  1. 

We can then apply Lemma(2.3.6) to 𝐺 = 2𝐼 − 𝐴𝑛
2  and 𝑋 ∈ ℇ(𝜏 ;  ℐ) and 

get that 

|[(2𝐼 − 𝐴𝑛
2)1∕2, 𝜏 ]|ℐ  ≤  𝐶|[𝐴𝑛

2 , 𝜏 ]|ℐ  ≤  2𝐶|[𝐴𝑛, 𝜏 ]|𝐼 ≤  2𝐶𝛿𝑛 

and 

|‖[(2𝐼 − 𝐴𝑛
2)1∕2, 𝑋]‖|  ≤  𝐶 |‖[𝐴𝑛

2 , 𝑋] ‖| ≤  2𝐶 ‖|[𝐴𝑛  , 𝑋]|‖(1 + 𝛿𝑛)  ≤
 3𝐶‖|𝐴𝑛 , 𝑋  |‖ . 

Since 𝑃𝑚 ↑ 𝐼 we have 𝐸𝑚  ↑  𝐼 and hence Bm  ↑  𝐼 as 𝑚 →  ∞. In view of B1  =  0 we get 
that condition (i) is satisfied by the Rk. Also, since the Bm commute, it follows that the Rm 
commute and that condition (ii) holds. Further, since ‖𝐴𝑘+1 − 𝐸𝑘‖ =  1, we have that 𝐴𝑘+1 
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has an eigenvector for the eigenvalue (i) in (𝐸𝑘+1  −  𝐸𝑘)ℋ , which is then also an 

eigenvector for the eigenvalue (i) of 𝐵𝑘+1 and an eigenvector for the eigenvalue 0 of Bk, so 

that it is an eigenvector for the eigenvalue (i) for (𝐵𝑘+1  − 𝐵𝑘)
1
2⁄ = 𝑅𝑘+1. Thus we have 

‖𝑅𝑚‖ =  1 if 𝑚 ≥  2, which is the first part of condition (ii). Further RmEm−2 =  0 gives 
𝑅𝑚𝑅𝑚−2 = 0, so that (iv) is satisfied. Also, since 𝑀1  =  𝐼 and 𝑀𝑘  =  𝑀𝑘

∗ , to check that (vi) 

holds, it suffices to check that 𝑅𝑛𝑀𝑘𝑅𝑚 =  0  if 𝑛 ≥  𝑚 +  2, 1 ≤ 𝑘 ≤ 𝜑(𝑚). indeed, we 

have 𝑅𝑛𝑀𝑘𝑅𝑚 = 𝐵𝑛
1∕2(𝐼 − 𝐵𝑛−1)

1∕2𝑀𝑘𝐵𝑚
1 2⁄  (𝐼 − 𝐵𝑚−1)

1
2⁄   and thus it suffices to show 

that (1 −Bn−1)MkBm =  0 if 1 ≤  k ≤ φ(m), n ≥  m +  2, which in turn will follow 

if we show that (I − An−1)MkAm  =  0 if 1 ≤  𝑘 ≤  𝜑(𝑚), 𝑛 ≥  𝑚 +  2. Note further 
that if𝑛 ≥  𝑚 +  2 we haveAn−1  ≥  En−2  ≥  Em and it suffices if (𝐼 − 𝐸𝑚)𝑀𝑘𝐴𝑚for 𝑘 ≤
𝜑(𝑚) for 𝑚 ≥  2, which is satisfied in view of the construction of the 𝐸𝑚 and 𝐴𝑚. 
    We are thus left with having to deal with the second part of (iii) an (v). 

We have 

|[𝑅𝑚𝜏 ]|ℐ  =  |[𝐴𝑚(2𝐼 − 𝐴𝑚
2 )1∕2(𝐼 − 𝐴𝑚−1

2 ), 𝜏 ]|ℐ 
 

≤  2||[𝑅𝑚𝜏 ]|ℐ  +  |[(2𝐼 − 𝐴𝑚
2 )1∕2, 𝜏 ]|ℐ  +  2|[𝐴𝑚−1

2 , 𝜏 ]|ℐ 
 

≤  2𝛿 𝑚 +  2𝐶𝛿𝑚  +  4𝛿𝑚−1. 
Hence, choosing the 𝛿𝑚’s so that 2(𝐶 +  1)𝛿𝑚  +  4𝛿𝑚−1  < 𝜖𝑚will insure that the second 

part of (iii) holds. 

Turning to condition (vi), we have 

‖|[𝑅𝑚,𝑀𝑘]|‖ = ‖|[𝐴𝑚(2𝐼 − 𝐴𝑚
2 )1/2(𝐼 − 𝐴𝑚−1

2 ),𝑀𝑘]|‖  

≤  ‖|[𝐴𝑚, 𝑀𝑘]|‖ ‖|(2𝐼 − 𝐴𝑚
2 )1/2|‖ ‖|𝐼 − 𝐴𝑚−1

2 |‖  

+ ‖|[(2𝐼 − 𝐴𝑚
2 )1/2,𝑀𝑘]|‖  ‖|𝐴𝑚|‖  ‖|𝐼 − 𝐴𝑚−1

2 |‖  

+  2  ‖|[𝐴𝑚−1, 𝑀𝑘]|‖ ‖|𝐴𝑚−1|‖ ‖|𝐴𝑚|‖ ‖|(2𝐼 − 𝐴𝑚
2 )1/2|‖

≤  𝛿𝑚(2 + |[(2𝐼 − 𝐴𝑚
2 )1/2, 𝜏 ]|ℐ)(2 + 𝛿𝑚−1)

2 +  3𝐶 ‖|[𝐴𝑚, 𝑀𝑘]‖| (1 
+ 𝛿𝑚)(2 + 𝛿𝑚−1)

2 +  2𝛿𝑚−1(1 + 𝛿𝑚−1)(1 + 𝛿𝑚)(2 
+ |[(2𝐼 − 𝐴𝑚

2 )1/2, 𝜏 ]|ℐ)
≤  𝛿𝑚(2 +  2𝐶𝛿𝑚)(2 + 𝛿𝑚−1)

2 +  3𝐶𝛿𝑚(1 + 𝛿𝑚)(2 + 𝛿𝑚−1)
2

+  2𝛿𝑚−1(1 + 𝛿𝑚−1)(1 + 𝛿𝑚)(2 +  2𝐶𝛿𝑚), 
if 𝑚 ≥  2 and 𝑘 ≤ 𝜑(𝑚). Clearly, the 𝛿𝑚 ’𝑠 can be chosen so that ‖|[𝑅𝑚,𝑀𝑘]|‖  < 𝜖𝑚. 
By Proposition (2.3.5), ℇ/𝒦(𝑇 ;  ℐ) under the assumptions that kℐ(𝑇 )  =  0 and ℐ =  ℐ

(0) 

is a C∗-algebra, actually a C∗-subalgebra of the Calkin al-gebra. Recall also that p will denote 
both the homomorphisℬ(ℋ)  → ℬ/𝒦(ℋ)  as well as the homomorphism ℰ(𝑇 ;  ℐ)  →
 ℰ/𝒦(𝑇 ; ℐ, which can be viewed as its restriction to ℰ(𝑇 ;  ℐ) (see the discussion preceding 
Proposition (2.3.3) and Proposition (2.3.5).  

Let 𝑋𝑗 , 𝑋𝑗
∗ , 𝑗 ∈ ℕ be non-commuting indeterminates and let 

𝑓𝑛(𝑋1, … , 𝑋𝑛) = 𝑒𝑛 +∑(𝑎𝑗𝑛𝑋𝑗𝑏𝑗𝑛 + 𝑐𝑗𝑛𝑋𝑗
∗𝑑𝑗𝑛)

𝑛

𝑗=1

 

where 𝑒𝑛, 𝑎1𝑛, . . . , 𝑎𝑛𝑛, . . . , 𝑏1𝑛, . . . , 𝑏𝑛𝑛, 𝑐1𝑛, . . . , 𝑐𝑛𝑛, 𝑑1𝑛, . . . , 𝑑𝑛𝑛  are in ℰ/𝒦(t ; ℐ)  so that 
the 𝑓𝑛 are non-commutative polynomials with coefficients not commuting with the variables. 

We shall denote the ring of such polynomials by ℰ/𝒦(t; ℐ) ⟨XjXj
∗|j ∈ ℕ⟩, , the 𝑓𝑛’𝑠 being 
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polynomials of degree  ≤  1 in the indeterminates. 

Theorem (2.3.8)[132]: Assume kℐ(t )  =  0 and ℐ =  ℐ
(0). Let 

en, ajn, bjn, cjn, djn ∈
ℰ

𝒦(𝑡 , ℐ)
, 1 ≤  j ≤  n, n ∈  ℕ, 

be such that there are 𝒴𝑗𝑛  ∈  ℰ/𝒦(𝑡 ;  ℐ) ,1 ≤  j ≤  n, n ∈ ℕ , so that ‖𝒴jn‖ <

1 and  |‖en + ∑ (ajn𝒴jmbjn  + cjn𝒴jm
∗ djn)1≤j≤n ‖ − rn| <  1/m , if 1 ≤ n ≤ m  where 𝑟𝑛 ∈

ℝ. then there are 𝒴𝑖 ∈ ℰ 𝒦(𝑡; ℐ) ,⁄  𝑗 ∈ ℕ so That ‖𝒴𝑖‖ ≤  1, for 𝑗 ∈  ℕ and  

‖ en + ∑ (𝑎𝑗𝑛𝒴𝑗𝑏𝑗𝑛 + 𝑐𝑗𝑛𝒴𝑗
∗𝑑𝑗𝑛)

1≤𝑗≤𝑛

‖ = rn 

for all 𝑛 ∈  ℕ. 
Proof: Let En, Ajn, Bjn, Cjn, Djn, Yjn ∈ ℰ (𝜏 ; ℐ) for 1 ≤  j ≤  n, n ℕ , be so that 

p(En) =  en, p(Ajn) =  ajn, p(Bjn) =  bjn, p(Cjn) = cjn, p(Djn) =  djn, p(Yjn)

=  𝒴jn, ‖|Yjn|‖  <  1 

and  |[Yjn, 𝜏 ]|ℐ  <  ϵn  for some given sequence 𝜖𝑛 ↓  0 . It will be convenient to also 

introduce 𝑓𝑛(𝑋1, . . . , 𝑋𝑛) ∈ ℰ ∕ 𝒦(𝜏 ;  ℐ) 〈𝑋𝑗 , 𝑋𝑗
∗| 𝑗 ∈ ℕ〉  and 𝐹𝑛(𝑋1, . . . , 𝑋𝑛) ∈

ℰ(𝜏 ;  ℐ) 〈Xj, Xj
∗| j ∈ ℕ〉 the non-commutative polynomials 

𝑓𝑛(𝑋1, . . . , 𝑋𝑛) = 𝑒𝑛  + ∑ (𝑎𝑗𝑛𝑋𝑗𝑏𝑗𝑛 + 𝑐𝑗𝑛𝑋𝑗
∗𝑑𝑗𝑛)

1≤𝑗≤𝑛

, 

𝐹𝑛(𝑋1, . . . , 𝑋𝑛) = 𝐸𝑛  + ∑ (𝐴𝑗𝑛𝑋𝑗𝐵𝑗𝑛 + 𝐶𝑗𝑛𝑋𝑗
∗𝐷𝑗𝑛).

1≤𝑗≤𝑛

 

We shall apply Lemma (2.3.7) with a sequence 𝑀𝑘 ∈  𝐸(𝜏 ;  ℐ), 𝑘 ∈ ℕ and an increasing 
function 𝜑: ℕ → ℕ such that the set {𝑀𝑘  | 1 ≤  𝑘 ≤  𝜑(𝑚)} cntains the following operatr 

𝐸𝑚, 𝐴𝑗𝑚, 𝐵𝑗𝑚, 𝐶𝑗𝑚, 𝐷𝑗𝑚, 𝑌𝑗𝑚, 𝑌𝑗𝑚
∗  where 1 ≤  𝑗 ≤  𝑚 and also 𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚) and 

(𝐹𝑝(𝑌1𝑚, . . . , 𝑌𝑝𝑚))
∗𝐹𝑞(𝑌1𝑚, . . . , 𝑌𝑞𝑚) 

with 1 ≤  𝑛 ≤  𝑚, 1 ≤  𝑝 ≤  𝑚, 1 ≤  𝑞 ≤  𝑚. Note that the listed operators won’t exhaust 

{𝑀𝑘 | 1 ≤  𝑘 ≤  𝜑(𝑚)}, since 𝜑 being increasing we will have that if 1 ≤ 𝑚
′ <  𝑚 then 

{𝑀𝑘| 1 ≤  𝑘 ≤ 𝜑(𝑚
′)}  ⊂  {𝑀𝑘| 1 ≤ 𝑘 ≤ 𝜑(𝑚)}. 

Since 𝑝(𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚))  =  𝑓𝑛(𝒴1𝑚, . . . , 𝒴𝑛𝑚)  if 1 ≤ 𝑛 ≤  𝑚 , we can find 𝑃𝑘 ∈
𝒫(ℋ), 𝑃𝑘 ↑ 𝐼 so that 

|‖𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚)(𝐼 − 𝑃𝑚)‖ − 𝑟𝑛|  <  1/𝑚 
if 1 ≤ 𝑛 ≤ 𝑚. Remark that if 1 ≤ 𝑛 ≤ 𝑚 and 𝑁 ≥ 𝑚 then 

|‖𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚) ∑ 𝑅𝑘
2

𝑘≥𝑁+2

‖ − 𝑟𝑛| <  1/𝑚 

because ∑ 𝑅𝑘
2

𝑘≥𝑁+2 ≤ 𝐼 − 𝑃𝑚  and 𝐼 − ∑ 𝑅𝑘
2

𝑘≥𝑁+2 ∈ ℛ(ℋ) ⊂ 𝒦(ℋ) so that 

‖𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚)(𝐼 − 𝑃𝑚)‖ ≥ ‖𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚) ∑ 𝑅𝑘
2

𝑘≥𝑁+2

‖ ≥ ‖𝑓𝑛(𝒴1𝑚, . . . , 𝒴𝑛𝑚)‖ 

We can therefore find a sequence 1 < 𝑁1 < 𝑁2 <. .. so that 𝑁𝑚 ≥  𝑚 + 2,𝑁𝑝+1 − 𝑁𝑝  ≥

 8 for all 𝑚, 𝑝 ∈  ℕ and 
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| ‖𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚) ∑ 𝑅𝑘
2

𝑁𝑚≤𝑘<𝑁𝑚+1

‖ − 𝑟𝑛|  <  1/𝑚 

if 1 ≤ 𝑛 ≤ 𝑚 and also 

|‖𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚) ∑ 𝑅𝑘
2

𝑁𝑚+3≤𝑘<𝑁𝑚+1−3

‖ − 𝑟𝑛|  <  1/𝑚. 

We will show that if the 𝜖𝑚 are chosen so that ∑ 𝜖𝑚 < ∞𝑚≥1  , then  the  operators 

𝑌𝑗∑( ∑ 𝑅𝑘𝑌𝑗𝑚𝑅𝑘
𝑁𝑚≤𝑘<𝑁𝑚+1

)

𝑚≥𝑗

 

will satisfy 𝑌𝑗 ∈ ℇ(𝑇 ; ℐ), ‖𝑌𝑗‖ ≤ 1  and 𝑝(𝑌𝑗)  = 𝑦𝑗   will satisfy 𝑓𝑛(𝑦1, . . . , 𝑦𝑛) = 𝑟𝑛  for all 

𝑛 ∈  ℕ. 

We will not need to put conditions on the 𝜖𝑚  in order that ‖𝑌𝑗‖ ≤ 1.  

Indeed, this can be seen as follows. Let 𝑍 ∶ ℋ → ℋ⨂𝑙2(𝑁) be the operator 

𝑍ℎ = ∑ ∑ 𝑅𝑘ℎ⨂𝑒𝑘
𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑗

 

And let 𝑆𝑗 ∈ ℬ(ℋ⨂𝑙
2(ℕ)) be the operator 

𝑆𝑗∑ℎ𝑘⨂𝑒𝑘 =

𝑘≥1

∑ ∑ 𝑌𝑗𝑚ℎ𝑘⨂𝑒𝑘
𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑗

. 

Since ‖𝑌𝑗𝑚‖ <  1, we have ‖𝑆𝑗‖ ≤  1 and we also have ‖𝑍‖ ≤  1 since 

𝑍∗𝑍 = ∑ ∑ 𝑅𝑘
2 ≤∑𝑅𝑘

2 = 𝐼.

𝑘≥1𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑗

  

Hence ‖𝑌𝑗‖ ≤ 1 since 𝑌𝑗 = 𝑍
∗𝑆𝑗𝑍. 

    Our next task will be to show that if ∑ 𝜖𝑚 < ∞𝑚≥1 , we will have |[𝑌𝑗 , 𝜏  ]|ℐ < ∞, which 

together with the boundedness of 𝑌𝑗 we just showed, will give 𝑌𝑗 ∈ ℰ(𝜏 ; ℐ). 

Since the sum defining 𝑌𝑗  is weakly convergent to 𝑌𝑗 ,it will be sufficient to show that 

assuming ∑ 𝜖𝑚 < ∞ 𝑚≥1 , we can insure that   

∑|[ ∑ 𝑅𝑘𝑌𝑗𝑚𝑅𝑘, 𝜏

𝑁𝑚≤𝑘<𝑁𝑚+1

]|

ℐ

< ∞.

𝑚≥𝑗

 

Since the 𝑌𝑗𝑚 with 1 ≤  𝑗 ≤  𝑚 are among the 𝑀𝑝  with 1 ≤  𝑝 ≤ 𝜑(𝑚) we infer from 

condition (vi) in Lemma (2.3.7) that |‖[𝑅𝑘, 𝑌𝑗𝑚]‖|   <  𝜖𝑘if 𝑁𝑚 ≤  𝑘 and 1 ≤  j ≤  m. 

Also by condition (iii) of Lemma(2.3.7), | ‖𝑅𝑘 ‖|  < 1 + 𝜖𝑘. 
This gives 

|[ ∑ 𝑅𝑘𝑌𝑗𝑚𝑅𝑘, 𝜏

𝑁𝑚≤𝑘<𝑁𝑚+1

]|

ℐ

− |[ ∑ 𝑌𝑗𝑚𝑅𝑘
2, 𝜏

𝑁𝑚≤𝑘<𝑁𝑚+1

]|

ℐ

≤ |[ ∑ [𝑅𝑘, 𝑌𝑗𝑚]𝑅𝑘
𝑁𝑚≤𝑘<𝑁𝑚+1

]|

ℐ

≤ ∑ |‖[𝑅𝑘, 𝑌𝑗𝑚]‖||‖𝑅𝑘‖|

𝑁𝑚≤𝑘<𝑁𝑚+1

 ≤ ∑ 𝜖𝑘(1 + 𝜖𝑘)

𝑁𝑚≤𝑘<𝑁𝑚+1
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Hence in order that Yj ∈ ℰ(𝜏 ;  ℐ) it will suffice that∑ 𝜖𝑘 < ∞𝑘≥1   and  

∑ |[ ∑ 𝑌𝑗𝑚𝑅𝑘
2, 𝜏

𝑁𝑚≤𝑘<𝑁𝑚+1

]|

ℐ
𝑚≥𝑗

< ∞. 

Since |[𝑅𝑘  , 𝜏]|ℐ < 𝜖𝑘if 𝑘 ≥ 2 by (iii) of Lemma (2.3.7) and ‖𝑌𝑗𝑚‖ < 1 , we have 

∑|[ ∑ 𝑌𝑗𝑚𝑅𝑘
2, 𝑇

𝑁𝑚≤𝑘<𝑁𝑚+1

]|

ℐ

≤ ∑|[𝑌𝑗𝑚 , 𝑇]|ℐ  .

𝑚≥𝑗

‖ ∑ 𝑅𝑘
2

𝑁𝑚≤𝑘<𝑁𝑚+1

‖

𝑚≥𝑗

=∑|[𝑅𝑘
2, 𝑇]|

ℐ
𝑘≤2

≤ ∑ 𝜖𝑚 +∑2𝜖𝑘 < ∞

𝑘≥2𝑚≥𝑗

 

under the assumption that∑ 𝜖𝑘 < ∞𝑘≥1  . Hence under this condition on the 𝜖𝑚 we have 𝑌𝑗 ∈

ℇ(𝜏 ; ℐ). 
Finally, we turn to showing that assuming ∑ 𝜖𝑚 < ∞𝑚≥1  , we will have ‖𝑓𝑛(𝑦1, . . . , 𝑦𝑛)‖ =
𝑟𝑛 for all 𝑛 ∈  ℕ, where 𝑦𝑗  =  𝑝(𝑌𝑗). Clearly 𝑓𝑛(𝑦1, . . . , 𝑦𝑛)  =  𝑝(𝐹𝑛(𝑌1, . . . , 𝑌𝑛)). Note also 

that the relations we’re aiming at being about norms in the Calkin algebra, we will no longer 

have to deal with |‖. ‖|-norms and the ideal ℐ for this matter. 

We begin by showing that we can arrange that the diffierence between 𝐹𝑛(𝑌1, . . . , 𝑌𝑛) and 

∑ ∑ 𝑅𝑘𝐹𝑛(𝑌1𝑚, … . . , 𝑌𝑛𝑚)𝑅𝑘
𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑛

 

is a compact operator. Since 

𝐹𝑛(𝑌1, … . . , 𝑌𝑛) = 𝐸𝑛 + ∑ (𝐴𝑗𝑛𝑌𝑗 𝐵𝑗𝑛 + 𝐶𝑗𝑛𝑌𝑗
∗𝐷𝑗𝑛)

1≤𝑗≤𝑛

 

it will suffice to prove the assertion in (iii) cases, when Fn(Y1, . . . , Yn)  equals 
En, AjnYjBjn, CjnYjn

∗ Djn where 1 ≤  j ≤  n.In the first case we have 

∑ 𝑅𝑘𝐸𝑛𝑅𝑘 − 𝐸𝑛 = − ∑ ∑𝑅𝑘𝐸𝑛𝑅𝑘 + ∑ (𝑅𝑘𝐸𝑛𝑅𝑘 − 𝐸𝑛𝑅𝑘
2)

1≤𝑘<𝑁𝑛𝑘≥11≤𝑗≤𝑛  𝑘≥𝑁𝑛

. 

The first sum being finite rank, we need that the second sum be compact.  

If 𝑘 ≥ 𝑛, ‖[𝑅𝑘, 𝐸𝑛]‖ < 𝜖𝑘 since 𝐸𝑛 is among the 𝑀p with 𝑝 ≤ 𝜑(𝑛) ≤ 𝜑(𝑘) and condition 

50 of Lemma (2.3.7) holds. Thus,‖𝑅𝑘𝐸𝑛𝑅𝑘 − 𝐸𝑛𝑅𝑘
2‖ < 𝜖𝑘 implies that the diffierence we 

consider will be compact if ∑ 𝜖𝑘 < ∞𝑘≥1  . 
    In case  𝐹𝑛 is AjnYjBjn,  where 1 ≤  𝑗 ≤  𝑛, we must insure compa ness of 

∑ ∑ 𝑅𝑘𝐴𝑗𝑛𝑌𝑗𝑚𝐵𝑗𝑛𝑅𝑘 − ∑ 𝐴𝑗𝑛 ( ∑ 𝑅𝑘𝑌𝑗𝑚𝑅𝑘
𝑁𝑚≤𝑘<𝑁𝑚+1

)

𝑚≥𝑛

𝐵𝑗𝑛
𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑛

= ∑ ∑ ([𝑅𝑘𝐴𝑗𝑛]𝑌𝑗𝑚𝐵𝑗𝑛𝑅𝑘 + 𝐴𝑗𝑛𝑅𝑘𝑌𝑗𝑚[𝐵𝑗𝑛, 𝑅𝑘]).

𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑛

 

The last sum being a sum of finite rank operators it will suffice to have Convergence of the 

sum of their norms. Since the 𝐴𝑗𝑛  and 𝐵𝑗𝑛  are among the 𝑀p  with p ≤ φ(n)  ≤ φ(k)  we 

have that the norms of the commutators are majorized By ϵk in view of (vi) in Lemma (2.3.7) 

and hence the sum of norms is majorized by 
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𝐾∑ϵk
𝐾≥1

 

where 𝐾 is a bound for ‖𝐴𝑗𝑛‖ and ‖𝐵𝑗𝑛‖. Thus again it will suffice that ∑ 𝜖𝑘 < ∞.𝑘≥1 . 

   The third situation when we consider 𝐶𝑗𝑛𝑌𝑗
∗𝐷𝑗𝑚 is entirely analogous to that of 𝐴𝑗𝑛𝑌𝑗𝐵𝑗, 

since we treated 𝑌𝑗𝑛and 𝑌𝑗𝑛
∗  symmetrically in our assumptions about φ. 

 Again, summability of the 𝜖𝑚 will suffice. 

    We need then to show that if ∑ 𝜖𝑘 < ∞𝑘≥1  , we will also have that the essential norm of 

Ω𝑛 = ∑ ∑ 𝑅𝑘𝐹𝑛(𝑌1𝑚, … , 𝑌𝑛𝑚)𝑅𝑘
𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑛

 

will be 𝑟n. 
    Using again the operator 

𝑍 ∶ ℋ →  ℋ⨂𝑙2(𝑁), 𝑍ℎ = ∑ 𝑅𝑘ℎ⨂𝑒𝑘
𝑘≥𝑁𝑛

 

we have ‖𝑍‖ ≤  1 and 𝑍∗𝛤𝑛𝑡𝑍 − Ω𝑛  ∈ ℛ(ℋ), where for t ≥  n we define on ℋ⨂ 𝑙
2(ℕ) 

operators Γ𝑛𝑡 by 

𝛤𝑛𝑡∑ℎ𝑘⨂ek = ∑ ∑ 𝐹𝑛(𝑌1𝑚, … , 𝑌𝑛)(𝐼 − 𝑃𝑚)ℎ𝑘⨂ek.

𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑛𝑘≥1

 

Since ‖𝛤𝑛𝑡‖ = 𝑠𝑢𝑝𝑚≥𝑡 ‖𝐹𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚)(𝐼 − 𝑃𝑚)‖ we have  
| ‖Γnt‖ − rn| < t

−1  and hence lim
t→+∞

‖Γnt‖ =  rn. This gives ‖𝑝(Ω𝑛)‖ ≤ lim
t→+∞

‖Γnt‖ =  rn 

and hence we are left with the opposite inequality ‖𝑝(Ω𝑛)‖ ≤  𝑟𝑛. 
    We will again use a compact perturbation and pass from Ω𝑛to another operator 

𝛯𝑛  = ∑ 𝐹𝑛(Y1m, . . . , Ynm) ∑ 𝑅𝑘
2.

𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑛

 

Indeed we have 

𝛯𝑛  − Ω𝑛 = ∑ ∑ [𝐹𝑛(Y1m, . . . , Ynm), 𝑅𝑘]𝑅𝑘.

𝑁𝑚≤𝑘<𝑁𝑚+1𝑚≥𝑛

 

And 

 

[𝑅𝑛(𝑌1𝑚, . . . , 𝑌𝑛𝑚), 𝑅𝑘]𝑅𝑘  < 𝜖𝑘 . 
Again compactness will follow if ∑ 𝜖𝑘 < ∞.𝑘≥1   
Recall now that we had chosen the 𝑁𝑚 so that 

|‖𝐹𝑛(Y1m, . . . , Ynm) ∑ Rk
2

Nm≤k<Nm+1

‖ − rn| < 1 ∕ 𝑚 

and also 

|‖𝐹𝑛(Y1m, . . . , Ynm) ∑ Rk
2

Nm+3≤k<Nm+1−3

‖ − rn| < 1 𝑚⁄ . 

Since by Lemma (2.3.7) we have that the 𝑅𝑘 are finite rank positive contractions, commute 

and satisfy |𝑘 − 𝑙| ≥ 2 ⇒ 𝑅𝑘𝑅𝑙 = 0 it is easily seen that if ∆𝑚  is the projection onto the 
range of  ∑ 𝑅𝑘

2
𝑁𝑚+3≤𝑘<𝑁𝑚+1−3

 we will have 𝑅𝑠∆𝑚= 0 if 𝑠 <  𝑁𝑚 or 𝑠 ≥  𝑁𝑚+1 and hence 
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∆𝑝∆𝑞  =  0 if 𝑝 ≠ 𝑞 and if 𝑛 ≤ 𝑚 we have 

 

‖𝐹𝑛(Y1m, . . . , Ynm) ∑ Rk
2

Nm+3≤k<Nm+1−3

‖ ≤ ‖𝛯𝑛∆𝑚]‖ ≤ ‖𝐹𝑛(Y1m, . . . , Ynm) ∑ Rk
2

Nm≤k<Nm+1

‖ 

so that 

 |‖Ξn∆m‖ − rn|  <  1/𝑚. 
This implies 

p(Ξn)  ≥ lim Sup
m→+∞

‖Ξn∆m‖ = rn . 

We will sometimes also deal with normed ideals in which the finite rank operators are not 

dense, which occurs when the norming function Φ  is not mononorming (see the 

preliminaries and [9]or [139]). We begin with a basic lemma. 

Lemma (2.3.9)[132]: Let Φ  be a norming function and let (ℐ,| |ℐ)  =  (℘𝛷, | |𝛷). so that 

(ℐ(0),| |ℐ)  = (℘𝛷
(0)
, | |𝛷) is the closure of ℛ, (ℋ) in ℐ.Assume 𝒦ℐ(𝑡) = 0.Then 𝒦(𝜏 ; ℐ

(0)) 
is a closed two-sided ideal in ℰ(𝜏 ;  ℐ)  and the norm in ℰ(𝜏 ;  ℐ)  extends the norm in 

𝒦(𝜏 ;  ℐ(0)). Moreover, the unit ball of (ℰ(𝜏 ; ℐ), |‖. ‖|) is weakly compact. 

Proof. It is clear that the norm of ℰ(𝜏 ;  ℐ) extends the norm of 𝒦(𝜏 ; ℐ(0))  and that 
𝒦(𝜏 ;  ℐ(0)) is a closed subalgebra of ℰ(𝜏 ;  ℐ) . By Corollary(2.3.2)  ℛ, (ℋ) is dense in 
𝒦(𝜏 ;  ℐ(0)) and hence 𝒦(𝜏 ; ℐ(0))is the closure in ℰ(𝜏 ;  ℐ) of the two-sided ideal ℛ, (ℋ), 
which implies that also 𝒦(𝜏 ; ℐ(0)  is a two-sided ideal in ℰ(𝜏 ;  ℐ). If 𝑋 is the weak limit of 

the net (𝑋𝛼)𝛼∈1 in the unit ball of ℰ(𝜏 ;  ℐ)then by the weak compactness of the unit balls of 

ℬ(ℋ)  and of ℘𝛷  (see [137]) we have ‖𝑋‖ ≤  1  and |[𝑋, 𝜏 ]|𝛷 ≤  1  so that 𝑋 ∈ ℰ(𝜏 ;  ℐ) . 
Since ℋ is separable we may replace (Xα)α∈𝐼 by a subsequence and use the semicontinuity 

properties of ‖ ‖and | |𝛷 under weak convergence to get that |‖𝑋‖|  ≤  1. Thus the unit 
ball of ℰ(𝜏 ;  ℐ) is a closed subset of the unit ball of ℬ(ℋ) and hence weakly compact. 

    We pass now to bounded multipliers ℳ(𝒦(𝜏 ; ℐ(0)))  that is double centralizer pairs 
(𝑇′ , 𝑇′′ )  of bounded linear maps 𝒦(𝜏 ; ℐ(0)) →  𝒦(𝜏 ; ℐ(0))  so that 𝑇′(𝑥)𝑦 =
 𝑥𝑇′′(𝑦) ([138]). 

Proposition (2.3.10)[132]: Assume 𝑘ℐ(τ) = 0  where ℐ = ℘Φ   and ℐ
(0) = ℘Φ

(0)
 We have 

ℳ(𝒦(𝜏 ; ℐ(0))) = ℰ(𝜏 ; ℐ), that is if (𝑇′ , 𝑇′′ )  ∈ ℳ(𝒦(𝜏 ; ℐ(0))) then there is a unique 
𝑇 ∈ ℰ(𝜏 ;  ℐ) so that 𝑇′ (𝑥) =  𝑥𝑇 and 𝑇′′(𝑥)  =  𝑇 𝑥. 
Proof: By Corollary (2.3.4) there is a sequence 𝐴𝑠 ∈ ℛ1

+(ℋ)  so that ‖𝐴𝑠‖ = 1, 𝑠 > 𝑡 ⇒
 𝐴𝑠𝐴𝑡 = 𝐴𝑡 and 𝐴𝑠 ↑ 𝐼, |‖𝐴𝑠‖| → 1, |‖(𝐼 − 𝐴𝑠)𝐾‖| → 0 if 𝑠 →  ∞ and 𝐾 ∈ 𝒦(𝜏 ; 𝐼(0)). 
     Assume (𝑇′ , 𝑇′′ )  ∈  ℳ(𝒦(𝜏 ;  ℐ(0))) and let 𝐾𝑠 = 𝑇

′(𝐴𝑠)𝐴𝑠 = 𝐴𝑠𝑇
′′(𝐴𝑠). 

Clearly 𝑠𝑢𝑝𝑠∈ℕ |‖𝐾𝑠‖| < ∞  the multiplier being bounded. Remark also that 𝑠 >  𝑡 ⇒
 𝐴𝑡𝐾𝑠𝐴𝑡 = 𝐴𝑡𝑇

′(𝐴𝑠)𝐴𝑠𝐴𝑡 = 𝐴𝑡𝑇
′(𝐴𝑠)𝐴𝑡 = 𝐴𝑡𝐴𝑠𝑇

′′(𝐴𝑡) = 𝐴𝑡𝑇
′′(𝐴𝑡) =  𝐾𝑡. Hence if 𝑇 is 

the weak limit of a subsequence of the 𝐾𝑠,  we have 𝐴𝑡𝑇 𝐴𝑡 = 𝐾𝑡 for all 𝑡 and hence 𝑇 does 
not depend on the subsequence, that is 𝑇 =  𝑤 − 𝑙𝑖𝑚𝑠→∞ 𝐾𝑠 and also 𝑇 ∈ ℰ(𝜏 ; ℐ) since 
the unit ball of ℰ(𝜏 ; ℐ) is weakly closed. 
On the other hand if 𝐾 ∈ 𝒦(𝜏 ;  ℐ(0))  then |‖As𝐾 −  𝐾‖| → 0  as s →  ∞  and also 

|‖𝐾𝐴𝑠  −  𝐾‖| → 0 as 𝑠 →  ∞ (replace 𝐾 by 𝐾∗∗). We have 
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𝑇′ (𝐾)𝐴𝑡  =  𝑙𝑖𝑚
𝑠→∞

𝑇′(𝐾𝐴𝑠)𝐴𝑡 = lim
s→∞

𝐾As𝑇
′′(At)  =  lim

s→∞
 𝐾𝐴𝑠𝑇

′(𝐴𝑠)𝐴𝑡

= 𝑙𝑖𝑚
𝑠→∞

 𝐾𝑇′(𝐴𝑠)𝐴𝑠 𝐴𝑡 =  𝐾𝑇 𝐴𝑡 

and since this holds for all 𝑡 ∈ ℕ  we have 𝑇′(𝐾)  =  𝐾𝑇.   This then gives 𝑇′(𝐴𝑡)𝐾 =
 𝐴𝑡𝑇 𝐾𝐴𝑠𝐾 =  𝐴𝑡𝑇

′′(𝐾) and hence 𝑇′′(𝐾) =  𝑇 𝐾. 
    Uniqueness of  𝑇  follows from 𝒦(𝜏 ;  ℐ(0))  ⊃ ℛ(ℋ) . The converse, that 𝑇 ∈ ℰ(𝜏 ; ℐ) 
gives rise to a multiplier, is a consequence of Lemma (2.3.9).  

     We pass now to duality. Recall from the theory of normed ideals ([137], [139]) that given 

norming function Φ there is conjugate norming function Φ∗ so that the sual of the banach 

space (℘Φ
(0)
, | |Φ)   is (℘Φ∗ , | |𝛷∗)  under the duality (𝑋, 𝑌) → 𝑇𝑟(𝑋𝑌) for  (𝑋, 𝑌) ∈ ℘𝛷

(0)
,×

℘𝛷∗ (we leave out of the discussion the case of  ℘𝛷
(0)
= ℓ1 , where the  dual is ℬ(ℋ)). 

Proposition(2.3.11)[132]:  Let Φ be a norming function so that 𝑘𝛷(𝜏 )  =  0, let Φ
∗  

Be its conjugate and assume ℘Φ
(0)
≠ ℓ1.  then the dual of 𝒦 (𝜏;℘Φ

(0)
) can be identified 

isometrically with (ℓ1 × (℘𝛷∗)
𝑛)/𝒩 where 

𝒩 = {( ∑ [𝑇𝑗 , 𝑦𝑗], (𝑦𝑗)1≤𝑗≤𝑛
1≤𝑗≤𝑛

) ∈ ℓ1 × (℘ 𝛷∗)
n⃒(𝑦𝑗)1≤𝑗≤𝑛

∈ (℘𝛷∗)
n𝑤𝑖𝑡ℎ ∑ [𝑇𝑗 , 𝑦𝑗] ∈

1≤𝑗≤𝑛

ℓ1} 

and the duality map 𝒦(𝜏;℘Φ
(0)
) × (ℓ1 × (℘𝛷∗)

n) → ℂ  is 

 

(𝐾, (𝑥, (𝑦𝑗)1≤𝑗≤𝑛)) → 𝑇𝑟(𝐾𝑥 ∑ [𝑇𝑗 , 𝑘]𝑦𝑗
1≤𝑗≤𝑛

) 

and the norm on (ℓ1 × (℘𝛷∗)
n) is 

(𝑥, (𝑦𝑗)1≤𝑗≤𝑛) = 𝑚𝑎𝑥(
|𝑥|1, ∑ |𝑦𝑗|𝛷∗

1≤𝑗≤𝑛

). 

Corollary (2.3.12)[370]: Let 𝐺𝑗 = 𝐺𝑗
∗ ∈ ℇ(𝜏 ;  ℐ)be such that ∑  𝑗 ‖|𝐺𝑗  −  

3

2
 𝐼‖|  ≤ 1. 

Then 𝐺𝑗
1∕2
∈ ℇ(𝜏 ;  ℐ) and there is a universal constant 𝐶, so that 

∑  𝑗 ‖|[𝐺𝑗
1∕2
, X]|‖ ≤ ∑  𝑗 C‖|[𝐺𝑗 , X]|‖  if X ∈ ℇ(τ ;  ℐ ) 

and 

∑ 

𝑗

|[𝐺𝑗
1∕2
, τ ]|ℐ  ≤ ∑ 

𝑗

C|[𝐺𝑗 , τ ]|ℐ . 

Proof: The Lemma is an easy consequence of the functional calculus formula  

∑ 

𝑗

𝐺𝑗
1 2⁄ = (2π𝔦)−1∫∑ 

𝑗

(𝑧𝐼 − 𝐺𝑗)
−1
z1 2⁄ dz ,

Γ

 

where 𝛤 is the circle |𝑧 −  3/2|  =  5/4, and of the fact that for 𝑧 ∈ Γ we have : 
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∑ 

𝑗

‖| (𝑧𝐼 − 𝐺𝑗)
−1|‖

=
4

5
∑ 

𝑗

‖| (𝑧𝐼 −  𝐺𝑗)
−1(4/5(𝑧 −  3/2)𝐼 −  4/5(𝐺𝑗  −  3/2𝐼))

−1|‖

≤  (1 −
4

5
)
−1

=  5 

and 

∑ 

𝑗

[(𝑧𝐼 −  𝐺𝑗)
−1
, X] =∑ 

𝑗

(𝑧𝐼 − 𝐺𝑗)
−1
[𝐺𝑗 , X](𝑧𝐼 − 𝐺𝑗)

−1
. 
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Chapter 3 

Regularity Properties and Strongly Self-Absorbing 𝑪∗-Algebras 

 

We report the program to classify separable amenable C∗-algebras. Our emphasis is 

on the newly apparent role of regularity properties such as finite decomposition rank, strict 

comparison of positive elements, and 𝒵 -stability, and on the importance of the Cuntz 

semigroup.  

Section (3.1): Classification Program for Separable Amenable 𝐶∗-Algebras 

Rings of bounded operators on Hilbert space were first studied by Murray and von 

Neumann in the 1930s. These rings, later called von Neumann algebras, came to be viewed 

as a subcategory of a more general category, namely, C∗ -algebras. (The C∗ -algebra of 

compact operators appeared for perhaps the first time when von Neumann proved the 

uniqueness of the canonical commutation relations.) A C∗-algebra is a Banach algebra A 

with involution x ⟼ x∗ satisfying the C∗-algebra identity: 

‖xx∗‖ = ‖x‖2, ∀x ∈ A. 
 Every C∗-algebra is isometrically ∗-isomorphic to a norm-closed sub ∗–algebra of the ∗-
algebra of bounded linear operators on some Hilbert space, and so may still be viewed as a 

ring of operators on a Hilbert space. 

In 1990, the first-named initiated a program to classify amenable norm-separable C∗-
algebras via 𝐾 -theoretic invariants. The graded and (pre-)ordered group 𝐾0⊕ 𝐾1  was 

suggested as a first approximation to the correct invariant, as it had already proved to be 

complete for both approximately finite-dimensional (AF) algebras and approximately circle 

(A𝕋) algebras of real rank zero ([161], [163]). It was quickly realised, however, that more 

sensitive invariants would be required if the algebras considered were not sufficiently rich 

in projections. The program was refined, and became concentrated on proving that Banach 

algebra K-theory and positive traces formed a complete invariant for simple separable 

amenable C∗-algebras.  

Recent examples based on the pioneering work of Villadsen have shown that the 

classification program must be further revised. Two things are now apparent: the presence 

of a dichotomy among separable amenable C∗-algebras dividing those algebras which are 

classifiable via 𝐾-theory and traces from those which will require finer invariants, and the 

possibility—the reality, in some cases—that this dichotomy is characterised by one of three 

potentially equivalent regularity properties for amenable C∗-algebras.  

We give a brief account of the activity in the classification program over the past decade, 

with particular emphasis on the now apparent role of regularity properties. After reviewing 

the successes of the program so far, we will cover the work of Villadsen on rapid dimension 

growth AH algebras, the examples of Rørdam which have necessitated the present re-

evaluation of the classification program, and some results of Winter obtained in the presence 

of the aforementioned regularity properties. We also discuss the possible consequences for 

the classification program of including the Cuntz semigroup as part of the invariant (as a 

refinement of the 𝑘0 and tracial invariants). 
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We denote by 𝒦  the C∗ -algebra of compact operators on a separable infinite-

dimensional Hilbert space ℋ.For a C∗-algebra 𝐴,welet Mn(A) denote the algebra of n ×
n matrices with entries from 𝐴. The cone of positive elements of A will be denoted by 𝐴+. 

The Elliott invariant of a C∗-algebra 𝐴 is the 4-tuple 

Ell(𝐴) ≔ ((𝐾0𝐴, 𝐾0𝐴
+, ∑𝐴), 𝐾1𝐴, 𝑇

+𝐴, 𝜌𝐴),                                       (1) 

 

where the K-groups are the Banach algebra ones, 𝐾0𝐴
+ is the image of the Murray-von 

Neumann semigroup V(A)  under the Grothendieck map, ∑A  is the subset of 𝐾0𝐴 

corresponding to projections in 𝐴, 𝑇+𝐴 is the space of positive tracial linear functionals on 

𝐴,and ΡA is the natural pairing of 𝑇+𝐴 and 𝐾0𝐴 given by evaluating atrace at a𝐾0-class. See 

Rørdam [195]. In the case of a unital C∗-algebra the invariant becomes 

((𝐾0𝐴, 𝐾0𝐴
+, [1𝐴]), 𝐾1𝐴, 𝑇𝐴, ΡA) 

where [1𝐴]is the 𝐾0-class of the unit, and 𝑇𝐴 is the (compact convex) space of tracial states. 

We will concentrate on unital C∗ -algebras in the sequel in order to limit technicalities. 

The original statement of the classification conjecture for simple unital separable 

amenable C∗-algebras read as follows: 

Conjecture(3.1.1)[145]: Let Aand B be simple unital separable amenable C∗-algebras, and 

suppose that there exists an isomorphism 

∅ ∶  Ell(𝐴) →  Ell(𝐵). 
It follows that there is a ∗ −isomorphism Φ: A →  B which inducs ∅. 

It will be convenient to have an abbreviation for the statement above. Let us call it (𝐸𝐶). 

We will take the following deep theorem, which combines results of Choi and Effros 

([153]), Connes ([155]), Haagerup ([174]), and Kirchberg ([180]), to be our definition of 

amenability. 

Theorem (3.1.2)[145]: A  C∗ algebra A  is amenable if and only if it has the following 

property: for each finite subset G of A and ε >  0 there are a finite-dimensional C∗-algebra 

F and completely positive contractions ∅,ψ such that the diagram 

 

commutes up to ϵ on G . 

The property characterising amenability in Theorem (3.1.2) is known as the completely 

positive approximation property. 

Why do we consider only separable and amenable 𝐶∗ -algebras in the classification 

program? It stands to reason that if one has no good classification of the weak closures of 

the 𝐺𝑁𝑆 representations for a class of 𝐶∗ -algebras, then one can hardly expect to classify 

the 𝐶∗ -algebras themselves. These weak closures have separable predual if the 𝐶∗-algebra 

is separable. Connes and Haagerup gave a classification of injective von Neumann algebras 
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with separable predual (see [156] and [175]), while Choi and Effros established that a 𝐶∗-
algebra is amenable if and only if the weak closure in each GNS representation is injective 

([154]). Separability and amenability are thus natural conditions which guarantee the 

existence of a good classification theory for the weak closures of all 𝐺𝑁𝑆 representations of 

a given C∗ -algebra. The assumption of amenability (at least for a simple classification; cf. 

however [164]) has been shown to be necessary by Dadarlat ([160]), see Rørdam [195]. 

One of the three regularity properties alluded to is defined in terms of the Cuntz 

semigroup, an analogue for positive elements of the Murray-von Neumann semigroup V(A). 
It is known that this semigroup will be a vital part of any complete invariant for separable 

amenable 𝐶∗-algebras ([201]). We present both its original definition, and a modern version 

which makes the connection with classical K-theory more transparent. 

Definition(3.1.3)[145]:(Cuntz-Rørdam; see [158] and [199]). Let 𝑀∞ (𝐴)  denote the 

algebraic limit of the direct system (𝑀𝑛(𝐴), ∅𝑛), where ∅n ∶ Mn(A)  → Mn+1(A)is given by 

𝑎 ↦ (
𝑎 0
0 0

) 

Let  𝑀∞(𝐴)+ (resp.𝑀𝑛(𝐴)+) denote the positive elements in 𝑀∞(𝐴)(resp.𝑀𝑛(𝐴))  Given 

𝑎, 𝑏 ∈ 𝑀∞(𝐴)+ we say that 𝑎 is Guntz subequivalent to 𝑏 ( written 𝑎 ≾ 𝑏 ) if there is a 

sequence   of (𝑣𝑛)𝑛=1
∞  elements  in some 𝑀𝑘(𝐴)such that  

‖𝑣𝑛𝑏𝑣𝑛
∗ − 𝑎‖

𝑛→∞
→   0. 

We say that a and b are Cuntz equivalent (written a ~ b)if 𝑎 ≾ 𝑏 and 𝑎 ≾ 𝑏.This relation is 

an equivalence relation, and we write 〈a〉 for the equivalence class of 𝑎.The set 

𝑊(𝐴) ≔ 𝑀∞(𝐴)+/ ~  
becomes a (positive) ordered Abelian semigroup when equipped with the operation 

〈a〉  + 〈b〉  =  〈a ⨁ b〉 

and the partial order 

〈a〉 ≤ 〈b〉 ⇔  a ≾  b. 

Definition(3.1.3) is slightly unnatural, as it fails to consider positive elements in A⨂𝒦. 

This defect is the result of mimicking the construction of the Murray-von Neumann 

semigroup. Each projection in A ⨂𝒦 is equivalent to a projection in some Mn(A),  whence 

M∞( A) is large enough to encompass all possible equivalence classes of projections. The 

same is not true, however, of positive elements and Cuntz equivalence. The definition below 

amounts essentially to replacing M∞(A)  with A ⨂𝒦  in the definition above (this is a 

theorem), and also gives a new and very useful characterisation of Cuntz subequivalence, 

see [183] and [188]. 

Consider A as a (right) Hilbert 𝐶∗-module over itself, and let HA  denote the countably 

infinite direct sum of copies of this module. There is a one-to-one correspondence between 

closed countably generated submodules of HA and hereditary subalgebras of A ⨂𝒦  the 

hereditary subalgebra B corresponds to 𝐵𝐻𝐴 .Since A is separable, B is singly hereditarily 

generated, and it is fairly routine to prove that any two generators are Cuntz equivalent in 

the sense of Definition (3.1.3). Thus, passing from positive elements to Cuntz equivalence 

classes factors through the passage from positive elements to the hereditary subalgebras they 

generate. 
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Let 𝑋  and 𝑌  be closed countably generated submodules of 𝐻𝐴 . Recall that the compact 

operators on 𝐻𝐴  form a 𝐶∗-algebra isomorphic to 𝐴 ⨂𝒦. Let us say that 𝑋 is compactly 

contained in 𝑌 if 𝑋 is contained in 𝑌 and there is a compact self-adjoint endomorphism of 

𝑌 which fixes 𝑋 pointwise. Such an endomorphism extends naturally to a compact self-

adjoint endomorphism of 𝐻𝐴,and so may be viewed as a self-adjoint element of 𝐴 ⨂𝒦. Let 

us write 𝑋 ≲  𝑌 if each closed countably generated compactly contained submodule of𝑋is 

isomorphic to such a submodule of 𝑌.  

Theorem(3.1.4)[145]:(Coward-Elliott-Ivanescu, [157]). The relation ≲ on Hilbert C∗ -

modules defined above, when viewed as a relation on positive elements in M∞(A),  is 

precisely the relation ≲ of Definition (3.1.3) 

Let [X] denote the Cuntz equivalence class of the module X.One may construct a positive 

ordered Abelian semigroup Cu(A) by endowing the set of countably generated Hilbert 𝐶∗-
modules over A with the operation 

[𝑋]  + [𝑌]: = [𝑋 ⨁ Y] 

and the partial order 

[X ]  ≤  [Y ]   ⇔    X ≲ Y. 

The semigroup Cu(𝐴)coincides with 𝑊(𝐴) whenever A is stable, i.e., A ⨂𝒦 ≅ A, and has 

some advantages over 𝑊(𝐴) in general. First, suprema of increasing sequences always exist 

in Cu(𝐴). This leads to the definition of a category including this structure in which Cu(𝐴) 

sits as an object, and as a functor into which it is continuous with respect to inductive limits. 

(Definition(3.1.3) casts W(A) asa functor into just the category of ordered Abelian 

semigroups with zero. This functor fails to be continuous with respect to inductive limits.) 

Second, it results in the simplification in the case that A has stable rank one that Cuntz 

equivalence of positive elements amounts simply to isomorphism of the corresponding 

Hilbert 𝐶∗ -modules. This has led, via recent work of Brown, Perera, to the complete 

classification of all countably generated Hilbert 𝐶∗ -modules over A  via 𝐾0  and traces, 

provided that A has the relatively common property of strict comparison  ([150], [151]), and 

to the classification of closed unitary orbits of positive operators in A ⨂𝒦 through recent 

work of Ciuperca ([152]). 

Cuntz equivalence is often described roughly as the Murray-von Neumann equivalence of 

the support projections of positive elements. This heuristic is, modulo accounting for 

projections, precise in 𝐶∗-algebras for which the Elliott invariant is known to be complete 

([192]). In the stably finite case, one recovers 𝐾0,the tracial simplex, and the pairing p (see 

(1)) from the Cuntz semigroup, whence the invariant 

(𝐶𝑢 (𝐴), 𝐾1𝐴) 

is finer than Ell(A) in general. These two invariants determine each other in a natural way 

for the largest class of unital stably finite 𝐶∗-algebras in which (𝐸𝐶) can be expected to hold 

([150], [151]). The class in question consists of those algebras which satisfy a certain 

regularity property, instability, which we shall introduce presently. 

We describe three agreeable properties which a 𝐶∗-algebra may enjoy. We will see 

later that virtually all classification theorems for separable amenable 𝐶∗-algebras via the 

Elliott invariant assume, either explicitly or implicitly, one of these properties. 
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The first regularity property—strict comparison—is one that guarantees, in simple 

C∗-algebras, that the heuristic view of Cuntz equivalence described is in fact accurate for 

positive elements which are not Cuntz equivalent to projections (see [192]). The property is 

K-theoretic in character. 

Let A be a unital C∗-algebra, and denote by QT(A) the space of normalised 2-quasitraces 

on A (v. [147]). Let 𝑆(𝑊(𝐴)) denote the set of additive and order preserving maps d from 

𝑊(𝐴)to ℝ+ having the property that d(〈1A〉)  =  1.  Such maps are called states.Given Τ ∈
QT(A), one may define a map dΤ : 𝑀∞(𝐴)+  →  ℝ

+ by 

dΤ(a) = lim
n=∞

 Τ (a
1

n) .                                            (2) 

This map is lower semicontinuous, and depends only on the Cuntz equivalence class of a. 
It moreover has the following properties:  

(i) if a ≾ 𝑏 , then 𝑑Τ(𝑎)  ≤  𝑑Τ(𝑏); 

(ii) if a and b are orthogonal, then 𝑑Τ (a +  𝑏)  =  𝑑Τ (𝑎) + 𝑑Τ (𝑏). 

Thus, dΤ defines a state on 𝑊(𝐴). Such states are called lower semicontinuous dimension 

functions, and the set of them is denoted by 𝐿𝐷𝐹(𝐴). If A has the property that a ≾  b 

whenever 𝑑(𝑎)  < d(b) for every d ∈  LDF(A), then let us say that A has strict comparison 

of positive elements or simply strict comparison. 

A theorem of Haagerup asserts that every element of QT(A) is in fact a trace if A is exact 

([176]). All amenable 𝐶∗-algebras are exact, so we dispense with the consideration of quasi-

traces from here on. 

  The second regularity property, introduced by Kirchberg and Winter, is topological 

in flavour. It is based on a noncommutati veversion of covering dimension called  

decomposition rank. 

Definition (3.1.5)[145]: ([182], Definitions 2.2 and 3.1). Let A be a separable 𝐶∗-algebra. 

(i)  We shall say that a completely positive map φ ∶  ⨁𝑖=1
𝑠  Mri  →  A is n- decomposable 

if there is a decomposition {1, . . . , s}  =  ∐ Ij
n
j=0    such that the re-striction of φ to ⨁𝑖∈𝐼𝑖 . Mri  

preserves orthogonality for each j ∈ {0, . . . , n}.  
(ii) A will be said to have decomposition rank n, denoted by dr A =  n,  if  n is the 

least integer such that the following holds: Given {b1, . . . , bm} ⊂  A  and 

ε >  0,  there is a completely positive approximation (F, ψ, φ) for b1, . . . , bm 

within (ϵ i. e. , ψ ∶  A → F  and φ ∶  F →  A  are completely positive contractions and 

‖φψ(bi) − bi‖ < ϵ)  such that φ  is n -decomposable. If no such n  exists, we write

 dr A =  ∞. 

Decomposition rank has good permanence properties. It behaves well with respect to 

quotients, inductive limits, hereditary subalgebras, unitization and stabilization. Its 

topological flavour comes from the fact that it generalises covering dimension in the 

commutative case: if X  is a locally compact second countable space, then dr𝐶0(𝑋)  =
 dimX, see [182]. 

The regularity property that we are interested in is finite decomposition rank, expressed 

by the inequality 𝑑𝑟 <  ∞. This can only occur in a stably finite 𝐶∗-algebra. 

  The Jiang-Su algebra Z is a simple separable amenable and infinite-dimensional 𝐶∗-
algebra with the same Elliott invariant as ℂ ([177]). We say that a second algebra A is 𝑍-
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stable if A ⨂Z ≅ A.  𝑍-stability is our third regularity property. It is very robust with respect 

to common constructions (see[205]). 

The next theorem shows 𝑍-stability to be highly relevant to the classification program. 

Recall that a pre-ordered Abelian group (G, G+)issaid tobe weakly unperforated if nx ∈
G+\{0} implies x ∈  G+ for any x ∈ G and n ∈  ℕ. 

Theorem(3.1.6)[145]: (Gong-Jiang-Su, [173]). Let A be a simple unital C∗-algebra with 

weakly unperforated 𝐾0-group. It follows that 

𝐸𝑙𝑙(𝐴)  ≅ 𝐸𝑙𝑙(𝐴 ⨂Z). 

Thus, in the setting of weakly unperforated 𝐾0, the completeness of 𝐸𝑙𝑙(•)inthe simple 

unital case of the classification program would imply 𝑍-stability. Remarkably, there exist 

algebras satisfying the hypotheses of the above theorem which are 

not Z-stable ([196], [201], [202]). 

In general, no two of the regularity properties above are equivalent. The most 

important general result connecting them is the following theorem of 𝑀. R∅rdam ([197]): 

Theorem (3.1.7)[145]: Let A be a simple, unital, exact, finite, and Z -stable C∗-algebra. 

Then, A has strict comparison ofpositive elements. 

We shall see later that for a substantial class of simple, separable, amenable, and stably 

finite 𝐶∗-algebras, all three of our regularity properties are equivalent. The algebras in this 

class which do satisfy these three properties also satisfy (𝐸𝐶). There is good reason to 

believe that the equivalence of these three properties will hold in much greater generality, 

at least in the stably finite case; in the general case, strict comparison and Z-stability may 

well prove to be equivalent characterisations of those simple, unital, separable, and 

amenable 𝐶∗-algebras which satisfy (𝐸𝐶). 

We have two goals to edify with the classification program and to demonstrate that 

the regularity properties of pervade the known confirmations of (𝐸𝐶). This is a new point 

of view, for when these results were originally proved, there was no reason to think that any 

thing more than simplicity, separability, and amenability would be required to complete the 

classification program. 

We have divided our review of known classification results into three broad cate-

gories according to the types of algebras covered: purely infinite algebras, and two formally 

different types of stably finite algebras. We will thus choose, from each of the three 

categories above, the classification theorem with the broadest scope, and indicate how the 

algebras it covers satisfy at least one of our regularity properties. 

We first consider a case where the theory is summarised with one beautiful result. 

Recall that a simple separable amenable 𝐶∗-algebra is purely infinite if every non-zero 

hereditary subalgebra contains an infinite projection (a projection is infinite if it is 

equivalent, in the sense of Murray and von Neumann, to a proper subprojection of itself; 

otherwise the projection is finite). 

Theorem (3.1.8)[145]: (Kirchberg-Phillips, 1995, [179] and [193]). Let A  and B  be 

separable amenable purely infinite simple C∗ -algebras which satisfy the Universal 

Coefficient Theorem. If there is an isomorphism 
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∅ ∶  Ell(A)  →  Ell(B), 

then there is a *‑ isomorphism Φ: A → B which induces 

In the theorem above, the Elliott invariant is somewhat simplified. The hypotheses on A 

and B guarantee that they are traceless, and that the order structure on 𝐾0 is irrelevant. Thus, 

the invariant is simply the graded group 𝐾0⨁𝐾1,along with the 𝐾0-class of the unit if it 

exists. The assumption of the Universal Coefficient Theorem (𝑈𝐶𝑇) is required in order to 

deduce the theorem from a result which is formally more general: A and B as in the theorem 

are *-isomorphic if and only if they are 𝐾𝐾-equivalent. The question of whether every 

amenable 𝐶∗-algebra satisfies the 𝑈𝐶𝑇 is open. 

Which of our three regularity properties are present here? As noted earlier, finite 

decomposition rank is out of the question. The algebras we are considering are traceless, 

and so the definition of strict comparison reduces to the following statement: for any two 

non-zero positive elements a, b ∈ A,wehave a ≾ 𝑏.This, in turn, is often taken as the very 

definition of pure infiniteness, and can be shown to be equivalent to the definition preceding 

Theorem(3.1.8)without much difficulty. Strict comparison is thus satisfied in a slightly 

vacuous way. As it turns out, A and B are also instable, although this is less obvious. One 

first proves that A and B are approximately divisible (again, this does not require Theorem 

(3.1.8)) and then uses the fact, due to Winter, that any separable and approximately divisible 

𝐶∗-algebra is 𝑧-stable ([206]). 

We now move on to the case of stably finite 𝐶∗-algebras, i.e., those algebras A such 

that that every projection in the (unitization of) each matrix algebra 𝑀𝑛(𝐴) is finite. (The 

question of whether a simple amenable 𝐶∗-algebra must always be purely infinite or stably 

finite was recently settled negatively by Rørdam. We will address his example again later.) 

Many of the classification results in this setting apply to classes of 𝐶∗-algebras which can 

be realised as inductive limits of certain building block algebras. The original classification 

result for stably finite algebras is due to Glimm. Recall that a 𝐶∗-algebra A is uniformly 

hyperfinite (𝑈𝐻𝐹) if it is the limit of an inductive sequence 

𝑀𝑛1
∅1
→𝑀𝑛2

∅2
→𝑀𝑛3

∅3
→…, 

where each ∅i is a unital ∗–homomorphism. We will state his result here as a confirmation 

of the Elliott conjecture, but note that it predates both the classification program and the 

realisation that 𝐾-theory is the essential invariant. 

Theorem(3.1.9)[145]: (Glimm, 1960, [170]). Let A and B be UHF algebras, and suppose 

that there is an isomorphsim 

∅ ∶  Ell(A)  →  Ell(B). 

It follows that there is a ∗–isomorphism Φ: A → B which induces ∅ 

Again, the invariant is dramatically simplified here. Only the ordered 𝐾0-group is non-

trivial. The strategy of Glimm's proof (which did not use 𝐾 -theory explicitly) was to 

"intertwine" two inductive sequences (𝑀𝑛𝑖 , ∅𝑖)and (𝑀𝑚𝑖 , 𝜓𝑖).e., to find sequences of *-

homomorphisms 𝜂𝑖  and 𝛾𝑖  the diagramcommute. One then gets an isomorphism between 
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the limit algebras by extending the obvious morphism between the induct ive sequences by 

continuity. 

 
The intertwining argument above can be pushed surprisingly far. One replaces the 

inductive sequences above with more general inductive sequences (Ai, ∅i)and (B i, ψi), 
where the Ai  and Bi  are drawn from a specified class (matrix algebras over circles, for 

instance), and seeks maps ηi and γias before. Usually, it is not possible to find ηi and γi 
making the diagram commute, but approximate commutativity on ever larger finite sets can 

be arranged, and this suffices for the existence of an isomorphism between the limit 

algebras. This generalised intertwining is known as the Elliott Intertwining Argument. 

The most important classification theorem for inductive limits covers the so-called 

approximately homogeneous (𝐴𝐻) algebras. An 𝐴𝐻 algebra A is the limit of an inductive 

sequence (𝐴𝑖 , 𝜙𝑖), where each Ai is semi-homogeneous: 

Ai  =

 ni
⊕pij
j = 1

(C(Xi,j)⨂𝒦)pi,j  

for some natural number ni, compact metric spaces Xij, and projections Pi,j  ∈  C(Xij) ⨂𝒦. 

We refer to the sequence (Ai, ∅i)a s  a  decomposition for A;such decompositions are not 

unique. All 𝐴𝐻 algebras are separable and amenable. 

Let A be a simple unital 𝐴𝐻 algebra. Let us say that A has slow dimension growth if it has 

a decomposition (Ai, ∅i) satisfyi 

lim sup sup
𝑖→∞

{
dim(𝑋𝑖,1)

𝑟𝑎𝑛𝑘 (𝑝𝑖,1)
, … ,

dim(𝑋𝑖,𝑛𝑖)

𝑟𝑎𝑛𝑘 (𝑝𝑖,𝑛𝑖)
} = 0 

Let us say that A has very slow dimension growth if it has a decomposition satisfying the 

(formally) stronger condition that 

lim sup sup
𝑖→∞

{
dim(𝑋𝑖,1)

3

𝑟𝑎𝑛𝑘 (𝑝𝑖,1)
, … ,

dim(𝑋𝑖,𝑛𝑖)
3

𝑟𝑎𝑛𝑘 (𝑝𝑖,𝑛𝑖)
} = 0 

Finally, let us say that A  has bounded dimension if there is a constant M > 0  and a 

decomposition of A satisfying 

lim
𝑖,𝑙
{𝑑𝑖𝑚(𝑋𝑖,𝑙)} ≤  M.  

Theorem(3.1.10)[145]: (Elliott-Gong, Dadarlat, and Gong, [166], [159] and [172]). (EC) 

holds among simple unital AH algebras with slow dimension growth and real rank zero. 

Theorem(3.1.11)[145]: (Elliott-Gong-Li and Gong, [168] and [171]). (EC) holds among 

simple unital AH algebras with very slow dimension growth. 

All three of our regularity properties hold for the algebras of Theorems (3.1.10) and 

(3.1.11), but some are easier to establish than others. Let us first point out that an algebra 
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from either class has stable rank one and weakly unperforated 𝐾0-group (cf. [146]), and that 

these facts predate Theorems (3.1.10) and (3.1.11). 𝐴 simple unital 𝐶∗-algebra of real rank 

zero and stable rank one has strict comparison if and only if its 𝐾0 -group is weakly 

unperforated (cf. [191]), whence strict comparison holds for the algebras covered by 

Theorem (3.1.10) A recent result shows that strict comparison holds for any simple unital 

𝐴𝐻  algebra with slow dimension growth ([204]), and this result is independent of the 

classification theorems above. Thus, strict comparison holds for the algebras of Theorems 

(3.1.10) and (3.1.11), and the proof of this fact, while not easy, is at least much less 

complicated than the proofs of the classification theorems themselves. Establishing finite 

decomposition rank requires the full force of the classification theorems: a consequence of 

both theorems is that the algebras they cover are all in fact simple unital 𝐴𝐻 algebras of 

bounded dimension, and such algebras have finite decomposition rank by [37, Corollary 

3.12 and 3.3 (ii)]. Proving i-stability is also an application of Theorems (3.1.8) and (3.1.11): 

one may use these theorems to prove that the algebras in question are approximately 

divisible ([167]), and this entails i-stability for separable 𝐶∗-algebras ([206]). 

Why all the interest in inductive limits? Initially at least, it was surprising to find that any 

classification of 𝐶∗-algebras by K-theory was possible, and the earliest theorems to this 

effect considered inductive limits (see AF algebras and AT-algebras of real rank zero in 

[161] and [163], respectively; it should be pointed out that [161] is based not only on [170] 

but on the generalisation of Glimm's approach to the full class of AF algebras by Bratteli in 

[148]—in which even the class of AF algebras is mentioned for the first time). But it was 

the realisation by Evans that a very natural class of 𝐶∗-algebras arising from dynamical 

systems—the irrational rotation algebras— were in fact inductive limits of elementary 

building blocks that began the drive to classify inductive limits of all stripes ([165]). This 

theorem of Elliott and Evans has recently been generalised in sweeping fashion by Lin and 

Phillips, who prove that virtually every 𝐶∗-dynamical system giving rise to a simple algebra 

is an inductive limit of fairly tractable building blocks ([187]). This result continues to 

provide strong motivation for the study of inductive limit algebras. 

Natural examples of separable amenable 𝐶∗ -algebras are rarely equipped with 

obvious and useful inductive limit decompositions. Even the aforementioned theorem of Lin 

and Phillips, which gives an inductive limit decomposition for each minimal 𝐶∗ -dynamical 

system, does not produce inductive sequences covered by existing classification theorems. 

It is thus desirable to have theorems confirming the Elliott conjecture under hypotheses that 

are (reasonably) straightforward to verify for algebras not given as inductive limits. 

Lin in [184] introduced the concept of tracial topological rank for 𝐶∗ -algebras. His 

definition, is this: a unital simple tracial 𝐶∗-algebra A has tracial topological rank at most 

n ∈  N if for any finite set FC A, tolerance ε >  0, and positive element a ∈ A there exist 

unital subalgebras B and C of A such that 

(i)  1 A = 1B ⨁ 1C , 

(ii) ℱ is almost (to within e) contained in B ⨁ C, 

(iii) is isomorphic to F⨂C(𝑋), where dim(𝑋) ≤  n and ℱ is finite-dimensional,and 

(iv) 1𝐵 is dominated, in the sense of Cuntz subequivalence, by 𝑎. 

One denotes by 𝑇𝑅(𝐴) the least integer n for which A satisfies the definition above; this is 

the tracial topological rank, or simply the tracial rank, of A. 
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The most important value of the tracial rank is zero. Lin proved that simple unital 

separable amenable 𝐶∗-algebras of tracial rank zero satisfy the Elliott conjecture, modulo 

the ever present UCT assumption ([185]). The great advantage of this result is that its 

hypotheses can be verified for a wide variety of 𝐶∗-dynamical systems and all simple non-

commutative tori, without ever having to prove that the latter have tractable inductive limit 

decompositions (see [194]). Indeed, the existence of such decompositions is a consequence 

of Lin's theorem! (Rather, it is a consequence of his proof, which showed that his class 

coincided with that of 

[166].) One can also verify the hypotheses of Lin's classification theorem for many real rank 

zero 𝐶∗-algebras with unique trace ([149]), always with the assumption, indirectly, of strict 

comparison. 

Simple unital 𝐶∗ -algebras of tracial rank zero can be shown to have stable rank one and 

weakly unperforated 𝐾0-group, whence they have strict comparison of positive elements by 

a theorem of Perera ([191]). (There is a classification theorem for algebras of tracial rank 

one ([186]), but this has been somewhat less useful—it is difficult to verify tracial rank one 

in natural examples. Also, Niu has recently proved a classification theorem for some 𝐶∗-
algebras which are approximated in trace by certain subalgebras of 𝑀𝑛 ⨂ 𝐶[0,1] ([189], 

[190]).) 

And what of our regularity properties? Lin proved in [184] that every unital simple 𝐶∗-
algebra of tracial rank zero has stable rank one and weakly unperforated 𝐾0 -group. These 

facts, entail strict comparison and are not nearly so difficult to prove as the tracial rank zero 

classification theorem. In a further analogy with the case of 𝐴𝐻  algebras, finite 

decomposition rank and 𝑧-stability can only be verified by applying Lin's classification 

theorem—aconsequence of this theorem (or rather, its proof; cf. above) is that the algebras 

it covers are in fact 𝐴𝐻 algebras of bounded dimension! 

Until the mid 1990s we had no examples of simple separable amenable 𝐶∗-algebras 

where one of our regularity properties failed. To be fair, two of our regularity properties had 

not yet even been defined, and strict comparison was seen as a technical version of the more 

attractive Second Fundamental Comparability Question for projections (this last condition, 

abbreviated 𝐹𝐶𝑄2, asks for strict comparison for projections only). This all changed when 

Vil-ladsen produced a simple separable amenable and stably finite 𝐶∗-algebra which did not 

have 𝐹𝐶𝑄2 , answering a long-standing question of Blackadar ([208]). The techniques 

introduced by Villadsen were subsequently used by him and others to answer many open 

questions in the theory of nuclear 𝐶∗-algebras including the following: 

(i) Does there exist a simple separable amenable 𝐶∗-algebra containing a finite and an 

infinite projection? (Solved affirmatively by R∅rdam in [196].) 

(ii) Does there exist a simple and stably finite 𝐶∗-algebra with non-minimal stable rank? 

(Solved affirmatively by Villadsen in [209].) 

(iii) Is stability a stable property for simple 𝐶∗-algebras? (Solved negatively by Rørdam 

in [198].) 

(iv) Does a simple and stably finite 𝐶∗ -algebra with cancellation of projections 

necessarily have stable rank one?  

(v) Are the 𝐶∗-algebras of minimal dynamical systems always classified by their 

Elliott invariants? (Solved negatively by Kerr and Giol in [178].) 
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Of the results above, (i) was (and is) the most significant. In addition to showing that simple 

separable amenable 𝐶∗ -algebras do not have a factor-like type classification, Rørdam's 

example demonstrated that the Elliott invariant as it stood could not be complete in the 

simple case. This and other examples have necessitated a revision of the classification 

program ([203]).  

 (𝐸𝐶) does not hold in general, and this justifies new assumptions in  efforts to confirm it. 

In particular, one may assume any combination of our three regularity properties. We will 

comment on the aptness of these new assumptions. For now we observe that, from a certain 

point of view, we have been making these assumptions all along. Existing classification 

theorems for stably finite 𝐶∗-algebras of real rank zero are accompanied by the crucial 

assumptions of stable rank one and weakly unperforated 𝐾0; as has already been pointed 

out, unperforated 𝐾0 can be replaced with strict comparison in this setting. 

How much further can one get by assuming the (formally) stronger condition of 𝑍 -

stability? What role does finite decomposition rank play? As it turns out, these two 

properties both alone and together produce interesting results. Let 72.72.0 denote the class 

of simple unital separable amenable 𝐶∗-algebras of real rank zero. The following subclasses 

of 770 tysatisfy (𝐸𝐶): 

(i)  algebras that satisfy the 𝑈𝐶𝑇 , have finite decomposition rank, and have tracial 

simplex with compact and zero-dimensional extreme boundary; 

(ii) Z-stable algebras that satisfy the 𝑈𝐶𝑇 and arapproximated locally by subalgebras of 

finite decomposition rank. 

These results, due to Winter ([210], [211]), showcase the power of our regularity properties: 

included in the algebras covered by (ii) are all simple separable unital 𝑍 -stable 𝐴𝑆𝐻 

(approximately subhomogeneous) algebras of real rank zero. 

Another advantage to the assumptions of 𝑍-stability and strict comparison is that they 

allow one to recover extremely fine isomorphism invariants for 𝐶∗-algebras from the Elliott 

invariant alone. (This recovery is not possible in general.) We will be able to give precise 

meaning to this comment below, but first require a further discussion of the Cuntz 

semigroup. 

  A natural reaction to an incomplete invariant is to enlarge it: include whatever 

information was used to prove incompleteness. This is not always a good idea. It is possible 

that one's distinguishing information is ad hoc and unlikely to yield a complete invariant. 

Worse, one may throw so much new information into the invariant that the impact of its 

potential completeness is severely diminished. 

Rørdam's finite-and-infinite-projection example is distinguished from a simple and 

purely infinite algebra with the same 𝐾-theory by the obvious fact that the latter contains no 

finite projections. The natural invariant which captures this difference is the semigroup of 

Murray-von Neumann equivalence classes of projections in matrices over an algebra 𝐴, 

denoted by 𝑉(𝐴). After the appearance of Rørdam's example, the second-named author 

produced a pair of simple, separable, amenable, and stably finite 𝐶∗-algebras which agreed 

on the Elliott invariant but were not isomorphic. In this case the distinguishing invariant was 

Rieffel's stable rank. It was later discovered that these algebras could not be distinguished 

by their Murray-von Neumann semigroups, but it was not yet clear which data were missing 
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from the Elliott invariant. More dramatic examples were needed, ones which agreed on most 

candidates for enlarging the invariant and pointed the way to the "missing information". 

 [202] constructed a pair of simple unital AH algebras which, while non-isomorphic, 

agreed on a wide swath of invariants including the Elliott invariant, all continuous (with 

respect to inductive sequences) and homotopy invariant functors from the category of 𝐶∗-
algebras (a class which includes the Murray-von Neumann semigroup), the real and stable 

ranks, and, as was shown later in [203], stable isomorphism invariants (those invariants 

which are insensitive to tensoring with a matrix algebra or passing to a hereditary 

subalgebra). It seemed reasonable to expect that the distinguishing invariant in this 

example—the Cuntz semigroup—might be a good candidate for enlarging the invariant. At 

least, it was an object which after years of being used sparingly as a means to other ends, 

merited study for its own sake. 

Let us collect some evidence supporting the addition of the Cuntz semigroup to the usual 

Elliott invariant. First, in the biggest class of algebras where (𝐸𝐶) can be expected to hold—

Z-stable algebras, as shown by Theorem (3.1.6)—it is not an addition at all! Recent work of 

Brown, Perera shows that for a simple unital separable amenable 𝐶∗-algebra which absorbs 

Z  tensorially, there is a functor which recovers the Cuntz semigroup from the Elliott 

invariant ([150], [192]). This functorial recovery also holds for simple unital AH algebras 

of slow dimension growth, a class for which Z-stability is not known and yet confirmation 

of (EC) is expected. (It should be noted that the computation of the Cuntz semigroup for a 

simple approximate interval (AI) algebra was essentially carried out by Ivanescu and the 

first-named author in [169], although one does require [12, Corollary 4] to see that the 

computation is complete.) 

Second, the Cuntz semigroup unifies the counterexamples of Rørdam. One can show that 

the examples of [195], [201], and [202] all consist of pairs of algebras with different Cuntz 

semigroups; there are no known counterexamples to the conjecture that simple separable 

amenable 𝐶∗-algebras will be classifiedupto *-isomorphism by the Elliott invariant and the 

Cuntz semigroup. 

Third, the Cuntz semigroup provides a bridge to the classification of non-simple algebras. 

Ciuperca and the first-named author have recently proved that AI algebras—limits of 

inductive sequences of algebras of the form 

𝑛
⊕
𝑖 = 1

𝑀𝑚𝑖(𝐶[0,1]) 

are classified up to isomorphism by their Cuntz semigroups ([152]). This is accomplished 

by proving that the approximate unitary equivalence classes of positive operators in the 

unitization of a stable 𝐶∗-algebra of stable rank one are determined by the Cuntz semigroup 

of the algebra, and then appealing to a theorem of Thom-sen ([200]). (These approximate 

unitary equivalence classes of positive operators can be endowed with the structure of a 

metric Abelian semigroup with functional calculus. This invariant, known as Thomsen's 

semigroup, is recovered functorially in [152] from the Cuntz semigroup for a 𝐶∗-algebra of 

stable rank one, and so from the Elliott invariant in an algebra which is moreover simple, 

unital, exact, finite, and 𝑍-stable by the results of [150].  
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There is one last reason to suspect a deep connection between the classification program 

and the Cuntz semigroup. Let us first recall a theorem of Kirchberg, which is germane to 

the classification of purely infinite 𝐶∗-algebras cf. Theorem (3.1.8). 

Theorem(3.1.12)[145]: (Kirchberg, c. 1994; see [181]). Let A be a separable amenable 𝐶∗-
algebra. The following two properties are equivalent: 

(i) A is purely infinite; 

(ii) A ⨂𝒪∞ ≅  A. 

 A consequence of Kirchberg's theorem is that among simple separable amenable 𝐶∗-
algebras which merely contain an infinite projection, there is a two-fold characterisation of 

the (proper) subclass which satisfies the original form of the Elliott conjecture (modulo 

UCT). If one assumes apriori that A is simple and unital with no tracial state, then a theorem 

of Rørdam (see [197]) shows that the property (ii) above, known as 𝐶∞ -stability, is 

equivalent to i-stability. Under these same hypotheses, the property (i) is equivalent to the 

statement that A has strict comparison. Kirchberg's theorem can thus be rephrased as follows 

in the simple unital case: 

Theorem(3.1.13)[145]: Let A be a simple separable unital amenable 𝐶∗ -algebra without a 

tracial state. The following two properties are equivalent: 

(i) A has strict comparison; 

(ii) A ⨂Z ≅  A. 

The properties (i) and (ii) in the theorem above make perfect sense in the presence of a 

trace. We moreover have that (ii) implies (i) even in the presence of traces (this is due to 

Rørdam; see [197]). It therefore makes sense to ask whether the theorem might be true 

without the tracelessness hypothesis. Remarkably, this appears to be the case. Winter have 

proved that for a substantial class of stably finite 𝐶∗-algebras, strict comparison and i-

stability are equivalent, and that these properties moreover characterise the (proper) subclass 

which satisfies (EC) ([207]). In other words, Kirchberg's theorem is quite possibly a special 

case of a more general result, one which will give a unified two-fold characterisation of 

those simple separable amenable 𝐶∗-algebras which satisfy the original form of the Elliott 

conjecture. 

It is too soon to know whether the Cuntz semigroup together with the Elliott invariant will 

suffice for the classification of simple separable amenable 𝐶∗-algebras, or indeed, whether 

such a broad classification can be hoped for at all. But there is already cause for optimism. 

Zhuang Niu has recently obtained some results on lifting maps at the level of the Cuntz 

semigroup to ∗–homomorphisms. This type of lifting result is a key ingredient in proving 

almost any kind of classification theorem (cf. [164]). His results suggest the algebras of 

[202] as the appropriate starting point for any effort to establish the Cuntz semigroup as a 

complete isomorphism invariant, at least in the absence of 𝐾1 (see [152]).  

Section (3.2): Z-Stable Wilhelm Winter 

A separable unital 𝐶∗-algebra 𝒟 ≠ ℂ is called strongly self-absorbing, if there is an 

isomorphism 𝒟 → 𝒟⨂𝒟 which is approximately unitarily equivalent to The first factor 

embedding, cf. [222]. The interest in such algebras largely arises From Elliott’s program to 

classify nuclear 𝐶∗-algebras by 𝐾-theoretic invariants. 
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Examples suggest that classification will only be possible up to 𝒟-stability (i.e., up 

to tensoring with 𝒟) for a strongly self-absorbing 𝒟, cf. [221], [145], [224]. While the 

known strongly self-absorbing examples are quite well understood, and are entirely 

classified, it remains an open problem whether these are the only ones. Froma more general 

perspective, the question is in how far abstract properties allow for comparison with 

concrete examples. For nuclear 𝐶∗-algebras, this question prominently manifests itself as 

the UCT problem (i.e., is every nuclear 𝐶∗-algebra KK-equivalent to a commutative one); a 

positive answer even in the special setting of strongly self-absorbing 𝐶∗-algebras would be 

highly satisfactory, and likely shed light on the general case. 

We shall be concerned with a closely related interpretation of the aforementioned 

question: we will show that any strongly self-absorbing 𝐶∗  -algebra 𝒟  admits a unital 

embedding of a specific example, the Jiang–Su algebra 𝒵 (see [177] and to [220] for an 

introduction and various characterizations of 𝒵). It then follows immediately that 𝒟 is in 

fact 𝒵-stable. The result answers some problems left open in [222] and in [213]; in particular 

it implies that strongly self-absorbing 𝐶∗-algebras are always 𝐾1-injective. It shows that the 

Jiang–Su algebra is an initial object in the category of strongly self-absorbing 𝐶∗-algebras 

(with initial *-homomorphisms); there can only be one such initial object, whence 𝒵 is 

characterized this way. It is interesting to note that the Cuntz algebra 𝒪2 is the uniquely 

determined final object in this category, and that 𝒪∞ can be characterized as the initial object 

in the category of infinite strongly self-absorbing 𝐶∗-algebras. 

  The Proof  of  the  main result builds on ideas from [220] and from [213], where the 

problem was settled in the case where 𝒟 contains a nontrivial projection. 

We generalize a technical result from [213] to a setting that does not require the 

existence of projections, see Lemma (3.2.4) below. See [219] for a brief account of the 

Cuntz semigroup. 

Proposition(3.2.1)[212]: Let 𝐴 be a unital C∗-algebra, 0 ≤  𝑔 ≤  1𝐴. 

Then, for any 0 ≠  𝑛 ∈  ℕ, we have 

1𝐴⊗𝑛 − 𝑔
⊗𝑛 ≥ (1𝐴 −  𝑔)⨂ 𝑔 ⨂ . . .⨂ 𝑔 

+𝑔 ⊗ (1𝐴 −  𝑔)⊗  𝑔 ⊗ . . .⊗  𝑔 

⋮ 
+𝑔 ⊗ . . .⊗  𝑔 ⊗ (1𝐴 −  𝑔). 

Proof: The statement is trivial for 𝑛 = 1. Suppose now we have shown the assertion for 

some 0 ≠  𝑛 ∈  ℕ. We obtain  

1𝐴⊗(𝑛+1) − 𝑔
⊗(𝑛+1) = 1𝐴⊗𝑛⊗  𝑔 – 𝑔⊗𝑛⊗  𝑔 + 1𝐴⊗𝑛⊗ (1𝐴 −  𝑔) 

= (1𝐴⊗𝑛 − 𝑔
⊗𝑛) ⊗  𝑔 + 1𝐴⊗𝑛⊗ (1𝐴 −  𝑔) 

≥ ((1𝐴 −  𝑔)⊗  𝑔 ⊗ . . .⊗  𝑔)⊗  𝑔 

+(𝑔 ⊗ (1𝐴 −  𝑔)⊗  𝑔 ⊗ . . .⊗  𝑔)⊗  𝑔 

⋮ 

+(𝑔 ⊗ . . .⊗  𝑔 ⊗ (1𝐴 −  𝑔))⊗  𝑔 

+𝑔⊗𝑛⊗ (1𝐴 −  𝑔), 
where for the inequality we have used our induction hypothesis as well as the fact that 

1𝐴⊗𝑛  ⊗ (1𝐴 −  𝑔)  ≥  𝑔
⊗𝑛⊗ (1𝐴 −  𝑔). Therefore, the statement also holds for 𝑛 +  1. 

Proposition(3.2.2)[212]: Let 𝒟 be strongly self-absorbing, 0 ≤ 𝑑 ≤  1𝒟. 

Then, for any 0 ≠ 𝑘 ∈ ℕ, 
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[1𝐷⊗𝑘 − 𝑑
⊗𝑘]  ≤  𝑘 ·  [(1𝒟 −  𝑑)  ⊗ 1𝒟⊗(𝑘−1)] 𝑖𝑛 𝑊(𝒟

⊗𝑘) 
Proof: The assertion holds trivially for 𝑘 = 1. Suppose now it has been verified for some 

𝑘 ∈ ℕ. Then, 

[1𝒟 − 𝑑
⊗(𝑘+1)]  =  [1𝒟⊗𝑘⊗ (1𝒟 −  𝑑)  + 1𝒟⊗𝑘⊗  𝑑 − 𝑑⊗𝑘  ⊗ 𝑑]

≤  [1𝒟⊗𝑘⊗ (1𝒟 −  𝑑)]  + [(1𝒟⊗𝑘  −  𝑑
⊗𝑘 ) ⊗ 1𝒟]

≤  [(1𝒟 −  𝑑)  ⊗ 1𝒟⊗𝑘  ]  +  𝑘 ·  [(1𝒟 − 𝑑)  ⊗ 1𝒟⊗(𝑘−1)  ⊗ 1𝒟]

=  (𝑘 +  1) ·  [(1𝒟 −  𝑑)  ⊗ 1𝒟⊗𝑘  ] 
(using that 𝒟 is strongly self-absorbing as well as our induction hypothesis for the second 

inequality), so the assertion also holds for 𝑘 + 1. 

The following is only a mild generalization of [213, Lemma 1.3]. 

Lemma(3.2.3)[212]:  Let 𝒟  be strongly self-absorbing and let 0 ≤  𝑓 ≤  𝑔 ≤  1𝒟  be 

positive elements of 𝒟 satisfying 1𝒟 −  𝑔 ≠  0 and 𝑓𝑔 =  𝑓. 
Then, there is 0 ≠  𝑛 ∈  ℕ such that 

[𝑓⊗𝑛] ≤ [1𝒟⊗𝑘 − 𝑔
⊗𝑛]in 𝑊(𝒟⊗𝑛). 

Proof: Since 𝒟 is simple and 1𝒟 −  𝑔 ≠  0, there is 𝑛 ∈ ℕ such that 

[𝑓]  ≤  𝑛 ·  [1𝒟 −  𝑔]. 
Then, 

[𝑓⊗𝑛]  ≤  𝑛 ·  [(1𝒟 −  𝑔)  ⊗  𝑓 ⊗ . . .⊗  𝑓] 
=  [(1𝒟 −  𝑔)  ⊗  𝑓 ⊗ . . .⊗  𝑓] + . . . + [𝑓 ⊗ . . .⊗  𝑓 ⊗ (1𝒟 −  𝑔) 
= [(1𝒟 −  𝑔)  ⊗  𝑓 ⊗ . . .⊗  𝑓 + . . . + 𝑓 ⊗ . . .⊗  𝑓 ⊗ (1𝒟 −  𝑔)] 
≤  [(1𝒟 −  𝑔)  ⊗  𝑔 ⊗ . . .⊗  𝑔 + . . . + 𝑔 ⊗ . . .⊗  𝑔 ⊗ (1𝒟 −  𝑔)] 

       ≤ [1𝒟⊗𝑛 − 𝑔
⊗𝑛], 

where for the first equality we have used that 𝒟 is strongly self-absorbing, for the second 

equality we have used that the terms are pairwise orthogonal by our assumptions on f and 

g, and the last inequality follows from Proposition (3.2.1). 

The following is a version of [213] for positive elements rather than projections. 

Lemma(3.2.4)[212]: Let 𝒟  be strongly self-absorbing and let 0 ≤  𝑓 ≤  𝑔 ≤  1𝒟  be 

positive elements satisfying 1𝒟 −  𝑔 ≠  0 and 𝑓𝑔 =  𝑓;  let 0 ≠  𝑑 ∈ 𝒟+. 

Then, there is 0 ≠ 𝑚 ∈ ℕ such that  

[𝑓⊗𝑚]  ≤  [𝑑 ⊗ 1𝒟⊗(𝑚−1)] in 𝑊(𝒟
⊗𝑚) 

Proof: By Lemma (3.2.3), there is 0 ≠ 𝑛 ∈ ℕ such that 

[𝑓⊗𝑛]  ≤  [1𝒟⊗𝑛 − 𝑔
⊗𝑛]; 

since 𝑓⊗𝑛 ⊥ 1𝒟⊗𝑛 − 𝑔
⊗𝑛 , this implies  

2 ·  [𝑓⊗𝑛]  ≤  [1𝒟⊗𝑛]. 
By an easy induction argument we then have 

2𝑘 ·  [𝑓⊗𝑛𝑘]  ≤  [1𝒟⊗𝑛𝑘]  
for any 𝑘 ∈  ℕ. 

  By simplicity of 𝒟 and since 𝑑 is nonzero, there is  𝑘 ̅ ∈  ℕ such that  

[𝑓]  ≤  2𝑘̅ ·  [𝑑]. 
Set  

𝑚 ≔ 𝑛𝑘̅ + 1, 
then 
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[𝑓⊗𝑚 ] ≤  2𝑘̅ ·  [𝑑 ⊗ 𝑓⊗(𝑚−1)] =  2𝑘̅ ·  [𝑑 ⊗ 𝑓⊗𝑛𝑘̅] ≤  [𝑑 ⊗ 1
𝒟⊗𝑛𝑘̅

]

=  [𝑑 ⊗ 1𝒟⊗(𝑚−1)]. 
Below we establish the existence of nontrivial order zero maps from matrix algebras into 

strongly self-absorbing 𝐶∗-algebras, and we show certain systems of such maps give rise to 

order zero maps with small complements, see [225] and [226]. 

Proposition(3.2.5)[212]: Let 𝒟 be strongly self-absorbing and 0 ≠  𝑑 ∈ 𝒟+. 

Then, for any 0 ≠  𝑘 ∈  ℕ, there is a nonzero c.p.c. order zero map 

𝜓 ∶  𝑀𝑘  → 𝑑𝒟𝑑̅̅ ̅̅ ̅̅ . 
Proof: Let us first prove the assertion in the case where 𝑑 =  1𝒟 and 𝑘 =  2. 

Since 𝒟 is infinite dimensional, there are orthogonal positive normalized elements 𝑒, 𝑓 ∈
𝒟. Since 𝒟 ≅ 𝐷⨂𝐷 is strongly self-absorbing, there is a sequence of unitaries (𝑢𝑛)𝑛∈ℕ ⊂
 𝒟⨂𝒟 such that 

𝑢𝑛(𝑒 ⨂ 𝑓)𝑢𝑛
∗  
𝑛→∞
→    𝑓 ⨂ 𝑒; 

since 𝑒 ⨂ 𝑓 ⊥   𝑓 ⨂ 𝑒 this implies that there is a c.p.c. order zero map 

𝜎̅ ∶  𝑀2 →∏ 𝒟⨂𝒟/⨂ℕ𝒟⨂𝒟
ℕ

 

given by 

𝜎̅(𝑒11)  =  𝑒 ⨂ 𝑓, 𝜎̅(𝑒22)  =  𝑓 ⨂ 𝑒, 𝜎̅(𝑒21)  =  𝜋 ((𝑢𝑛(𝑒⨂𝑓))𝑛∈ℕ) 

(𝑐𝑓. [225]), where 𝜋 ∶ ∏ 𝒟⨂𝒟ℕ  → ∏ 𝒟⨂𝒟ℕ /⨂ℕ𝒟⨂𝒟 denotes the quotient map. 
Since order zero maps with finite dimensional domains are semi projective (cf. [225]), 𝜎̅ 

has a c.p.c. order zero lift 𝑀2 → ∏ 𝒟⨂𝒟ℕ  which in turn implies that there is a nonzero c.p.c. 

order zero map 

𝜎̅ ∶ 𝑀2 →∏ 𝒟⊗𝒟
ℕ

≅ 𝒟. 

Next, if 𝑘 =  2𝑟 for some 𝑟 ∈  ℕ, then 

𝑀2𝑟 ≅ (𝑀2)
⊗𝑟

𝜎̃⊗𝑟
→   𝒟⊗𝑟 ≅ 𝒟  

is a nonzero c.p.c. order zero map; for an arbitrary 𝑘 ∈ ℕ, we may take r large enough and 

restrict 𝜎̃⊗𝑟to 𝑀𝑘 ⊂ 𝑀2𝑟 to obtain a nonzero c.p.c. order zero maps :  𝜎:𝑀𝑘 →  𝒟. 
This settles the proposition for arbitrary 𝑘 and for 𝑑 =  1𝒟. Now if d is an arbitrary nonzero 

positive element (which we may clearly assume to be normalized), we can define a c.p.c. 

map 

𝜓̅ ∶  𝑀𝑘 →∏ 𝑑𝒟𝑑̅̅ ̅̅ ̅̅ /⊗ℕ 𝑑𝒟𝑑̅̅ ̅̅ ̅̅  ⊂∏ 𝒟 ∕⊗ℕ
ℕ

𝒟
ℕ

 

by setting 

𝜓̅(𝑥)  ∶=  𝜋((𝑑𝜎𝑛(𝑥)𝑑)𝑛∈ℕ) for 𝑥 ∈  𝑀𝑘, 
where again 𝜋 ∶ ∏ 𝑑𝒟𝑑̅̅ ̅̅ ̅̅

ℕ  → ∏ 𝑑𝒟𝑑̅̅ ̅̅ ̅̅ /⊗ℕ 𝑑𝒟𝑑̅̅ ̅̅ ̅̅  ℕ  denotes the quotient map and 𝜎𝑛:𝑀𝑘  → 𝒟 

is a sequence of c.p.c. maps lifting the c.p.c. order zero map 

μ𝜎 ∶  𝑀𝑘 → (∏ 𝒟/⊗ℕ 𝒟 
ℕ

) ∩ 𝒟′, 

with  

μ ∶  𝒟 →  (∏ 𝒟/⊗ℕ 𝒟 
ℕ

) ∩ 𝒟′ 
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being a unital *-homomorphism as in [222, Theorem 2.2]. It is straightforward to check that 

𝜓̅ is nonzero and has order zero. Again by semiprojectivity of order zero maps, this implies 

the existence of a nonzero c.p.c. order zero map  

𝜓 ∶  𝑀𝑘 → 𝑑𝒟𝑑̅̅ ̅̅ ̅̅  

Proposition(3.2.6)[212]: Let 𝐵  be a unital *-algebra and 𝜚: 𝑀2 →  𝐵  a unital *-

homomorphism. Define 

𝐸 ∶=  {𝑓 ∈  𝐶([0, 1], 𝐵 ⊗ 𝑀2) | 𝑓(0)  ∈  𝐵 ⊗ 1𝑀2 , 𝑓(1)  ∈  1𝐵⊗ 𝑀2}. 

Then, there is a unital *-homomorphism 

𝜚̃: 𝑀2 →  𝐸 

Proof: This follows from simply connecting the two embeddings 𝜚 ⊗ 1𝑀2  And  1𝑀2⊗

 id𝑀2  of 𝑀2 into 𝜚(𝑀2)  ⊗ 𝑀2 ≅ 𝑀2⊗𝑀2 M along the unit interval. 

Lemma(3.2.7)[212]: Let 𝑚 ∈  ℕ and 𝐴 a unital 𝐶∗-algebra. Let 

𝜑1, . … , 𝜑𝑚:𝑀2 →  𝐴 
be c.p.c. order zero maps such that  

∑𝜑𝑖(1𝑀2) ≤ 1𝐴

𝑚

𝑖=1

 

and 

[𝜑𝑖(𝑀2), 𝜑𝑗(𝑀2)]  =  0 if 𝑖 ≠  𝑗. 

Then, there is a c.p.c. order zero map 

𝜑̅ ∶  𝑀2 → 𝐶
∗(𝜑𝑖(𝑀2) | 𝑖 =  1, . . . , 𝑚)  ⊂  𝐴 

such that  

𝜑̅(1𝑀2) =∑𝜑𝑖(1𝑀2).

𝑚

𝑖=1

 

 

Moreover, if 𝑑 ∈  𝐴+satisfies 𝜑𝑚(𝑒11)𝑑 =  𝑑,we may assume that 𝜑̅(𝑒11)𝑑 =  𝑑. 

Proof: In the following, we write 𝐶𝑖 , 𝑖 =  1, . . . , 𝑚, for various copies of the 𝐶∗-algebra 

𝐶0((0, 1],𝑀2); these come equipped with c.p.c. order zero maps  𝜚𝑖:𝑀2 → 𝐶𝑖 given by 

𝜚𝑖(𝑥)(𝑡)  =  𝑡 ·  𝑥 for 𝑡 ∈  (0, 1] and 𝑥 ∈  𝑀2. 
By [223, Proposition 3.2(a)], the c.p.c. order zero maps 𝜑𝑖: 𝑀2 →  𝐴  induce unique *-

homomorphisms 𝐶𝑖 →  𝐴 via 𝜚𝑖(𝑥)  ↦  𝜑𝑖(𝑥), for 𝑥 ∈  𝑀2. 
We now define a universal 𝐶∗-algebra 

𝐵 ∶=  𝐶∗(𝐶𝑖 , 1 |∑𝜚𝑙(1𝑀2) ≤ 1, [𝐶𝑖 , 𝐶𝑗]  =  0 if 𝑖 ≠  𝑗 ∈  {1, . . . , 𝑚}

𝑚

𝑙=1

). 

Then, 𝐵 is generated by the  𝜚𝑖(𝑥), 𝑖 ∈  {1, . . . , 𝑚} and 𝑥 ∈  𝑀2; the assignment 𝜚𝑖(𝑥)  ↦
 𝜑𝑖(𝑥) 𝑓𝑜𝑟 𝑖 ∈  {1, . . . , 𝑚} and 𝑥 ∈  𝑀2 
induces a unital *-homomorphism 

𝜋 ∶  𝐵 → 𝐶∗, (𝜑𝑖(𝑀2), 1𝐴| 𝑖 ∈  {1, . . . , 𝑚})  ⊂  𝐴 
satisfying 

∑𝜋𝜚𝑙(1𝑀2)

𝑚

𝑙=1

=∑𝜑𝑙(1𝑀2)

𝑚

𝑙=1
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Now if we find a c.p.c. order zero map 

𝜚̅ ∶  𝑀2 →  𝐵  
Satisfying   

𝜚̅(1𝑀2) = ∑ 𝜚𝑙(1𝑀2) ,
𝑚
𝑙=1   

Then 

𝜑̅ ≔ 𝜋𝜚̅ 

   will have the desired properties, proving the first assertion of the lemma. We proceed to 

construct 𝜚.̅ 
For 𝑘 =  1, . . . , 𝑚,  let 

𝐽𝑘  ∶=  𝒥 (1 −∑𝜚𝑙(1𝑀2

𝑚

𝑙=𝑘

))  ⊲  𝐵 

denote the ideal generated by 1 –∑ 𝜚𝑙(1𝑀2
𝑚
𝑙=𝑘 ) in B; let 

𝐵𝑘 ≔ 𝐵/𝐽𝑘 
denote the quotient. We clearly have 

𝐽1 ⊂ 𝐽2 ⊂ ⋯ ⊂ 𝐽𝑚 

and surjections 

𝐵
𝜋1
→ 𝐵1

𝜋2
→ …

𝜋𝑚
→ 𝐵𝑚. 

Observe that 

𝜋𝑚𝜊 . . . 𝜊 𝜋1𝜊𝜚𝑚: 𝑀2 → 𝐵𝑚 
is a unital surjective c.p. order zero map, hence a *-homomorphism by [223, Proposition 

3.2(b)]; therefore, 𝐵𝑚 ≅ 𝑀2. 

 For 𝑘 =  1, . . . , 𝑚 −  1, set  

 (i)  𝐸𝑘  ∶= {𝑓 ∈  𝐶([0, 1], 𝐵𝑘+1⨂ 𝑀2) | 𝑓(0)  ∈  𝐵𝑘+1⨂ 1𝑀2 , 𝑓(1)  ∈  1𝐵𝑘+1⨂ 𝑀2}; 

one easily checks that the maps 

𝜎𝑘: 𝐵𝑘 ⟶ 𝐸𝑘 

 induced by 

                        (𝑡 ⟼ (1 –  𝑡) ·  𝜋𝑘+1. . . 𝜋1 𝜎𝑖  (𝑥) ⨂ 1𝑀2) 
𝜋𝑘 …𝜋1𝜎𝑖(𝑥) ⟼              for 𝑖 =  𝑘 +  1, . . . , 𝑚 and 𝑥 ∈  𝑀2 

(𝑡 ⟼  𝑡 ·  1𝐵𝑘+1⨂ 𝑥) 

for 𝑖 =  𝑘 and 𝑥 ∈  𝑀2 
are well-defined *-isomorphisms. Similarly, the map 

 𝜎0: 𝐵 →  𝐸 0: =  {𝑓 ∈  𝐶([0, 1], 𝐵1) | 𝑓(1)  ∈ ℂ ·  1𝐵1} 

induced by 

 𝜚𝑖(𝑥)  ⟼ (𝑡 ⟼ (1 –  𝑡) ·   𝜋1𝜚𝑖  (𝑥))for 𝑖 = 1, . . . , 𝑚 and 𝑥 ∈  𝑀2, 

1𝐵 ⟼ 1𝐸0  

is a well-defined *-isomorphism; note that 

𝜎0 (∑ 𝜚1
𝑚

𝑙=1
(1𝑀2)) =  ( 𝑡 ⟼ (1 −  𝑡). 1𝐵1). 

By (i) together with Proposition (3.2.6) and an easy induction argument, the unital *-

homomorphism  

𝜋𝑚…𝜋1𝜚𝑚:𝑀2 → 𝐵𝑚 

pulls back to a unital *-homomorphism 

𝜚̃:𝑀2 → 𝐵1; 



 

92 

This in turn induces a c.p.c. order zero map 

𝜚̃:𝑀2 → 𝐵0 

By 

𝜚̃(𝑥) ≔ (𝑡 ⟼ (1 − 𝑡). 𝜚̃(𝑥)); 
note that this map satisfies 

𝜚̃(1𝑀2) = (𝑡 ⟼ (1 − 𝑡). 1𝐵1). 

We now define a *-homomorphism note that 𝜚̃(1𝑀2)  = ∑ 𝜚𝑙
𝑚
𝑙=1  (1𝑀2), whence 𝜚̅  is as 

desired. 

   For the second assertion of the lemma, note that 𝜚̅ and 𝜚𝑚 agree modulo 𝐽𝑚. 

Therefore,𝜑̅ = 𝜋𝜚̅ and 𝜑𝑚 =  𝜋𝜚𝑚 agree up to 𝜋(𝐽𝑚). However, one checks that 𝜋(𝐽𝑚)  ⊥
 𝑑,  whence (𝜑̅(𝑥)  − 𝜑𝑚(𝑥))𝑑 =  0  for all 𝑥 ∈  𝑀2  . This implies 𝜑̅(𝑒11)𝑑 =
 𝜑𝑚(𝑒11)𝑑 =  𝑑. 

Proposition (3.2.8)[212]: Let 𝒟 be strongly self-absorbing, 0 ≠  𝑚 ∈ ℕ and  

𝜑0: 𝑀2 →  𝒟 
a c.p.c. order zero map.  
   Then, there are c.p.c. order zero maps 

𝜑1, . . . , 𝜑𝑚: 𝑀2 → 𝒟
⊗𝑚 

such that 

    (i) 𝜑1 = 𝜑0⨂ 1𝒟⨂(𝑚−1) 

    (ii) [𝜑1 = (𝑀2), 𝜑𝑗(𝑀2)] =  0 𝑖𝑓 𝑖 ≠  𝑗 

    (iii) 1𝒟⨂𝑚 ∑ 𝜑𝑖
𝑚
𝑖=1  (1𝑀2), =  (1𝒟 − 𝜑0(1𝑀2))

⨂𝑚
. 

Proof: For 𝑘 ∈  {1, . . . , 𝑚}, define  

𝜑𝑘: =  ((1𝒟 − 𝜑0(1𝑀2))
⨂(𝑘−1)

⨂𝜑0⨂ 1𝒟⨂(𝑚−𝑘) ,  

them the 𝜑𝑘 obviously satisfy Proposition (3.2.8)(i) and (ii). 

   A simple induction argument shows that, for 𝑘 =  1, . . . , 𝑚, 

 1𝒟⊗𝑚−∑ 𝜑𝑖
𝑘

𝑖=1
 (1𝑀2),=  (1𝒟 − 𝜑0(1𝑀2))

⨂𝑘
⨂1𝒟⊗(𝑚−𝑘),   

which is Proposition (3.2.8)(iii) when we take 𝑘 =  𝑚. 

We now assemble the techniques of the preceding and a result from [220] to prove the main 

result; we also derive some consequences. 

Theorem(3.2.9)[212] Any strongly self-absorbing 𝐶∗ -algebra 𝒟  absorbs the Jiang–Su 

algebra 𝒵 tensorially. 

Proof: Let 𝑘 ∈  ℕ. By Proposition(3.2.5), there is a nonzero c.p.c. order zero map 𝜑 ∶
 𝑀2 → 𝒟. Using functional calculus for order zero maps (cf. [226]), we may assume that 

there is 

 2 ≤  𝑑 ≤  𝜑(𝑒11) 
such that  

𝑑 ≠  0 and 𝜑(𝑒11)𝑑 =  𝑑. 
Note that 

 (1𝒟 −  𝜑(1𝑀2)) (1𝒟 − 𝑑) = 1𝒟 −  𝜑(1𝑀2). 

By Proposition(3.2.5), there is a nonzero c.p.c. order zero map 

𝜓 ∶  𝑀𝑘 → 𝑑𝒟𝑑̅̅ ̅̅ ̅̅ ;  
note that 
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 𝜑(𝑒11)𝜓 ∶ (𝑥) = 𝜓(𝑥) for 𝑗 =  1, . . . , 𝑘 and 𝑥 ∈  𝑀𝑘. 
Apply Lemma(3.2.4) (with 𝒟⨂𝑘 , 𝜓(𝑒11)

⨂𝑘, (1𝒟 − 𝜑(1𝑀2)) ⨂ 1𝒟𝑘⨂(𝑘−1)  and  (1𝒟 −

𝑑) ⨂1𝒟𝑘⨂(𝑘−1) in place of  𝒟, 𝑑, 𝑓 and g, respectively) to obtain 0 ≠  𝑚 ∈ ℕ such that 

(ii) [((1𝒟 − 𝜑(1𝑀2  )) ⨂ 1𝒟⊗(𝑘−1))
⨂𝑚] ≤  [𝜓(𝑒11)

⨂𝑘⨂ 1𝒟⨂(𝑚−1)]  in 𝑊((𝒟⨂ 𝑘)⨂𝑚) . 

From Proposition (3.2.8) (with 𝒟⨂𝑘  in place of 𝒟  and 𝜑0: = 𝜑⨂ 1𝐷⨂(𝑘−1))  we obtain 

c.p.c. order zero maps 

 𝜑1, . . . , 𝜑𝑚: 𝑀2 → (𝒟
⨂𝑘)⨂𝑚 

Satisfying (3.2.8) (i), (ii) and (iii). By relabeling the 𝜑𝑖we may assume that actually 𝜑𝑚 =
 𝜑0⨂ 1

(𝐷⨂𝑘)
⨂(𝑚−1)in (3.2.8) (i). 

   From Lemma (3.2.7), we obtain a c.p.c. order zero map 

𝜑 ∶  𝑀2 → 𝐶
∗ (𝜑𝑖(𝑀2) | 𝑖 =  1, . . . , 𝑚)  ⊂ (𝐷

⨂𝑘)⨂𝑚 
 

 

 

such that 

𝜑̅(1𝑀2) =∑𝜑𝑖(1𝑀2)

𝑚

𝑖=1

. 

By the second assertion of Lemma(3.2.7) and since  

 𝜑𝑚(𝑒11)(𝜓(1𝑀𝑘)⨂1𝒟⊗(𝑘𝑚−1)) = (𝜑(𝑒11)⨂ 1𝒟⊗(𝑘𝑚−1))(𝜓(1𝑀𝑘)⨂1𝒟⨂(𝑘𝑚−1)). 

=  𝜓(1𝑀𝑘) ⨂1𝒟⊗(𝑘𝑚−1) , 

we may furthermore assume that 

𝜑(𝑒11)(𝜓(1𝑀𝑘)⨂1𝒟⊗(𝑘𝑚−1))  =  𝜓(1𝑀𝑘)⨂1𝒟⊗(𝑘𝑚−1) , 

which in turn yields  

(iii) 𝜓(1𝑀𝑘)⨂1𝒟⊗(𝑘𝑚−1) ≤ 𝜑̅(𝑒11) 

since 𝜓 is contractive. Note that we have 

[1
(𝒟⊗𝑘)

⊗𝑚 – 𝜑̅(1𝑀2)]  
(3.2.8)(iii)

=
 [(1𝒟⊗𝑘 − 𝜑0(1𝑀2))

⨂𝑚

] 

= [(1𝒟 − 𝜑(1𝑀2)⨂1𝒟⊗(𝑚−1))
⨂𝑚
] 

 (iv)                    
(ii)
≤
[𝜓(𝑒11)

⨂𝑘⨂ 1𝒟⨂(𝑘𝑚−1)] 

in W((𝒟⨂𝑘)⨂𝑚). Define a c.p.c. order zero map 

Φ ∶  𝑀2𝑘 ≅ (𝑀2)
⨂𝑘 → ((𝒟⨂𝑘)⨂𝑚)⨂𝑘 ≅ 𝒟⨂𝑘𝑚𝑘 . 

By 

Φ:= 𝜑̅⨂𝑘 . 
We have 

[1
((𝒟⨂𝑘)

⨂𝑚
)
⨂𝑘  –Φ(1(𝑀2)⨂𝑘)] 

                       (3.2.2)
≤
     𝑘 ·  [(1

(𝒟⨂𝑘)
⨂𝑚  – 𝜑̅(1𝑀2))⨂1

((𝒟⨂𝑘)
⨂𝑚
)
⨂𝑘] 

                
(iv)
≤
  𝑘. [𝜓(𝑒11)

⨂𝑘⨂1
(𝒟⨂𝑘)

⨂(𝑚−1)⨂1
((𝒟⨂𝑘)

⨂𝑚
)
⨂(𝑘−1)]  
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                        ≤ [𝜓(1𝑀2)
⨂𝑘⨂1

(𝒟⨂(𝑘𝑚−1))
⨂𝑘] 

                        
(iii)
≤
[𝜑̅(𝑒11)

⨂𝑘] 

                         = [Φ(𝑒11)] 

In 𝑊(((𝒟⊗𝑘)⊗𝑚)
⊗𝑘
). From [220] we now see that there is a unital 

∗-homomorphism 

𝜚 ∶  𝑍2𝑘,2𝑘+1 → 𝒟
⊗𝑘𝑚𝑘 ≅ 𝒟. 

Since k was arbitrary, by [206] this implies that 𝒟 is Z-stable. 

Corollary(3.2.10)[212]: The Jiang–Su algebra is the uniquely determined (up to iso-

morphism) initial object in the category of strongly self-absorbing 𝐶∗-algebras (with unital 

∗-homomorphisms). 

Proof: By Theorem (3.2.9), the Jiang–Su algebra does embed unitally into any strongly self-

absorbing 𝐶∗-algebra, so it is an initial object. If 𝒟 is another initial  object, then 𝑍 and 𝒟 

embed unitally into one another, whence they are isomorphic by [222]. 

Sometimes an object in a category is called initial only if there is a unique morphism to any 

other object; this remains true in our setting if one takes approximate unitary equivalence 

classes of unital ∗-homomorphisms as morphisms, see [222], [214], [215], [216], [217] and 

[218]. 

Corollary (3.2.11)[370]: Let 𝐴𝑟 be a unital C∗-algebra, 0 ≤ 𝑔𝑟  ≤  1𝐴𝑟. 

Then, for any 0 ≠  𝑛 ∈  ℕ, we have 

∑ 

𝑟

(1
𝐴𝑟
⊗𝑛 − 𝑔𝑟

⊗𝑛) ≥∑ 

𝑟

(1𝐴𝑟 − 𝑔𝑟)⨂ 𝑔𝑟 ⨂ . . .⨂ 𝑔𝑟 

+∑𝑔𝑟  ⊗ (1𝐴𝑟 − 𝑔𝑟)⊗ 𝑔𝑟  ⊗ . . .⊗ 𝑔𝑟 

⋮ 

+∑𝑔𝑟  ⊗ . . .⊗ 𝑔𝑟  ⊗ (1𝐴𝑟 − 𝑔𝑟). 

Proof: The statement is trivial for 𝑛 = 1. Suppose now we have shown the assertion for 

some 0 ≠  𝑛 ∈  ℕ. We obtain  

∑ 

𝑟

(1
𝐴𝑟
⊗(𝑛+1) − 𝑔𝑟

⊗(𝑛+1)
) =∑ 

𝑟

(1
𝐴𝑟
⊗𝑛⊗ 𝑔𝑟  – 𝑔𝑟

⊗𝑛⊗ 𝑔𝑟  +  1𝐴𝑟
⊗𝑛⊗ (1𝐴𝑟 − 𝑔𝑟)) 

=∑ 

𝑟

((1
𝐴𝑟
⊗𝑛 − 𝑔𝑟

⊗𝑛)⊗ 𝑔𝑟  +  1𝐴𝑟
⊗𝑛⊗ (1𝐴𝑟 − 𝑔𝑟)) 

≥∑ 

𝑟

 ((1𝐴𝑟 − 𝑔𝑟)⊗ 𝑔𝑟  ⊗ . . .⊗ 𝑔𝑟)⊗ 𝑔𝑟 

+∑(𝑔𝑟  ⊗ (1𝐴𝑟 − 𝑔𝑟)⊗ 𝑔𝑟  ⊗ . . .⊗ 𝑔𝑟) ⊗ 𝑔𝑟 

⋮ 

+∑(𝑔𝑟  ⊗ . . .⊗ 𝑔𝑟  ⊗ (1𝐴𝑟 − 𝑔𝑟))⊗ 𝑔𝑟 

+𝑔𝑟
⊗𝑛⊗ (1𝐴𝑟 − 𝑔𝑟), 
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where for the inequality we have used our induction hypothesis as well as the fact that 

∑  𝑟 1𝐴𝑟
⊗𝑛  ⊗ (1𝐴𝑟 − 𝑔𝑟)  ≥  ∑  𝑟 𝑔𝑟

⊗𝑛⊗ (1𝐴𝑟 − 𝑔𝑟). Therefore, the statement also holds 

for 𝑛 +  1. 

Corollary(3.2.12)[370]: Let 𝒟𝑟 be strongly self-absorbing, 0 ≤ 𝑑𝑟  ≤  1𝒟. 

Then, for any 0 ≠ 𝑘 ∈ ℕ, 

∑ 

𝑟

[1𝐷⊗𝑘 − 𝑑𝑟
⊗𝑘]  ≤  𝑘 ·  ∑  

𝑟

[(1𝒟𝑟 − 𝑑𝑟)  ⊗ 1𝒟𝑟
⊗(𝑘−1)] 𝑖𝑛 𝑊(𝒟𝑟

⊗𝑘) 

Proof: The assertion holds trivially for 𝑘 = 1. Suppose now it has been verified for some 

𝑘 ∈ ℕ. Then, 

∑ 

𝑟

[1𝒟𝑟 − 𝑑𝑟
⊗(𝑘+1)

] =∑ 

𝑟

[1
𝒟𝑟
⊗𝑘⊗ (1𝒟𝑟 − 𝑑𝑟) + 1𝒟𝑟

⊗𝑘⊗ 𝑑𝑟  −  𝑑𝑟
⊗𝑘  ⊗ 𝑑𝑟]

≤∑ 

𝑟

 [1
𝒟𝑟
⊗𝑘⊗ (1𝒟𝑟 − 𝑑𝑟)]  + [(1𝒟𝑟

⊗𝑘  −  𝑑𝑟
⊗𝑘 ) ⊗ 1𝒟𝑟]

≤∑ 

𝑟

[(1𝒟𝑟 − 𝑑𝑟)⊗ 1𝒟𝑟
⊗𝑘  ] +  𝑘 · [(1𝒟𝑟 − 𝑑𝑟) ⊗ 1𝒟𝑟

⊗(𝑘−1)  ⊗ 1𝒟𝑟]

=∑ 

𝑟

 (𝑘 +  1) ·  [(1𝒟𝑟 − 𝑑𝑟) ⊗ 1𝒟𝑟
⊗𝑘  ] 

(using that 𝒟𝑟 is strongly self-absorbing as well as our induction hypothesis for the second 

inequality), so the assertion also holds for 𝑘 + 1. 

Corollary(3.2.13)[370]:  Let 𝒟 be strongly self-absorbing and let 0 ≤ 𝑓𝑟 ≤ 𝑔𝑟  ≤  1𝒟 be 

positive elements of 𝒟 satisfying 1𝒟 − 𝑔𝑟  ≠  0 and ∑  𝑟 𝑓𝑟𝑔𝑟  = ∑  𝑟 𝑓𝑟 . 
Then, there is 0 ≠  𝑛 ∈  ℕ such that 

∑ 

𝑟

[𝑓𝑟
⊗𝑛] ≤∑ 

𝑟

[1𝒟⊗𝑘 − 𝑔𝑟
⊗𝑛]in 𝑊(𝒟⊗𝑛). 

Proof: Since 𝒟 is simple and 1𝒟 − 𝑔𝑟  ≠  0, there is 𝑛 ∈ ℕ such that 

[𝑓𝑟]  ≤  𝑛 ·  [1𝒟 − 𝑔𝑟]. 
Then, 

∑ 

𝑟

[𝑓𝑟
⊗𝑛]  ≤  𝑛 ·∑  

𝑟

 [(1𝒟 − 𝑔𝑟)  ⊗ 𝑓𝑟  ⊗ . . .⊗ 𝑓𝑟] 

=∑ 

𝑟

 [(1𝒟 − 𝑔𝑟)  ⊗ 𝑓𝑟  ⊗ . . .⊗ 𝑓𝑟] + . . . + ∑[𝑓𝑟  ⊗ . . .⊗ 𝑓𝑟  ⊗ (1𝒟 − 𝑔𝑟) 

=∑ 

𝑟

[(1𝒟 − 𝑔𝑟)  ⊗ 𝑓𝑟  ⊗ . . .⊗ 𝑓𝑟  + . . . + 𝑓𝑟  ⊗ . . .⊗ 𝑓𝑟  ⊗ (1𝒟 − 𝑔𝑟)] 

≤  ∑  

𝑟

[(1𝒟 − 𝑔𝑟)  ⊗ 𝑔𝑟  ⊗ . . .⊗ 𝑔𝑟  + . . . + 𝑔𝑟  ⊗ . . .⊗ 𝑔𝑟  ⊗ (1𝒟 − 𝑔𝑟)] 

≤∑ 

𝑟

 [1𝒟⊗𝑛 − 𝑔𝑟
⊗𝑛], 

where for the first equality we have used that 𝒟 is strongly self-absorbing, for the second 

equality we have used that the terms are pairwise orthogonal by our assumptions on 𝑓𝑟 and 

𝑔𝑟, and the last inequality follows from Proposition (3.2.1).  
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Chapter 4 

Descriptive Set Theory and Unitary Equivalence 

 

We deduce that AF algebras are classifiable by countable structures, and that a 

conjecture of Winter for nuclear separable simple 𝐶∗ -algebras cannot be disproved by 

appealing to known standard Borel structures on these algebras. We study that the 

automorphisms of any separable 𝐶∗-algebra that does not have continuous trace are not 

classifiable by countable structures up to unitary equivalence. 

Section (4.1): 𝑪∗-Algebra Invariants 

The classification theory of nuclear separable 𝐶∗-algebras via 𝐾-theoretic and tracial 

invariants was initiated by G. A. Elliott ca. 1990. An ideal result in this theory is of the 

following type: 

Let 𝐶1 be a category of 𝐶∗-algebras, 𝐶2 a category of invariants, and ℱ: 𝐶1 → 𝐶2 a functor. 

We say that (ℱ, 𝐶2)  classifies 𝐶1  if for any isomorphism 𝜙: ℱ (𝐴) → ℱ(𝐵)  there is an 

isomorphism 𝛷:𝐴 → 𝐵  such that ℱ(𝛷) = 𝜙,  and if, moreover, the range of ℱ  can be 

identified. 

Given 𝐴, 𝐵 ∈  𝐶1 , one wants to decide whether 𝐴  and 𝐵  are isomorphic. With a 

theorem as above in hand (see Elliott and Toms [259] or Rørdam [269]), this reduces to 

deciding whether ℱ(𝐴) and ℱ(𝐵) are isomorphic; in particular, one must compute ℱ(𝐵) 
and ℱ(𝐵). What does it mean for an invariant to be computable? The broadest definition is 

available when the objects of 𝐶1 and 𝐶2 admit natural parameterizations as standard Borel 

spaces, for the computability of ℱ(•) then reduces to the question “Is ℱ a Borel map?” The 

aim is to prove that a variety of 𝐶∗-algebra invariants are indeed Borel computable, and to 

give some applications of these results. 

The main results are summarized informally below. 

Theorem (4.1.1)[257]: The following invariants of a separable 𝐶∗ -algebra 𝐴  are Borel 

computable: the (unital) Elliott invariant Ell(𝐴) consisting of pre-ordered 𝐾‑ theory, tracial 

functionals, and the pairing between them; 

the cuntz semigroup cu(𝐴); 
the radius of comparison of 𝐴; 
the real and stable rank of 𝐴; 
the nuclear dimension of 𝐴; 
the presence of 𝑍‑ stability for 𝐴; 
the theory th(𝐴)of 𝐴. 

Proving that the Elliott invariant and the Cuntz semigroup are computable turn out to 

be the most involved tasks.  

A classification problem is a pair (𝑋, 𝐸) consisting of a standard Borel space 𝑋, the 

(parameters for) objects to be classified, and an equivalence relation 𝐸 , the relation of 

isomorphism among the objects in 𝑋. In most interesting cases, the equivalence relation 𝐸 

is easily definable from the elements of 𝑋 and is seen to be Borel or, at worst, analytic; that 

is certainly the case here. To compare the relative difficulty of classification problems (𝑋, 𝐸) 
and (𝑌, 𝐹), we employ the notion of Borel reducibility: 

One says that 𝐸 is Borel reducible to 𝐹 if there is a Borel map 𝛩:𝑋 → 𝑌 with the property 

that 

𝑥𝐸𝑌 ⟺ Θ(x)𝐹𝛩(𝑌). 
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The relation 𝐹 is viewed as being at least as complicated as 𝐸. The relation 𝐸 is viewed as 

being particularly nice when 𝐹 -classes are “classifiable by countable structures”. 

Equivalently (12), the relation 𝐸 is no more complicated than isomorphism for countable 

graphs. Theorem (4.1.1) (i) entails the computability of the pointed (pre-)ordered 𝐾0 -group 

of a unital separable 𝐶∗ -algebra. As isomorphism of such groups is Borel-reducible to 

isomorphism of countable graphs, we have the following result. 

Theorem (4.1.2)[257]: A Falgebras areclassifiable by countable structures.  

In order to classify nuclear separable 𝐶∗ -algebras using only 𝐾 -theoretic and tracial 

invariants, it is necessary to assume that the algebras satisfy some sort of regularity property, 

be it topological, homological or 𝐶∗ -algebraic (see ⦋8⦌ for a survey). This idea is 

summarized in the following conjecture of Winter and the second author. 

Conjecture (4.1.3)[257]: Let 𝐴  be a simple unital separable nuclear and infinite-

dimensional 𝐶∗-algebra. The following are equivalent:  

 (i) 𝐴 has finite nuclear dimension; 

 (ii) 𝐴 is 𝑍-stable; 

 (iii) 𝐴 has strict comparison of positive elements.  

Combining the main result of [195] with that of ⦋16⦌ yields (i)⇒ (ii), while Rørdam proves 

(ii)⇒ (iii) in[270]. Partial converses to these results follow from the successes of Elliott’s 

classification program. Here we prove the following result. 

Theorem (4.1.4)[257] The classes (i)- (iii) of conjecture (4.1.3) from Borel sets.  

Therefore the classes of 𝐶∗-algebras appearing in the conjecture have the same descriptive 

set theoretic complexity. 

We recall two parameterizations of separable 𝐶∗ -algebras as standard Borel spaces; 

establishes the computability of the Elliott invariant; We consider the computability of the 

Cuntz semigroup and the radius of comparison; the Appendix deal with 𝑍-stability, nuclear 

dimension, the first-order theory of a 𝐶∗-algebra in the logic of metric structures, and the 

real and stable rank. 

In [262], we introduced four parameterizations of separable 𝐶∗-algebras by standard Borel 

spaces and proved that they were equivalent. 

Let 𝐻 be a separable infinite dimensional Hilbert space and let as usual ℬ(𝐻) denote the 

space of bounded operators on 𝐻. The space ℬ(𝐻) becomes a standard Borel space when 

equipped with the Borel structure generated by the weakly open subsets. Following [265], 

we let 

Γ(𝐻 ) = ℬ(𝐻)ℕ, 
And equip this with the product Borel structure. For each 𝛾 ∈ Γ(𝐻) we let 𝐶∗(𝛾) be the 𝐶∗-
algebras generated by the sequence 𝛾.  If we identify each 𝛾 ∈ 𝛤(𝐻)  with 𝐶∗(𝛾), then 

naturally 𝛤(𝐻) parameterizes all separable 𝐶∗-algebras acting on 𝐻. Since every separable 

𝐶∗ -algebra is isomorphic to a 𝐶∗ -subalgebra of ℬ (𝐻)  this gives us a standard Borel 

parameterization of the category of all separable 𝐶∗-algebras. If the Hilbert space 𝐻 is clear 

from the context we will write 𝛤 instead of 𝛤 (𝐻). We define 

𝛾 ≃Γ  𝛾′
 
⇔ 𝐶∗(𝛾)is isomorphic to 𝐶∗( 𝛾′

 ). 
Let ℚ(𝑖) = ℚ + iℚ  denote the complex rationals. Following [265], let ( 𝑝𝑗: 𝑗 ∈ ℕ) 

enumerate the non-commutative ∗-polynomials without constant term in the formal 

variables 𝑋𝑘 , 𝑘 ∈ ℕ, with coefficients in ℚ(𝑖), and for 𝛾 ∈ 𝛤 write 𝑝𝑗(𝛾)for the evaluation 
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of 𝑝𝑗  with 𝑋𝑘 = 𝛾 (𝑘). Then 𝐶∗(𝛾) is the norm-closure of {𝑝𝑗(𝛾): 𝑗 ∈ ℕ}. The map 𝛤 →

𝛤: 𝛾 ⟼ 𝛾 where 𝛾 ̂(𝑗) = 𝑝𝑗(𝛾) is clearly a Borel map from 𝛤 to 𝛤. If we let 

𝛤 ̂(𝐻) = {𝛾: 𝛾 ∈ 𝛤(𝐻)}, 
then 𝛤̂ (𝐻) is a standard Borel space and provides another parameterization of the 𝐶∗ -

algebras acting on 𝐻 ; we suppress 𝐻 and writ𝛤̂ whenever possible. For 𝛾 ∈ 𝛤̂ let 𝛾̌  ∈ 𝛤 be 

defined by 

𝛤̂(𝑛) = 𝛾(𝑖) ⇔ 𝑝𝑖𝑋𝑛 

and note that 𝛤̂ → 𝛤: 𝛾 ↦ 𝛾 is the inverse of 𝛤 → 𝛤̂: 𝛾 ↦ 𝛾 we let ≃Γ̂ be defined by 

𝛾 ≃Γ̂⇔ 𝐶∗(𝛾) is isomorphic to 𝐶∗(𝛾′). 
It is clear from the above that 𝛤 and 𝛤̂ are equivalent parameterizations. 

An alternative picture of 𝛤̂ (𝐻)  is obtained by considering the free (i.e., surjectively 

universal) countable unnormed ℚ (𝑖)-∗-algebra 𝔄. We can identify 𝔄 with the set {𝑝𝑛: 𝑛 ∈
ℕ}. Then 

𝛤̂𝔄(𝐻) = {𝑓:𝔄 → ℬ(𝐻): 𝑓 is 𝑎 ∗ ‑homomorphism} to 𝐶
∗(𝑓′) 

is easily seen to be a Borel subset of ℬ(𝐻)𝔄. For 𝑓 ∈ 𝛤̂𝔄let𝐶
∗(𝑓). be the norm closure of 

im(𝑓), and define 

𝑓 ≃Γ̂𝔄 𝑓′⟺ 𝐶∗(𝑓)is isomorphic 𝐶∗(𝑓′). 
Clearly, the map 𝛤̂ → 𝛤̂𝔄: 𝛾 ↦ 𝑓𝛾 defined by 𝑓𝛾 (𝑝𝑗) = 𝛾(𝑗)  provides a Borel bijection 

witnessing that 𝛤̂ and 𝛤̂𝔄 are equivalent (and therefore they are also equivalent to 𝛤.)  

If we instead consider the free countable unital unnormed ℚ (𝑖)-∗-algebra 𝔄
u
 and let 

𝛤̂𝔄𝑢(𝐻) = {𝑓:𝔄uℬ(𝐻): 𝑓 𝑖𝑠 unital ∗ ‑homomorphism},  

then this gives a parameterization of all unital separable 𝐶∗-subalgebras of ℬ(𝐻). Note that 

𝔄𝑢  may be identified with the set of all formal ∗-polynomials in the variables 𝑋𝑘  with 

coefficients in ℚ (𝑖) (allowing a constant term). 

We introduce a standard Borel space of Elliott invariants. We prove that the computation of 

the Elliott invariant of 𝐶∗(𝛾) is given by a Borel-measurable function. The Elliott invariant 

of a unital 𝐶∗-algebra 𝐴 is the sextuple (see [268], [269]). 

𝐾0(𝐴),𝐾0(𝐴)
+, [1𝐴]0 ), 𝐾1(𝐴), 𝑇(𝐴), 𝑟𝐴: 𝑇(𝐴) → 𝑆(𝐾0(𝐴)).  

Here, 𝐾0(𝐴),𝐾0(𝐴)
+, [1𝐴]0 )  is the ordered 𝐾0  -group with the canonical order unit, 

𝐾1(𝐴)is the 𝐾1 -group of 𝐴, and 𝑇(𝐴)is the Choquet simplex of all tracial states of 𝐴. Recall 

that a state 𝜙 on a unital 𝐶∗-algebra 𝐴 is tracial if 𝜙(𝑎𝑏) = 𝜙(𝑏𝑎) for all 𝑎 and 𝑏 in 𝐴. 

Finally, 𝑟𝐴: 𝑇(𝐴) → 𝑆(𝐾0(𝐴)) is the coupling map that ssociates a state on 𝐾0(𝐴) to every 

trace on 𝐴. Recall that a state on an ordered Abelian group is a positive homomorphism 

𝑓: 𝐺 → (ℝ,+) and that the Murray-von Neumann equivalence of pro jections 𝑝 and 𝑞 in 𝐴 

implies 𝜙(𝑝) = 𝜙(𝑞) for every trace 𝜙 on 𝐴. 

As usual, identify 𝑛 ∈ ℕ with the set {0, 1, . . . , 𝑛 − 1}. For 𝑛 ∈ ℕ ∪ {ℕ}, let 

𝑆(𝑛) = {𝑓: 𝑛2 → 𝑛: (∀𝑖, 𝑗, 𝑘 ∈ 𝑛)𝑓(𝑖, 𝑓(𝑗, 𝑘)) = 𝑓(𝑓(𝑖, 𝑗), 𝑘)} 

Note that 𝑆(ℕ)is closed when ℕℕ
2
 is given the product topology, and that if for 𝑓 ∈ 𝑆(𝑛) 

and 𝑖, 𝑗 ∈  𝑛  we define 𝑖 .𝑓  𝑗  as 𝑓 (𝑖, 𝑗), then .𝑓  gives 𝑛  a semigroup structure. The space 

𝑆(𝑛)may therefore be thought of as a Polish space parameterizing all countable semigroups 

with underlying set 𝑛 ∈ ℕ ∪ {ℕ}. We let 𝑆′(𝑛) = 𝑆(𝑛) × 𝑛, and think of elements (𝑓, 𝑖) ∈
𝑆′(𝑛) as the space of semigroups with a distinguished element 𝑖. 
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 The subsets of 𝑆(𝑛)  (respectively 𝑆′ (𝑛))  consisting of 𝐴  be semigroups, groups and 

Abelian groups form closed subspaces that we denote by 𝑆𝑎(𝑛), 𝐺(𝑛)  and 𝐺𝑎(𝑛) 
(respectively 𝑆′𝑎(𝑛), 𝐺

′(𝑛) and 𝐺′𝑎(𝑛).  
The isomorphism relation in 𝑆(𝑛), 𝑆𝑎(𝑛), 𝐺(𝑛) and 𝐺𝑎(𝑛), as well as the corresponding 

“primed” classes, are induced by the natural action of the symmetric group Sym (𝑛). These 

are very special cases of the logic actions, see [145]. 

 We also define the spaces 𝐺ord (𝑛) and𝐺′ord (𝑛) of ordered Abelian with a distinguished 

order unit, in the sense of Rodman [269]. The space 𝐺ord (𝑛) consists of pairs 

(𝑓, 𝑋) ∈ 𝐺𝑎(𝑛) × 𝒫(𝑛) such that if we define for 𝑥, 𝑦 ∈ 𝑛 the operation 𝑥+𝑓𝑦 = 𝑓(𝑥, 𝑦) 

and 𝑥 ≤ 𝑥𝑦 ⟺ 𝑦+𝑓(−𝑥) ∈ 𝑋,  then we have 𝑋+𝑓𝑋 ⊆ 𝑋,−𝑋 ∩ 𝑋 = {0} and 𝑋 − 𝑋 = 𝑛. 

The space 𝐺′ord (𝑛) consists of pairs ((𝑓, 𝑋), 𝑢) ∈ 𝐺ord (𝑛) × 𝑛 satisfying additionally the 

conditions 

 (i) 𝑢 ∈ 𝑋;  
 (ii) for all 𝑥 ∈ 𝑛 there is 𝑘 ∈ ℕ such that −𝑘𝑢 ≤ 𝑥𝑋 ≤ 𝑥𝑘𝑢.  
From their definition it is easy to verify that 𝐺ord (ℕ) and 𝐺′ord (ℕ) form Gδ subsets of 

Ga(ℕ) × 𝒫(ℕ) and Gord(ℕ) ×  ℕ, and so are Polish spaces. 

 Define 𝐺ord and 𝐺′ord to be the disjoint unions 

𝐺ord = ∐ 𝐺ord(𝑛) and

𝑛∈ℕ∪{ℕ}

𝐺′ord = ∐ 𝐺′ord
𝑛∈ℕ∪{ℕ}

(𝑛) 

and give these spaces the natural standard Borel structure. Similarly, define the standard 

Borel spaces 𝑆, 𝑆𝑎, 𝐺 and 𝐺𝑎 and their primed counterparts to be the disjoint union of their 

respective constituents. 

Recall that a compact convex set 𝐾 is a Choquet simplex if for every point 𝑥 in 𝐾 

there exists a unique probability measure μ supported by the extreme boundary of 𝐾 that 

has 𝑥 as its barycentre. Every metrizable Choquet simplex is affinely homeomorphic to a 

subset of ∆ℕ, with ∆= [0, 1].  
For every 𝐶∗-algebra 𝐴 the space 𝑇(𝐴) of its traces is a Choquet simplex. In case 

when 𝐴 is separable it can be identified with a compact convex subset of the Hilbert cube 

∆ℕ. In [262] it was shown that all Choquet simplexes form a Borel subset of the F(∆ℕ)). 
 Astate on ordered Abelian group with unit (𝐺, 𝐺+, 1) is a homomorphism 𝜙:𝐺 → ℝ such 

that 𝜙[𝐺+] ⊆ ℝ+and  𝜙(1) = 1.  For every  𝑛 ∈ ℕ ∪ {ℕ}  the set 𝑍0of all ((𝑓, 𝑋, 𝑢)𝜙) ∈

𝐺′ord (𝑛) × ℝ
𝑛 such that 𝜙[𝑋] ⊆ ℝ+, 𝜙(𝑢) = 1 And 𝜙(𝑓(𝑖, 𝑗)) = 𝜙(𝑖) + 𝜙(𝑗) for all 𝑖, 𝑗 

is clearly closed. By [262], the map states: 𝐺′ord (𝑛) → ℝ
𝑛 such that States(𝑓, 𝑋, 𝑢) of 𝑍0 

at (𝑓, 𝑋, 𝑢)is Borel. 

Recall that 𝕂conv denotes the compact metric space of compact convex subsets of ∆ℕ. 

Lemma (4.1.5)[257]: There is a continuous map Ψ:𝕂conv → 𝐶(∆
ℕ, ∆ℕ ) such that Ψ(K) is 

a retraction from ∆ℕ onto K for all K ∈ 𝕂conv. 
Proof: Identify ∆ℕ with ∏ [−1 𝑛⁄ , 1 𝑛⁄ ]𝑛  and consider the compatible ℓ2 metric 𝑑2 on ∆ℕ. 
Consider the set 

𝑍 = {(𝐾, 𝑥, 𝑦): 𝐾 ∈ 𝕂conv, 𝑥 ∈ ∆
ℕ, 𝑦 ∈ 𝐾and𝑑2(𝑥, 𝑦) = inf

𝑧∈𝐾
𝑑2(𝑥, 𝑧 ) } 

Since the map (𝐾, 𝑥) ↦ inf𝑧∈𝐾𝑑2(x, z) is continuous on {𝐾 ∈ 𝕂conv: 𝐾 ≠ ∅}, this set is 

closed. Also, for every 
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𝐾, 𝑥 there is the unique point 𝑦 such that (𝐾, 𝑥, 𝑦) ∈ 𝑍 (e.g., [266]). By compactness, the 

function 𝑥 that sends (𝐾, 𝑥) to the unique 𝑦 such that (𝐾, 𝑥, 𝑦)(𝐾, 𝑥, 𝑦) ∈ 𝑍 is continuous. 

Again by compactness, the map 𝛹 (𝐾)  =  { (𝑥, 𝑦): (𝐾, 𝑥, 𝑦)  ∈  𝑍} is continuous for 𝐾 ∈
𝕂conv, 𝑛 ∈ ℕ ∪ {ℕ}, and (𝑓, 𝑋, 𝑢) ∈ 𝐺′ord (𝑛) let Pairing (𝑓, 𝑋, 𝑢) be the set of all ℎ: ∆ℕ→
ℝ𝑛  such that there exists a continuous affine function ℎ′: 𝐾 → States (𝑋, 𝑓, 𝑢) such that 

with Ψ as in Lemma (4.1.5) the following diagram commutes 

 
Again the set of all (𝐾, (𝑓, 𝑋, 𝑢), ℎ) as above is closed and by [262] the map Pairing is 

Borel.++ 𝐺0, 𝐺1, 𝑇, 𝑟. 
Definition (4.1.6)[257]: The space Ell of Elliott invariants is a subspace of 

𝐺′ord × 𝐺𝑎 ×𝕂conv × ∐ 𝐶(∆ℕ. ∆𝑛)

𝑛∈ℕ∪{ℕ}

 

consisting of quadruples  𝐺0, 𝐺1, 𝑇, 𝑟  where 𝐺0 ∈ 𝐺
′
ord, 𝐺1 ∈ 𝐺𝑎, 𝑇 ∈ 𝕂conv is a Choquet 

simplex, and 𝑟 ∈ Pairing(𝑇, 𝐺0). By the above and [262], the set Ell is Borel and therefore 

it is a standard Borel space with the induced Borel structure. 

 We say that two such quadruples( 𝐺0, 𝐺1, 𝑇, 𝑟)and ( 𝐺0
′, 𝐺1

′, 𝑇′, 𝑟′) in Ell are isomorphic if 

𝐺0 ≅ 𝐺0
′, 𝐺1 ≅ 𝐺1

′ and there is an affine isomorphism 𝛼: 𝑇 → 𝑇′ such that we have 𝜂̂ ↾ 𝑇 ∘
𝑟 = 𝑟′ ∘ 𝛼 ↾ 𝑇′, where 𝜂̂: 𝑆(𝐺0) → 𝑆(𝐺0

′) corresponds to some isomorphism 𝜂: 𝐺0 → 𝐺0
′. 

This is clearly an analytic ceequivalen relation. 

The isomorphism relation defined above is clearly analytic and it corresponds to the 

isomorphism of Elliott invariants. The rest contains the proof of the following theorem. 

We will start by showing: 

 For a 𝐶∗-algebra 𝐴, let ∼A denote the Murray-von Neumann equivalence of projections in 

𝐴. Therefore, 𝑝 ∼A 𝑞 if there is 𝑣 ∈ 𝐴 such that 𝑣𝑣∗ = 𝑝 and 𝑣∗𝑣 = 𝑞. Note that 𝑝 ∼A 𝑞 

implies 𝜙(𝑝) = 𝜙(𝑞) for every trace 𝜙 of 𝐴. If 𝐴 is clear from the context we will simply 

write ∼. Also, following the usual conventions, for 𝑎, 𝑝 ∈ 𝐵(𝐻) we write 𝑎⨁𝑏a for the 

element 

(
𝑎 0
0 𝑏

) ∈ 𝑀2(𝐵(𝐻)).  

 For the next Lemma, recall from [262] the Borel function projections 𝑗: 𝛤 →  𝛤 which 

computes, for each 𝛾 ∈ Γ, a sequence of projections that are dense in the set of projections 

in 𝐶∗(𝛾).  
Lemma (4.1.7)[257]: (i) The relation 𝑟2 ⊆ Γ × ℕ × ℕ defined by 

𝑟1(𝑦,𝑚, 𝑛) ⟺ 𝑝𝑟𝑜𝑗(𝑦)(𝑚)~𝐶∗(𝛾)𝑝𝑟𝑜𝑗(𝑦)(𝑛) 
is Borel. 

 (ii) The reˆlation 𝑌2 ⊆ Γ × ℕ × ℕ × ℕ defined by 

𝑟2(𝑦,𝑚, 𝑛, 𝑘) ⟺ 𝑝𝑟𝑜𝑗(𝑦)(𝑚)⨁𝑝𝑟𝑜𝑗(𝑦)(𝑛)~𝑀2(𝐶
∗(𝑦))𝑝𝑟𝑜𝑗(𝑦)(𝑘)⨁0 

 is Borel. 

Proof: To see (i), note that 
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𝑟1(𝑦,𝑚, 𝑛) ⇔ (∃𝑘)‖𝑝𝑘(𝑦)𝑝𝑘(𝑦)∗ − proj(𝑦)(𝑚)‖ <
1

4
∧ ‖𝑝𝑘(𝑦)∗𝑝𝑘(𝑦) −

proj(𝑦)(𝑛)‖ <
1

4
. 

For (ii), note that for 𝑚, 𝑛, 𝑘 ∈ ℕ the maps Γ → 𝑀2( 𝐵(𝐻)) 

y ↦ proj(𝑦)(𝑚)⨁ proj(𝑦)(𝑛)and y ↦ proj(𝑦)(𝑘)⨁ 0 

are Borel by farah et al. [262]. Thus, 

𝑟2(𝑚, 𝑛, 𝑘) ⇔ (∃𝑖)‖𝑝𝑖(𝑀2(𝑦))𝑝𝑖(𝑀2(𝑦))
∗
− proj(𝑦)(𝑚)⨁proj(𝑦)(𝑛)‖

<
1

4
∧ ‖𝑝𝑖(𝑀2(𝑦))𝑝𝑖(𝑀2(𝑦))

∗
− proj(𝑦)(𝑘)⨁ 0‖ <

1

4
 

gives a Borel definition of 𝑟2. 
Proposition (4.1.8)[257]: There is a Borel map 𝐾0,𝑢: Γu → 𝐺 

′
ord

 such that 

𝐾0,𝑢(𝛾) ≅ (𝐾0(𝐶
∗(𝛾))

+
, [1𝐶∗(𝑦)]0) 

for all 𝛾. 

Proof. Note in Lemma (4.1.7) that for each 𝑦 ∈ Γ𝑢, (𝑟1)𝑦 = {(𝑚, 𝑛) ∈ ℕ}: 𝑟1(𝑦,𝑚, 𝑛) 

defines an equivalence relation denoted on ℕ. Let 𝐵𝑛 ⊆ Γ𝑢, (𝑛 ∈ ℕ ∪ {∞}) be the set of 𝑦 ∈
𝛤 such that (𝑟1)𝑦 has exactly 𝑛 classes. Then (𝐵𝑛) is a Borel partition of 𝛤𝑢.. On each 𝐵𝑛we 

can find Borel functions 𝜎𝑛𝑖: 𝐵𝑛 → ℕ, (0 ≤ i < n),selecting exactly one point in each (𝑟1)𝑦-

class. Identifying 𝑛 ∈ ℕ  with the set {0, . . . , 𝑛 − 1},  let 𝑉0 (𝑦) (where 𝑦 ∈ 𝐵𝑛)  be the 

semigroup on 𝑛 defined by 

𝑖 + 𝑗 = 𝑘 ⇔ 𝑟2(𝑦, 𝜎𝑛,𝑖(𝑦), 𝜎𝑛,𝑗(𝑦), )𝜎𝑛,𝑘(𝑦) 

By Farah et al. [255] there is a Borel map 𝜓: 𝛤 → 𝛤 such that 𝐶∗(𝜓(𝑦)) ≃ 𝐶∗(𝑦)⨂𝒦. We 

define 𝑉(𝑦) = 𝑉0(𝜓(𝑦))and note that this gives us a Borel assignment 𝐵𝑛 → 𝑆(𝑛)  of 

semigroup structures on n. The 𝐾0  group of 𝐶∗(𝑦) is then the Grothendieck group 

constructed from 𝑉(𝑦)  with the order unit being the unique 𝑖 ∈ 𝑛  such that 

𝜎𝑛,𝑖(𝑦) ∼𝑦 𝑢(𝑦), and so the proof is complete once we prove the next Lemma. 

Lemma (4.1.9)[257]: There is a Borel map 𝑆𝑎 → 𝐺ord  associating to each Abelian 

semigroup (defined by) 𝑓 ∈ 𝑆𝑎 the Grothendieck group constructed from 𝑓. 

Proof: It is enough to construct a Borel 𝑆𝑎(𝑛) → 𝐺ord as required for each 𝑛 ∈ ℕ ∪ {ℕ}. 
We follow the description of the Grothendieck group given in [6]. Defining 

𝑃 = {(𝑓, (𝑖, 𝑗), (𝑘, 𝑖)) ∈ 𝑠𝑎 × 𝑛
2 × 𝑛2: (∃𝑚)𝑖+𝑓𝜄+𝑓 +𝑚 = 𝑘+𝑓𝑗+𝑓𝑚}, 

we have that 𝑃𝑓 is an equivalence relation on 𝑛2 for all 𝑓 ∈ 𝑆𝑎. Write 𝑆𝑎(𝑛) as a disjoint 

union of Borel pieces 𝐵𝑘(𝑘 ∈ ℕ ∪ {ℕ})such that 𝑓 ∈ 𝐵𝑘  if and only if 𝑃𝑓  has exactly 𝑘 

classes. We can then find on each piece 𝐵𝑘 Borel functions selecting an element in each 𝑃𝑓 

class, and from 𝑡 selecti on the Grothendieck group of 𝑓 can be defined on 𝑘 in a Borel way. 

 Corollary (4.1.10)[257]: There is a Borel map 𝐾0: Γ → 𝐺ord such that  

𝐾0(𝑦) ≃ (𝐾0(𝐶
∗(𝑦)), 𝐾0

+(𝐶∗(𝑦))). 

Proof: By Farah et al [262] the unitization 𝐶̃∗(𝑦) of 𝐶∗(𝑦)is obtained via a Borel function, 

and by the above proof so is 𝐾0 (𝐶̃
∗(𝑦)). Then 𝐾0𝐶

∗(𝑦) is isomorphic to the quotient of 

𝐾0 (𝐶̃
∗(𝑦))by its subgroup generated by the image of the identity in 𝐶̃∗(𝑦). 

Proposition (4.1.11)[257]: There is a Borel map 𝐾1: 𝛤 → 𝐺 such that 

𝐾1(𝑦) ≅ 𝐾1(𝐶
∗(𝑦)) 
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for all 𝑦. 
Proof: By Bott periodicity, 𝐾1𝐶

∗(𝑦) ≅ 𝐾0 (𝐶 ( (0, 1), 𝐴)) and by [262] and Proposition 

(4.1.8) the right-hand side can be computed by a Borel function. 

Theorem (4.1.12)[257]: There is a Borel map Ell:Γu → Ell such that Ell (𝛾) is the Elliott 

invariant of 𝐶∗(𝛾), for all 𝛾 ∈ Γ.  
Proof. The computation of 𝐾  -theory is Borel by Proposition (4.1.8) and Proposition 

(4.1.11) By Farah et al. [262], the computation of the tracial simplex 𝕋(𝑦) ≅ 𝑇𝐶∗(𝑦)is 

Borel as well. Since 𝜙 ∈ 𝕋(𝑦)is identified with a continuous map on a dense subset of 

𝐶∗(𝑦), by restricting this map to Proj  (𝑦) and then composing with the embedding of 

Proj (𝑦) into 𝐾0(𝑦) we obtain the restriction of the coupling map 𝑟𝐶∗(𝑦) to the positive part 

of 𝐾0(𝑦).The coupling map is now canonically extended to 𝐾0(𝑦). 
[262] defined an alternative space of Choquet simplexes and showed that it is weakly 

equivalent to the more straightforward one used above. 

We show that the Cuntz semigroup of a separable 𝐶∗-algebra is Borel computable, as is a 

related invariant, the radius of comparison. The relevance of the Cuntz semigroup to 𝐶∗-
algebra classification was demonstrated in [271], where it was used to distinguish simple 

unital separable nuclear 𝐶∗ -algebras with identical Elliott invariants; see also [108]. We 

review the basic properties of Cuntz semigroups below, see [164]. 

Let 𝐴 be a 𝐶∗algebra. Define on (𝐴⊗𝒦)+ a pinary relation by letting 𝑎 ≲ 𝑏 if and 

only if 𝑣𝑛𝑏𝑣𝑛
∗ → 𝑎 for some sequence 𝑣𝑛 in 𝐴⊗𝒦. Let us write 𝑎~𝑏 if 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎. 

In this case, we say that 𝑎 is Cuntz equivalent to 𝑏. Let 𝐶𝑢 (𝐴) denote the set (𝐴⊗𝒦)+/~ 

of Cuntz equivalence classes. We use [𝑎] to denote the class of 𝑎 in 𝐶𝑢(𝐴). It is clear that 

[𝑎] ≤ [𝑏] ⇔ 𝑎 ≲ 𝑏 defines an order on 𝐶𝑢(𝐴). We also endow 𝐶𝑢 (𝐴) with an addition 

operation by setting [𝑎] + [𝑏] ∶= [𝑎′ + 𝑏′],  where 𝑎′  and 𝑏′  are orthogonal and Cuntz 

equivalent to 𝑎 and 𝑏 respectively (the choice of 𝑎′ and 𝑏′ does not affect the Cuntz class of 

their sum). 

The semigroup 𝐶𝑢 (𝐴)is an object in a category of ordered Abelian monoids denoted by 𝐶𝑢, 
a category in which the relation of order-theoretic compact containment plays a significant 

role, see [258]. Let 𝑇  be a preordered set with 𝑥, 𝑦 ∈ 𝑇.  We say that 𝑥  is compactly 

contained in 𝑦—denoted by 𝑥 ≪ 𝑦—if for any increasing sequence 𝑦𝑛in 𝑇 with supremum 

𝑦, we have 𝑥 ≤ 𝑦𝑛0 for some 𝑛0 ∈ ℕ. An object 𝑆 of 𝐶𝑢 enjoys the following properties: 

 (P1) 𝑆 contains a zero element; 

 (P2) the order on 𝑆 is compatible with addition: 𝑥1 + 𝑥2 ≤ 𝑦1 + 𝑦2 whenever 𝑥𝑖 ≤ 𝑦𝑖 , 𝑖 ∈
{1, 2}; 
 (P3) every countable upward directed set in 𝑆 has a supremum; 

 (P4) the set 𝑥≪ = {𝑦 ∈ 𝑆⎹ 𝑦 ≪ 𝑥} is nonempty and upward directed with respect to both ≤ 

and ≪, and contains a sequence (𝑥𝑛) such that 𝑥𝑛 ≪ 𝑥𝑛+1 for every 𝑛 ∈ ℕ and supn𝑥𝑛 =
𝑥;  
 (P5) the operation of passing to the supremum of a countable upward directed set and the 

relation ≪ are compatible with addition: if 𝑆1 and 𝑆2 are countable upward directed sets in 

𝑆, then 𝑆1 + 𝑆2 is upward directed and sup(𝑆1 + 𝑆2) = sup𝑆1 + sup𝑆2, and if 𝑥𝑖 ≪ yi for 

𝑖 ∈ {1, 2}, then 𝑥1 + 𝑥2 ≪ 𝑦1 + 𝑦2.  
 Here we assume further that 0 ≤ 𝑥 for any 𝑥 ∈ 𝑆. This is always the case for 𝐶𝑢(𝐴).For 𝑆 

and 𝑇 objects of 𝐶𝑢 the map 𝜙: 𝑆 → 𝑇 is a morphism in the category 𝐶𝑢 if 

 (M1) 𝜙 preserves the relation ≤; 
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 (M2) 𝜙 is additive and maps 0 to 0;  
 (M3) 𝜙 preserves the suprema of increasing sequences; 

 (M4) 𝜙 preserves the relation ≪. 
Definition (4.1.13)[257]: Let 𝑆 ∈ 𝐶𝑢. 𝐴 countable subset 𝐷 of 𝑆 is said to be sup-dense if 

each 𝑠 ∈ 𝑆  is the supremum of a ≪ -increasing sequence in 𝐷.  We then say that 𝑆  is 

countably determined. (Here by ≪ we mean the relation≪  

on 𝐷 inherited from 𝑆, 𝑖. 𝑒. , 𝑑1 ≪ 𝑑2 in 𝐷 iff 𝑑1 ≪ 𝑑2 in 𝑆.) 

Definition (4.1.14)[257]: Let 𝐶𝑢0  denote the category of pairs (𝑆, 𝐷)  where 𝑆  is a 

countably determined element of  𝐶𝑢, and 𝐷 is a distinguished sup-dense subset of 𝑆 which 

is moreover a semigroup with the binary operation inherited from 𝑆. We further assume 𝐷 

to be equipped with the relations ≤ and ≪ inherited from 𝑆.  
 An element 𝑥  of 𝑆 ∈ 𝐶𝑢  such that 𝑥 ≪ 𝑥  is compactly contained in itself, or briefly 

compact. If (𝑆, 𝐷) ∈ 𝐶𝑢0 then 𝐷 automatically contains all compact elements. 

Let 𝐶  be the space of triples (⊕,≲,≪)  in ℕℕ×ℕ × 𝒫(ℕ × ℕ) × 𝒫(ℕ × ℕ)  with the 

following properties: 

 (i) (ℕ,⨁,≲,≪) is an ordered semigroup under the order ≲ (we will use 𝑎, 𝑏, 𝑐, etc. to 

represent elements of the semigroup); 

 (ii) ≪ is a transitive antisymmetric relation with the property that 𝑎 ≪ 𝑏 and 𝑐 ≪ 𝑑 implies 

𝑎⨁𝑐 ≪ 𝑏⨁𝑑; 
 (iii) 𝑎 ≪ 𝑏 implies 𝑎 ≲ 𝑏; 
 (iv) for each 𝑎 in the semigroup, there is some 𝑏 ≪ 𝑎, and if 𝑎 does not satisfy 𝑎 ≪ 𝑎, then 

the set of all such 𝑏 is upward directed and has no maximal element. 

 (Warning: ≪ here is not defined in terms of ≲ as in our discussion of the Cuntz semigroup, 

but rather is just some other relation finer than ≤. It will coincide with the Cuntz semigroup 

definition in the case that an element of 𝐶 really is a sup-dense subsemigroup of an element 

of the category 𝐶𝑢.) We can define a map 𝛷:𝐶𝑢0 → 𝐶 in an obvious way: send (𝑆, 𝐷) to the 

triple ⨁,≲,≪ corresponding to 𝐷 (𝐷 = {𝑑𝑛: 𝑛 ∈ ℕ} is the ordered semigroup on ℕ defined 

by 𝑚⨁𝑛 = 𝑘 if and only if 𝑑𝑚 + 𝑑𝑛 = 𝑑𝑘, 𝑚 ≲ 𝑛 if and only if 𝑑𝑚 ≲ 𝑑𝑛 and 𝑚 ≪ 𝑛 if 

and only if 𝑑𝑚 ≪ 𝑑𝑛). 

If 𝐷 ∈ 𝐶, we let 𝐷↗ denote the set of ≪-increasing sequences in 𝐷. Define an equivalence 

relation on ≈ on 𝐷↗ by 

(𝑥𝑛) ≈ (𝑦𝑛) ⟺ (∀𝑚)(∃𝑛)𝑥𝑚 ≪ 𝑦𝑛 and 𝑦𝑚 ≪ 𝑥𝑛∙ 
Equip 𝐷↗ with the relations 

(𝑥𝑛) ≤
↗ (𝑦𝑛) ⟺ (∀𝑛)(∃𝑚)𝑥𝑛 ≤ 𝑦𝑚 

 and 

(𝑥𝑛) ≤
↗ (𝑦𝑚) ⟺ (∃𝑚0)(∀𝑛)𝑥𝑛 ≲ 𝑦𝑚0 . 

Note that 

(𝑥𝑛) ≤
↗ (𝑦𝑛) ∧ (𝑦𝑛) ≤

↗ (𝑥𝑛) ⟺ (𝑥𝑛) ≈ (𝑦𝑛). 
Define (𝑥𝑛)⨁

↗(𝑦𝑛) = (𝑥𝑛⨁𝑦𝑛) and set 

𝑊(𝐷) = 𝐷↗/≈  and 𝑊(𝑆) = 𝑆↗/≈∙ 
Note that the operation ⨁ and the relations ≤↗ and ≪↗ drop to an operation + and relations 

≾ and ≪ on 𝑊(𝐷), respectively. 
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If (𝑆, 𝐷) in Cu0, then the semigroup 𝐷 is an element of the category Pre Cu introduced in 

[100], and 𝑆 is a completion of 𝐷 in Cu in the sense of [100]. An appeal to [100] shows that 

𝑆, too, is a completion of 𝐷 in Cu, whence 

𝑊(𝐷) ≅  𝑊(𝑆) ≅ 𝑆 

In Cu.  
Let 𝑦 be the Borel space of all functions from ℕ to the Baire space ℕ𝑁. Since 𝛼 ∈ 𝑦 

is a map from ℕ → ℕ𝑁 and the elements of 𝐶 have ℕ as the underlyingset, if𝐷1 and 𝐷2 in 𝐶 

are fixed then 𝛼 ∈ 𝑦  codes a map from 𝐷1  to 𝐷ℕ.  We shall identify 𝛼  with this map 

whenever 𝐷1 and 𝐷2 are clear from the context. The set of all triples (𝐷1, 𝐷2, 𝛼 ) such that 

the range of 𝛼 is included in 𝐷2
↗ is a closed subset of 𝐶2 × 𝑦. To each 𝐷 ∈ 𝐶, we associate 

a map 𝜂𝐷: 𝐷 → 𝐷↗ (or simply 𝜂 if 𝐷 is clear from the context) as follows: Select, in a Borel 

manner, a sequence 𝜂𝐷(𝑎) = (𝑎𝑛) which is cofinal in {𝑏 ∈ 𝐷⎹ 𝑏 ≪ 𝑎}. The association 

𝐷 ↦ 𝜂𝐷 is then Borel. If 𝑓:𝑊(𝐷1) → 𝑊(𝐷2) is a semigroup homomorphism preserving ≤ 

and ≪ and 𝛼 ∈ 𝑦, then we say that 𝛼 codes 𝐹 if [𝛼 (𝑎)]𝐹[𝜂 (𝑎)] for all 𝑎 ∈ 𝐷1. Note that 𝛼 

really codes the restriction of 𝐹 to 𝜂(𝐷1),but, as we shall see, 𝐹 is completely determined 

by this restriction if 𝑊(𝐷1)and 𝑊(𝐷2) are in the category Cu. 

Lemma (4.1.15)[257]: Let (𝑆, 𝐷) ∈ 𝐶𝑢0. Then (𝑎𝑛) ≪
↗ (𝑏𝑛) in 𝐷↗ if and only if [𝑎𝑛] ≪

[𝑏𝑛]  in 𝑊(𝐷) ≅ 𝑆, where ≪  is the relation of order-theoretic compact containment 

inherited from the relation ≤ on 𝑆. 

Proof: suppose first that(𝑎𝑛) ≪
↗ (𝑏𝑚), and fix 𝑚0 such that 𝑎𝑛 ≾ 𝑏𝑚0 for all 𝑛.We must 

prove that if, for fixed 𝑗, (𝐶𝑛
𝑗
) ∈ 𝐷↗, and if moreover[𝐶𝑛

𝑗
] is 𝑎 ≤ ‑increasing sequence in 𝑗 

with supremum [𝑏𝑛], then [(𝑎𝑛)] ≤ [𝐶𝑛
𝑗0] for some 𝑗0 ∈ ℕ. first we recall (see the proof of 

the existence of suprema in inductive limits of cuntz semigroups in [258]) that for such 

(𝐶𝑛
𝑗
), there is a sepuence of natural numbers (𝑛𝑗) with the property that (𝐶𝑛

𝑗
) ≈ (𝑏𝑚). In 

particular,there is 𝑗0 such that 𝑏 ≪  𝐶𝑛𝑗0
𝑗0 . Since (𝐶𝑘

𝑗0) ∈ 𝐷↗, we have 

(𝐶𝑛
𝑗
) ≈  (𝑏𝑛) 𝑎𝑛 ≪ 𝑏𝑚0 ≪  𝐶𝑛𝑗0

𝑗0  

 

for all 𝑛 ∈ ℕ, and so (𝑎𝑛) ≪
↗ (𝐶𝑘

𝑗0). This implies[(𝑎𝑛)] ≤ [𝐶𝑘
𝑗0]as required. 

For the converse, assume that [𝑎𝑛] ≪ [𝑏𝑚].Since 𝑏𝑚 ≪ 𝑏𝑚+1, we know that for any 

element of the sequence 𝜂(𝑏𝑚),  there is an element of the sequence 𝜂(𝑏𝑚+1)  that ≪-

dominates it, so that [𝜂(𝑏𝑚)] ≤ [(𝑏𝑚+1)] There is also, for given 𝑚, and element of the 

sequence 𝜂(𝑏𝑚+1)that ≪-dominates 𝑏𝑚. (These two assertions follow from property (4) in 

the definition of 𝐶.) It follows that for some sequence 𝑚𝑗, we have [𝜂(𝑏𝑗)𝑚𝑗
 ]  ≥  [ (𝑏𝑚)].  

Identifying 𝜂(𝑏𝑗) with (𝐶𝑛
𝑗
)from the first part of the proof and observing (see again 

the proof of existence of suprema in inductive limits of Cuntz semigroups in [258]) that the 

𝑛𝑗 chosen above can be increased without disturbing the fact (𝐶𝑛
𝑗
) ≈  (𝑏𝑛)we see that by 

increasing the 𝑚𝑗if necessary, we also have that sup𝑗[𝜂(𝑏𝑗)] = [𝜂(𝑏𝑗)𝑚𝑗
 ]  ≥  [ (𝑏𝑚)]. It 

follows that [𝜂(𝑏𝑗0)] ≥ [(𝑎𝑛)] for some 𝑗0, whence 𝑎𝑛 ≪ 𝑏𝑗0 for all 𝑛, as required. 

Lemma (4.1.16)[257]: Let ( 𝑆, 𝐷) ∈ 𝐶𝑢0.  Then 𝑎 ≪ 𝑏  in 𝐷  if and only if [𝜂 (𝑎)] ≪
[𝜂 (𝑏) ∈ 𝑊 (𝐷) ≅ 𝑆.  
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Proof: By Lemma (4.1.15), it will suffice to prove that 𝑎 ≪ 𝑏 iff 𝜂 (𝑎) ≪↗ 𝜂 (𝑏) in 𝐷↗. 

Suppose first that 𝑎 ≪ 𝑏, so that (𝜂 (𝑎)𝑖) and (𝜂 (𝑏)𝑚)are ≪-increasing sequences in 𝐷 

with suprema 𝑎  and 𝑏,  respectively (this uses several acts: that 𝐷  is embedded in 𝑆 ∈
𝐶𝑢;that objects in 𝐶𝑢 admit suprema for increasing sequences; and that 𝑆 may be identified 

with 𝑊(𝑆)). Since 𝑎 ≪ 𝑏,there is 𝑚0such that 𝜂 (𝑏)𝑚 ≥ 𝑎 ≥ 𝜂 (𝑎)𝑖  for all 𝑖  and for all 

𝑚 ≥ 𝑚0, as required. 

Conversely, suppose that 𝜂(𝑎) ≪↗ 𝜂(𝑏), so that there is 𝑚0 such that 𝜂 (𝑎)𝑖 ≤ 𝜂 (𝑏)𝑚 for 

all 𝑚 ≥ 𝑚0. Now 

sup
𝑖
𝜂 (𝑎)𝑖 = 𝑎 ≤𝜂 (𝑏)𝑚 ≪ 𝜂 (𝑏)𝑚+1 ≤ 𝑏. 

so that 𝑎 ≪ 𝑏. 
Lemma (4.1.17)[257]: Let (𝑆, 𝐷) ∈ 𝐶𝑢0. Then (𝑎𝑛) ≪

↗ (𝑏𝑛) in 𝐷↗ if and only if [𝑎𝑛] ≤
[𝑏𝑛] in 𝑊(𝐷) ≅ 𝑆. 
Proof: Suppose that (𝑎𝑛) ≪

↗ (𝑏𝑛). It follows that for each 𝑛 ∈ ℕ there is 𝑚(𝑛)such that 

𝑎𝑛𝑏𝑚(𝑛) ≪ 𝑏𝑚(𝑛)+1. 

The statement [(𝑎𝑛)] ≤ [(𝑏𝑛)] amounts to the existence of (𝑐𝑛) ∈ 𝐷
↗ such hat (𝑎𝑛) ≈ (𝑐𝑛) 

and (𝑐𝑛) ≪
↗ (𝑏𝑛). Here we can take (𝑐𝑛) = (𝑎𝑛), completing the forward implication. 

 Suppose, conversely, that [(𝑎𝑛)] ≤ [(𝑏𝑛)],  so that there is some (𝑐𝑛) ∈ 𝐷
↗  such that 

(𝑎𝑛) ≅ (𝑐𝑛)and (𝑐𝑛) ≤ (𝑏𝑛).Since (𝑎𝑛)and (𝑐𝑛)are cofinal in each other with respect to ≪
, it is immediate that (𝑎𝑛) ≤

↗ (𝑏𝑛).  
Lemma (4.1.18)[257]: Let (𝑆, 𝐷) ∈ 𝐶𝑢0.Then 𝑎 ≤ 𝑏 in 𝐷 if and only if [𝜂(𝑎)] ≤ [𝜂(𝑏)] in 

𝑊(𝐷) ≅ 𝑆. 
Proof: By Lemma (4.1.17), it is enough to prove that 𝑎 ≤ 𝑏  iff 𝜂(𝑎) ≤↗ 𝜂(𝑏)  in 

𝐷↗.Suppose first that. 𝑎 ≤ 𝑏. The sequence (𝜂(𝑎)𝑛),being cofinal with respect to ≪ in {𝑐 ∈
𝐷 | 𝑐 ≪ 𝑎}, has a supremum in 𝑆, namely, 𝑎 itself. 𝐴 similar statement holds for 𝑏. For any 

𝑛 ∈ ℕ, we have 𝜂(𝑎)𝑛 ≪ 𝑎, and sup𝜂(𝑏)𝑚 = 𝑏 ≥ 𝑎. It follows that 𝜂(𝑏)𝑚 ≫ 𝜂(𝑎)𝑛  for 

all 𝑚 sufficiently large, whence [𝜂(𝑎)] ≤ [𝜂(𝑏)], as desired. 

 Suppose, conversely, that 𝜂(𝑎) ≤↗ 𝜂(𝑏) in 𝐷↗. Since sup 𝜂(𝑎)𝑛 = 𝑎, sup 𝜂(𝑏)𝑚 = 𝑏, and 

for reach 𝑛 there is 𝑚 such that 𝜂(𝑎)𝑛 ≪ 𝜂(𝑏)𝑚, it is immediate that 𝑎 ≤ 𝑏 in 𝑆. 
 Using methods similar to those of Lemmas (4.1.15)– (4.1.18) one can also prove the 

following result. 

Lemma (4.1.19)[257]: Let (𝑆, 𝐷) ∈ 𝐶𝑢0. Then the following are equivalent: 

𝑎⨁𝑏 = 𝑐 in 𝐷; 
𝜂(𝑎)⨁↗𝜂(𝑏) = 𝜂 (𝑐)]in 𝐷↗; 

 (iii) [𝜂(𝑎)] + [𝜂(𝑏)] = [𝜂 (𝑐)] in 𝑊 (𝐷). 
Lemma (4.1.20)[257]: Let 𝐷1, 𝐷2, ∈ 𝐶 be sup-dense subsemigroups of elements of Cu. If 𝛼 

codes a homomorphism 𝛷:𝑊(𝐷1) → 𝑊(𝐷2), then for 𝑎, 𝑏 ∈ 𝐷1 we have: 

𝑎 ≲ 𝑏 implies (∀𝑚)(∃𝑛)𝛼(𝑎)𝑚 ≲ 𝛼(𝑏)𝑛;  
𝑎 ≪ 𝑏 implies (∃𝑛)(∀𝑚)𝛼(𝑎)𝑚 ≲ 𝛼(𝑏)𝑛;  
𝛼(𝑎)⨁𝛼(𝑏) (defined pointwise) satisfies 𝛼(𝑎)⨁𝛼(𝑏) ≈ 𝛼(𝑎⨁𝑏). 
Conversely, if 𝛼 has properties (i)‑  (iii), then  

(𝜓: 𝜂(𝐷1) ∕≈) ≅ 𝐷1 → 𝑊(𝐷2) 
To see that ≤  is preserved by 𝛷 on  𝑊(𝐷1),  consider [(𝑏𝑛)] ≤  [(𝑐𝑚)].  Passing to 

subsequences we can assume that 𝑏𝑘 ≪ 𝑐𝑘 for every 𝑘. Then by property (ii) and Lemmas 

(4.1.15) and (4.1.16) we have 
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[𝛼(𝑏𝑘)] ≪ [𝛼(𝑐𝑘)]⟹ sup
𝑘

[𝛼(𝑏𝑘)] ≤  sup
𝑘
[𝛼(𝑐𝑘)] ⟹ 𝜓[(𝑏𝑛)] ≤ 𝜓[(𝑐𝑚)]. 

We shall now define an analytic equivalence relation on 𝐶  which, for sup-dense 

subsemigroups of elements of Cu, amounts to isomorphism. Consider the standard Borel 

space 𝐶2 × 𝑦 2.  In this space consider the Borel set 𝜒  consisting of all quadruples 

(𝐷1, 𝐷2, 𝛼1, 𝛼2) such that  

 (i) 𝛼1 and 𝛼2 satisfy the (Borel) conditions (i)- (iii) of Lemma (4.1.17); 

 (ii) (∀𝑎 ∈ 𝐷1)(∀𝑏 ∈ 𝐷2) we have 

𝛼1(𝑎) ≪
↗ 𝜂(𝑏) ⇔ 𝜂(𝑎) ≪↗ 𝛼2(𝑏) 

and 

𝜂(𝑏) ≪↗ 𝛼1(𝑎) ⇔ 𝛼2(𝑏) ≪
↗ 𝜂(𝑎). 

It is straightforward to verify that the conditions above define a Borel subset of 𝐶2 ×
𝑦2, whence 𝜒 is a standard Borel space. Now define a relation 𝐸 on 𝐶 by 

𝐷1𝐸 𝐷2 ⇔ (∃𝛼1, 𝛼2) (𝐷1, 𝐷2, 𝛼1, 𝛼2)𝜖𝜒 

whence 𝐸, as the co-ordinate pro jection of 𝜒 onto 𝐶2, is analytic. 

 

Proposition (4.1.21)[257]: Let 𝐷1, 𝐷2 ∈ 𝐶 be sup-dense subsemigroups of elements of Cu. 

It follows that 𝐷1𝐸 𝐷2iff 𝑊(𝐷1) ≅ 𝑊(𝐷2)in the category Cu. 
Proof: Assume 𝑊(𝐷1) ≅ 𝑊(𝐷2)and let 𝜙:𝑊(𝐷1) → 𝑊(𝐷2) be an isomorphism. Pick 𝛼1 

that codes 𝜙  and 𝛼2  that codes 𝜙−1,  so that 𝛼1  and 𝛼2  have the properties (i)- (iii) of 

Lemma (4.1.20). For (ii) in the definition of 𝑋, we will only prove the first equivalence, as 

the second one is similar. By Lemma (4.1.15), the first equivalence in (i) is equivalent to 

(∀𝑎 ∈ 𝐷1)(∀𝑏 ∈ 𝐷2)[𝛼1(𝑎)] ≪ [𝜂(𝑏)] ⇔ [𝜂(𝑎)] ≪ [𝛼2(𝑏)] ∙ 
Suppose [𝛼1(𝑎)] ≪ [𝜂(𝑏)], so that 

𝜙−1[𝛼1(𝑎)] ≪ 𝜙
−1[𝜂(𝑏)] 

 (morphisms in Cu  preserve ≪). Since 𝛼2  codes 𝜙−1, the right hand side above can be 

identified with [𝛼2(𝑏)]. Similarly, 𝜙−1[𝛼1(𝑎)] = 𝜙
−1𝜙[𝜂(𝑎)] = [𝜂(𝑎)], so that [ 𝜂(𝑎)] ≪

[𝛼2(𝑏)]. The other direction is similar, establishing (ii) from the definition of 𝑋, whence 

𝐷1𝐸 𝐷2. 
Now assume (𝐷1, 𝐷2, 𝛼1, 𝛼2)𝜖𝜒  for some 𝛼1  and 𝛼2.  Using Lemma (4.1.20) we 

obtain homomorphisms 𝜙1:𝑊(𝐷1) → 𝑊(𝐷2)and 𝜙2:𝑊(𝐷1) → 𝑊(𝐷2). Let us verify that 

𝜙2 ○ 𝜙1 = id𝑊(𝐷1)  (the proof for that 𝜙1 ○ 𝜙2 = id𝑊(𝐷2) is similar). Fix [ (ƒ𝑛)] ∈
𝑊(𝐷1). Since 𝑎 ↦ [ 𝜂(𝑎)] is a complete order embedding of 𝐷1 into 𝑊(𝐷1) relative to≲ 

and≪ by Lemma (4.1.15), we have [(ƒ𝑛 )] = sup
𝑛
[𝜂 (ƒ𝑛)]. Since 𝜙1 preserves ≪, we have a 

corresponding ≪ -increasing sequence 𝜙1[𝜂(ƒ𝑛)] = [𝛼(ƒ𝑛 )], 𝑖 ∈ ℕ (see Lemma (4.1.20)). 

Choose a ≪- increasing sequence [𝜂(𝑏𝑖)] in 𝑊(𝐷2) with supremum 𝜙1[(ƒ𝑛 )], and note 

that this is also the supremum of the sequence [𝛼1(ƒ𝑛 )].  Since 𝑊(𝐷2) ∈ 𝐶𝑢  we may, 

passing to asubsequence if necessary, assume that 

[𝜂(𝑏𝑖)] ≪ [𝛼1(ƒ𝑖)]and[𝛼1(ƒ𝑖)] ≪ [𝜂(𝑏𝑖+1)] ∙ 
Using (ii) in the definition of 𝑋 and the relations above we obtain 

[𝛼2(𝑏𝑖)] ≪ [𝜂(ƒ𝑖)]and[𝜂(ƒ𝑖)] ≪ [𝛼2(𝑏𝑖+1)], 
so that the sequences [𝛼2(𝑏𝑖)]and [𝜂(ƒ𝑖)] have the same supremum, namely, [ (ƒ𝑖)]. Now 

we compute: 

(𝜙2 ○ 𝜙1)[(ƒ𝑛 )] = (𝜙2 ○ 𝜙1) sup
𝑖
[𝜂(ƒ𝑖  )] 



 

117 

 

= 𝜙2 (sup
𝑖
𝜙1[𝜂(ƒ𝑖  )]) 

= 𝜙2 (sup
𝑖
[𝛼1(ƒ𝑖  )]) 

= 𝜙2 (sup
𝑖
[𝜂(ƒ𝑖  )]) 

= (sup
𝑖
𝜙2[𝜂(ƒ𝑖  )]) 

= (sup
𝑖
[𝛼2(ƒ𝑖  )]) 

= (sup
𝑖
[𝜂(ƒ𝑖  )]) 

= [(ƒ𝑛 )]. 
Recall the following well-known lemma.  

Lemma (4.1.22)[257]: For any strictly decreasing sequence 𝜖𝑛  of positive tolerances 

converging to zero, the sequence 〈(𝑎 − 𝜖𝑛)+〉 ≪-increasing in 𝐶𝑢(𝐴). 
 In some cases, for example when 𝑎 is a pro jection, the sequence in the Lemma is eventually 

constant, that is, 〈𝑎〉 is compact. This occurs, for instance, when 𝑎 ≲ (𝑎 − 𝜖)+ for some 𝜖 >
0.  

Proposition (4.1.23)[257]: There is a Borel map 𝜓: 𝛤 → 𝐶  such that 𝑊(𝜓(𝑦)) ≅

𝐶𝑢(𝐶∗(𝑦)).  
Proof: Fix 𝑦0 ∈ 𝛤 such that 𝐶∗(𝑦0) is the algebra of compact operators and a bijection 𝜋 

between ℕ2 and ℕ. Moreover, choose 𝑦0 so that all operators in 𝑦0 have finite rank and 𝑦0 

is closed under finite permutations of a fixed basis (𝑒𝑛) of 𝐻. We also fix a sequence of 

compact partial isometries 𝑣𝑚, such that 𝑣𝑚 swaps the first m vectors of (𝑒𝑛) with the next 

𝑚 vectors of this basis. This sequence will be used in the proof of Claim (4.1.25). 

Let 𝜓 denote the Borel map from 𝛤 to 𝛤 obtained as the composition of three Borel maps: 

Tensor (·, 𝑦0), where Tensor is the Borel map from [262]; the map 𝑦 ↦ (𝑎𝑛(𝑦)) (see [262]); 

and finally the map that sends (𝑎𝑛) to (𝑏𝑛) where 

𝑏𝑛 = ((𝑎𝜋0(𝑛)𝑎𝜋0(𝑛)
∗ )−1 𝜋1(𝑛)⁄ )

+
                                (1) 

 (here 𝑛 ↦ (𝜋0(𝑛), 𝜋1(𝑛)) is the fixed bijection between ℕ and ℕ2). 

Fix 𝑦 ∈ 𝛤. Then 𝑦1 Tensor (𝑦, 𝑦0) satisfies 𝐶∗(𝑦)⨂𝒦 ≅ 𝐶∗ Tensor (𝑦, 𝑦0) Moreover, for 

any two positive entries 𝑎 and 𝑏 if 𝑦1 there are orthogonal positive 𝑎′ and 𝑏′ in 𝑦1 such that 

𝑎~𝑎′ and 𝑏~𝑏′. (Here ~ denotes Cuntz equivalence.) If 𝑦2 = (𝑝𝑛(𝑦1)), then the elements 

of 𝑦2 are norm-dense in 𝐶∗(𝑦2) ≅ 𝐶
∗(𝑦)⨂𝒦, and 𝑦2 contains 𝑦1 as a subsequence. Finally, 

if 𝑦3 is the sequence as in (1), then 𝑦3 is a norm-dense set subset of the positive elements of 

𝐶∗(𝑦)⨂𝒦. Let us write 𝑑𝑚(𝑦) ∶= (𝑦3)𝑚) and 𝑥𝑛(𝑦) ∶= (𝑦2)𝑛.  

Claim (4.1.24)[257]: The map 𝛤 → 𝑃 (ℕ)2: 𝛾 𝜓≲
⟼
 𝑅[ ≲, 𝑦], defined by 

 (𝑚, 𝑛) ∈ 𝑅[≾, 𝑦]if and only if 𝑑𝑚 (𝑦) ≾ 𝑑𝑛 (𝑦) 
 (where ≾ is computed in 𝐶∗(𝑦1) = 𝐶

∗(𝑦)⨂𝒦 is Borel. 

Proof: Recall that a map is Borel if and only if its graph is Borel. We have 

(writing 𝑑𝑚 for 𝑑𝑚(𝑦) and 𝑥𝑚 for 𝑥𝑚(𝑦)) (𝑚, 𝑛) ∈ 𝑅[ ≲, 𝑦] if and only if 

(∀𝑖)(∃𝑗)‖𝑥𝑗𝑑𝑛𝑥𝑗
∗ − 𝑑𝑚‖ < 1 𝑖,⁄  
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 Therefore, the graph of 𝜓≲ is equal to ⋂ ⋃ 𝐴𝑖𝑗𝑗𝑖  where all of these sets are Borel since the 

maps 𝑦 ↦ 𝑑𝑚(𝑦) and 𝑦 ↦ 𝑑𝑚(𝑦) are, by the above, Borel. The map that sends the pair of 

sequences 𝑥𝑗and 𝑑𝑗 to 𝑅[≾, 𝑦]is therefore Borel.The computation of these two sequences 

from 𝑦 is Borel by construction, and this completes the proof. Γ → Ρ(ℕ)3: 𝑦
𝜓+
→ 𝑅[+, 𝑦], 

By Claim (4.1.24), for each 𝑦 we have a preordering 𝑅[≾, 𝑦]on ℕ. Then 

𝑅[~, 𝑦] = {(𝑚, 𝑛): (𝑚, 𝑛) ∈ 𝑅[≾, 𝑦] and (𝑛,𝑚) ∈ 𝑅[≾, 𝑦]} 
is also a Borel function, and it defines a quotient partial ordering on ℕ for every 𝑦. In what 

follows we use [𝑎] to denote the Cuntz equivalence class of a positive element of 𝐶∗(𝑦). 

Claim (4.1.25)[257]: the map / 𝛤𝛲(ℕ)3: 𝑦
𝜓+
→ 𝑅[+, 𝑦], defined by 

(𝑚, 𝑛, 𝑘) ∈ 𝑅[+, 𝑦]if and only if [𝑑𝑚] + [𝑑𝑛] = [𝑑𝑘]  

 (where + is computed in (𝐶𝑢(𝐶∗(𝑦)))) is Borel. Moreover, it naturally defines a semigroup 

operation on ℕ 𝑅[∼, 𝑦 ]⁄ . 
Proof: Fix 𝑦. Let us first prove that the sequence 𝑑𝑚 ∶= 𝑑𝑚(𝑦) is such that for all 𝑚 and 𝑛 

there is 𝑘 satisfying [(𝑑𝑚) ] + [𝑑𝑛 ] = [𝑑𝑘 ]. Our choice of generating sequence 𝑦0 for 𝐾 

ensures that each 𝑑𝑚 is contained in 𝐶∗(𝑦)⨂𝑀𝑛 for some 𝑛, where 𝑀1 ⊆ 𝑀2 ⊆ 𝑀3  · · · is 

a fixed sequence of matrix algebras with union dense in 𝐾.  The 𝑀𝑛  are the bounded 

operators on span (𝑒1, . . . , 𝑒𝑛). By construction 𝑦0 is closed under finite permutations of the 

basis (𝑒𝑛),  so that for a large enough 𝑙  the isometry 𝑣𝑙  (see above) we have that 𝑑𝑚
∶= (1⨂𝑣𝑙)𝑑𝑚(1⨂𝑣𝑙) ∗ is both Cuntz equivalent to 𝑑𝑚 and orthogonal to 𝑑𝑛. Here the ”1” 
in the first tensor factor is the unit of 𝐶∗(𝑦) 
if 𝐶∗(𝑦) is unital, and the unit of the unitization of 𝐶∗(𝑦) otherwise. Note that 𝜔1
∶= 𝑑𝑚(1⨂𝑣𝑙)belongs to 𝐶∗(𝑦)⨂𝒦  and that 𝜔𝑙𝑑𝑚𝜔𝑙

∗ = 𝑑𝑚
3  is cuntz equivalence to and 

orthogonal to 𝑑𝑚. It follows that 

[𝑑𝑛 +𝜔𝑙𝑑𝑚𝜔𝑙
∗] = [𝑑𝑛] + [𝜔𝑙𝑑𝑚𝜔𝑙

∗] = [𝑑𝑛] + [𝑑𝑚]. 
By the defininition of the function Tensor in [262], for all l we have 𝜔𝑙𝑑𝑚𝜔𝑙

∗ = 𝑑𝑟(𝑙)and 

𝑑𝑛 + 𝑑 = 𝑑𝑘(𝑙) for some 𝑟(𝑙) and 𝑘(𝑙).  

 Now we check that the graph of 𝜓+ is Borel. This is equivalent to verifying that the graph 

of the function that maps each triple (𝑦,𝑚, 𝑛) to the set 𝑋𝑦,𝑚,𝑛, of all 𝑘 such that (𝑚, 𝑛, 𝑘) ∈

𝜓+(𝑦) is Borel. Moreover, a function 𝛬 from a Borel space int 𝒫(ℕ)is Borel if and only if 

all of the sets {(𝛾, 𝑘): 𝑘 ∈ 𝛬 (𝛾)} are Borel. 

 It will therefore suffice to check that the set { (𝛾, (𝑚, 𝑛, 𝑘)): (𝑚, 𝑛, 𝑘) ∈  𝜓+ (𝛾)} is Borel. 

But by the above, (𝑚,𝑛, 𝑘) ∈ 𝜓+ (𝛾) is equivalent to (writing 𝑑𝑚 for 𝑑𝑚(𝑦)) 
(∃𝑚)(∀𝑙 ≥ 𝑚)𝑑𝑛 +𝜔𝑙𝑑𝑚𝜔𝑙

∗~𝑑𝑘. 
where ∼ is the Cuntz equivalence relation: 𝑎 ∼ 𝑏 iff 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎. This is a Borel set, 

and therefore the map 𝜓+ is Borel. 

 Clearly, 𝜓+(𝑦) is compatible with ≲and it defines the addition on ℕ/𝑅[∼, 𝑦] that coincides 

with the addition on the Cuntz semigroup. 

Claim (4.1.26)[257]: The map 𝛤 → 𝑃 (ℕ)2 𝛾 ↦  𝑅[≪, 𝛾], defined by 

(𝑚, 𝑛) ∈ 𝑅[≪, 𝑦]if and only if [𝑑𝑚] ≪ [𝑑𝑛] 

 (where ≪ is computed in 𝐶𝑢( 𝐶∗(𝑦))is Borel. 

Proof: We have [𝑑𝑚] ≪ [𝑑𝑛] if and only if there exists 𝑗 ∈ ℕ  such that 𝑑𝑚 ≲ (𝑑𝑛 −
1/𝑗)+ [164].  

Recalling that 𝑑𝜋(𝑛,𝑗) = (𝑑𝑛 − 1/𝑗)+ for all 𝑛 and 𝑗, we see that is equivalent to 
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(∃𝑗)(𝑚, 𝜋(𝑛, 𝑗)) ∈ 𝑅[≲, 𝑦] 
and therefore the map is Borel. 

 Collecting these three claims we see that the map which sends 𝑦  to an element of 𝐶 

representing 𝐶𝑢( 𝐶∗(𝑦))—call it 𝛷—is Borel.  

The radius of comparison is a notion of dimension for noncommutative spaces which is 

useful for distinguishing simple nuclear 𝐶∗-algebras and is connected deeply to Elliott’s 
classification program (see [259], [108]). 

 Consider the standard space 𝐶𝑢 = 𝐶 × ℕ,  where the second co-ordinate of (𝐷, 𝑒) ∈ 𝐶𝑢 

represents a distinguished element of 𝐷. Let 𝐶𝑢𝑢 denote the category of Cuntz semigroups 

with a distinguished compact element. It is straightforward, by following the proof of 

Proposition (4.1.23), to verify that there is a Borel map  𝜓: 𝛤𝑢 → 𝐶𝑢  such 𝜓(𝑦) =

(𝐷, [1𝐶∗(𝑦)]),  where 𝐷  is (identified with) a countable sup-dense subsemigroup of 

𝐶𝑢(𝐶∗(𝑦)).  
 If (𝑆, 𝑒) ∈  𝐶𝑢𝑢, then the radius of comparison of 𝑆 (relative to 𝑒), denoted by 𝑟 (𝑆, 𝑒), is 

defined by 𝑟 (𝑆, 𝑒) = inf {𝑚/𝑛 | 𝑚, 𝑛 ∈ ℕ ∧ 𝑥 ≤ 𝑦 in 𝑆whenever (𝑛 + 1)𝑥 +𝑚𝑒 ≤ 𝑛𝑦} 
if this infimum exists, and by 𝑟(𝑆, 𝑒) = ∞ otherwise. Of course, this definition makes sense 

for any ordered semigroup with a distinguished element 𝑒, for example an element (𝐷, 𝑒) of 

𝐶 × ℕ, so we can equally well define 𝑟 (𝐷, 𝑒) in the same way. 

Proposition (4.1.27)[257]: Let  (S, e) ∈ 𝐶𝑢𝑢 , and let 𝐷 ⊆ 𝑆  be a countable sup-

subsemigroup of 𝑆  containing 𝑒.  It follows that, with respect to the common element 

𝑒, 𝑟(𝑆, 𝑒) = 𝑟 (𝐷, 𝑒). 
Proof: We suppress the 𝑒 and write only 𝑟(𝐷)and 𝑟(𝑆). It is clear that 𝑟(𝐷) ≤ 𝑟(𝑆). Given 

𝜖 > 0, we will prove 𝑟(𝑆) ≤ 𝑟𝐷 + 𝜖. Choose 𝑚, 𝑛 ∈ ℕ to satisfy 

𝑟(𝐷) < 𝑚/𝑛 < 𝑟(𝐷) + 𝜖 
Let 𝑥, 𝑦 ∈ 𝑆 satisfy 

(𝑛 + 1) × +𝑚𝑒 ≤ 𝑛𝑦. 
There are rapidly increasing sequences (𝑥𝑘)  and (𝑦𝑘)  in 𝐷  having suprema 𝑥  and 𝑦, 
respectively. Since 𝑒 is compact, so is 𝑚𝑒, that is 𝑚𝑒 ≪ 𝑚𝑒. Since (𝑛 + 1)𝑥𝑘 ≪ (𝑛 + 1) 
for any 𝑘, we can use the fact that addition respects ≪ to conclude that 

(𝑛 + 1)𝑥𝑘 +𝑚𝑒 ≪ (𝑛 + 1)𝑥 + 𝑚𝑒 ≤ 𝑛𝑦. 
It follows that 

(𝑛 + 1)𝑥𝑘 +𝑚𝑒 ≪ 𝑛𝑦. 
Since the operation of addition respects the operation of taking suprema, we have sup 𝑛𝑦𝑙 =
 𝑛𝑦, whence for some (and hence all larger) 𝑙𝑘 ∈ ℕ,we have 

(𝑛 + 1)𝑥𝑘 +𝑚𝑒 ≤ 𝑛𝑦𝑙𝑘.. 
Now since 𝑚 ∕ 𝑛 > 𝑟(𝐷)  we conclude that 𝑋𝑘 ≤ 𝑌𝜄𝑘.  Taking suprema yields 𝑋 ≤ 𝑌, 
proving that 𝑟(𝑆) ≤ 𝑚 𝑛⁄ > 𝑟(𝐷) + 𝜖, as desired. 

Proposition (4.1.28)[257]: The map 𝑟𝑐: 𝛤𝑢 → ℝ
+ ∪ {∞} given by  𝑟𝑐(𝑦) =

𝑟(𝐶𝑢(𝐶∗(𝑦)), [𝐼𝐶∗(𝑦)]) is Borel. 

Proof: The map 𝜓: 𝛤𝑢 → 𝐶𝑢 is Borel and satisfies 𝑟(𝜓(𝑦)) =  𝑟 (𝐶𝑢 (𝐶∗ (𝑦)), [1𝐶∗(𝑦) ]) by 

Proposition (4.1.27). It will therefore suffice to prove that 𝑟: 𝐶𝑢 → ℝ∪ {∞} is Borel. For 

𝑚,𝑛 ∈ ℕ the set 

Α𝑚,𝑛{(𝐷, 𝑒) ∈ 𝐶𝑢|(∀𝑥, 𝑦 ∈ 𝐷)(𝑛 + 1)𝑥 +me ≤ 𝑛𝑦 ⇒ 𝑥 ≤ 𝑦} 
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 is Borel. Define a map 𝜉𝑚,𝑛: 𝐶𝑢 → ℝ
+ ∪ {∞} by declaring that 𝜉𝑚,𝑛(𝐷, 𝑒) =

𝑚 𝑛⁄ if(𝐷, 𝑒)𝜖𝐴𝑚,𝑛and𝜉𝑚,𝑛(𝐷, 𝑒) = ∞ otherwise. Viewing the 𝜉𝑚,𝑛 as co-ordinates we 

obtain a Borel map 𝜉: 𝐶𝑢 → (ℝ
+ ∪ {∞})ℕ

2
 in the obvious way, and (𝐷, 𝑒) =

inf𝜉(𝐷, 𝑒).This shows that 𝑟 is Borel, as desired. 

Unlike other invariants of 𝐶∗-algebras treated, the theory Th (𝐴) of a 𝐶∗-algebra 𝐴 

comes from logic. By the metric version of the Keisler–Shelah theorem [256], it has the 

property that two 𝐶∗-algebras have isomorphic ultrapowers ltrafilters on uncountable sets, 

even if the algebras in question are separable. 𝐴 comprehensive tr if and only if they have 

the same theory. It should be emphasized that the ultrapowers may have to be associated 

with ultrafilters on uncountable sets, even if the algebras in question are separable. A 

comprehensive treatment of model theory of bounded metric structures is given in [256], 

and model-theoretic study of 𝐶∗-algebras and tracial von Neumann algebras was initiated in 

[260], [261]. 

We now give a special case of the definition of a formula ([261]) in the case of 𝐶∗-
algebras (cf. [261]). 𝐴 term is a ∗–polynomial. 𝐴 basic formula is an expression of the form 

‖𝑝(𝑥0, . . . , 𝑥𝑛−1)‖where 𝑝(𝑥0, . . . , 𝑥𝑛−1) is a term in variables 𝑥0, . . . , 𝑥𝑛−1. Formulas are 

elements of the smallest set 𝔽 that contains all basic formulas and has the following closure 

properties (we suppress free variables in order to increase readability). 

 (F1) If 𝑓:ℝ𝑛 → ℝ  is continuous and 𝜑1, . . . , 𝜑𝑛  are formulas, then 𝑓(𝜑1, . . . , 𝜑𝑛)  is a 

formula. 

 (F2) If 𝜑 is a formula, 𝐾 ≥ ℕ is a natural number, and 𝑥 is a variable then both sup‖𝑥‖≤𝐾𝜑 

and inf‖𝑥‖≤𝐾𝜑 are formulas.  

Equivalently, formulas are obtained from basic formulas by finite application of the 

above two operations. 

The quantifiers in this logic are sup‖𝑥‖≤1  and inf‖𝑥‖≤1  𝐴  variable appearing in a 

formula 𝜙 outside of the scope of its quantifiers (i.e., any 𝜑 as in (F2)) is free. 

As customary in logic we list all free variables occurring in a fornula 𝜑 and write 

𝜑(𝑥0, . . . , 𝑥𝑛−1). A formula 𝜑(𝑥0, . . . , 𝑥𝑛−1). is interpreted in a 𝐶∗ -algebra 𝐴 in a natural 

way. Given 𝑎0, . . . , 𝑎𝑛−1  in 𝐴, one defines the value 𝜑(𝑎0, . . . , 𝑎𝑛−1)
𝐴  recursively on the 

complexity of formula 𝜑.  As 𝑎0, . . . , 𝑎𝑛−1  vary, one obtains a function from 𝐴𝑛  into ℝ 

whose restriction to any bounded ball of 𝐴 is uniformly continuous ([261]). A sentence is a 

formula with no free variables. If 𝜑 is a sentence then the interpretation 𝜑𝐴 is a constant 

function and we identify it with the corresponding real number. Theory of a 𝐶∗-algebra 𝐴 is 

the map 𝜑 ⟼ 𝜑𝐴 from the set of all sentences int ℝ. 
The above definition results in an uncountable set of formulas. However, by 

restricting terms to ∗– polynomials with complex rational coefficients and continuous 

functions 𝑓 in (F1) to polynomials with rational coefficients, one obtains a countable set of 

formulas that approximate every other formula arbitrarily well. Let 𝕊0 denote the set of all 

sentences in this countable set. Clearly, the restriction of Th (𝐴) to 𝕊0 determines Th (𝐴) 
and we can therefore consider a closed subset of ℝ𝕊0 to be a Borel space of all theories of 

𝐶∗-algebras. 

Proposition (4.1.29)[257]: The function from 𝛤̂ into ℝ𝕊0 that associates Th(𝐶∗(𝑦)) to 𝑦 ∈

Γ̂ is Borel. 
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Lemma (4.1.30)[257]: Given a formula  𝜑(𝑥0, . . . , 𝑥𝑛−1),  the map that associates 

𝜑(𝑦𝑘(0), . . . , 𝑦𝑘(𝑛−1))
𝐶∗(𝑦)

 to a pair (𝑦, 𝑘⃗ ) ∈ Γ̂ × ℕ𝑛 is Borel.  

Proof: By recursion on the complexity of 𝜑. We suppress parameters 𝜓(𝑦)𝑥0, . . . , 𝑥𝑛−1 for 

simplicity. If 𝜑 is basic, then the lemma reduces to the fact that evaluation of the norm of a 

∗-polynomial is Borel-measurable. The case when 𝜑 is of the form 𝑓 (𝜑0, . . . , 𝜑𝑛−1) as in 

(F1) and lemma is true for each 𝜑𝑖 is trivial. 

 Now assume 𝜑 is of the form sup‖𝑥‖≤𝐾𝜓(𝑦) with 𝐾 ≥ 1. Function 𝑡𝑘: ℝ → ℝ defined by 

𝑡(𝑟) = 𝑟, if 𝑟 ≤ 𝐾 and 𝑡(𝑟) = 1 𝑟⁄ if 𝑟 > 𝐾 is continuous, and since 

𝜑𝐶
∗(𝑦) = sup

𝑖∈ℕ
𝑖∈ℕ𝜓(𝑘(‖𝑦𝑖‖)𝑦𝑖), 

we conclude that the computation of 𝜑 is Borel as a supremum of countably many Borel 

functions. The case when 𝜑 is in inf‖𝑦‖≤𝑘𝜓(𝑦) is similar. 

We note that an analogous proof shows that the computation of a theory of a tracial von 

Neumann algebra is a Borel function from the corresponding subspace of Effros–Mar´echal 

space into ℝ𝕊0. 
The stable rank sr (𝐴) of a unital 𝐶∗-algebra 𝐴 is the least natural number 𝑛 such that 

𝐿𝑔𝑛 = {(𝑎1, … . , 𝑎𝑛) ∈ 𝐴
𝑛| ∃𝑏1, … . , 𝑏𝑛 ∈ 𝐴such that ‖∑𝑏i𝑎i − 1A

n

i=1

‖ < 1} 

is dense in 𝐴𝑛, if such exists, and ∞ otherwise. The real rank 𝑟𝑟 (𝐴) is the least natural 

number 𝑛 such that 

𝐿𝑔𝑛+1
𝑠𝑎 = {(𝑎1, … . , 𝑎𝑛+1) ∈ 𝐴𝑠𝑎

𝑛+1|∃𝑏1, … . , 𝑏𝑛+1 ∈ 𝐴𝑠𝑎such that ‖∑𝑏i𝑎i − 1A

n

i=1

‖ < 1} 

where 𝐴𝑠𝑎 denotes the self-adjoint elements of 𝐴. Again, if no such 𝑛 exists, we say that 

𝑟𝑟(𝐴) = ∞. 
Theorem (4.1.31)[257]: The maps 𝑆𝑅: 𝛤 → ℕ ∪ {∞}  and 𝑅𝑅: 𝛤 → ℕ ∪ {∞}  given by 

𝑆𝑅(𝑦) = 𝑠𝑟(𝐶∗(𝑦)) and 𝑅𝑅(𝑦) = 𝑟𝑟(𝐶∗(𝑦)), respectively, are Borel. 

Proof: We treat only the case of 𝑆𝑅 (•); the case of 𝑅𝑅 (•) is similar. We have 

𝐶∗(𝑦) ∈ 𝐿𝑔𝑛 ⇔ (∀𝑖1< 𝑖2 < ⋯𝑖𝑛)(∃𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛,): ‖∑ 

 

 

‖ 

For fixed 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑛 and 𝑗1 < 𝑗2 < ⋯ < 𝑗𝑛, the set on the left hand side is norm open 

in all co-ordinates ℬ(ℋ)ℕ = Γ, and hence Borel. The theorem follows immediately. 

The Jiang-Su algebra 𝑍 plays a central role in the classification theory of nuclear separable 

𝐶∗algebras. Briefly, one can expect good classification results for algebras which are 𝑍-

stable, i.e., which satisfy 𝐴⨂𝑍 ≅ 𝐴 (see [259] for a full discussion). We prove here that the 

subset of 𝛤 consisting of 𝑍-stable algebras is Borel. 

It was shown in [264] that 𝑍 can be written as the limit of a 𝐶∗-algebra inductive sequence 

𝑍𝑛1,𝑛1+1
𝜙1
→ 𝑍𝑛2,𝑛2+1

𝜙2
→ 𝑍𝑛3,𝑛3+1

𝜙3
→ ⋯,  

Where 

𝑍𝑛,𝑛+1 = {𝑓 ∈ 𝐶([0, 1];𝑀𝑛⨂𝑀𝑛+1)|𝑓(0) ∈ 𝑀𝑛⨂1𝑛+1, 𝑓(1) ∈ 1𝑛⨂𝑀𝑛+1} 
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is the prime dimension drop algebra associated to 𝑛 and 𝑛 + 1. The property of being 𝑍-

stable for a 𝐶∗ -algebra 𝐴 can be characterized as the existence, for each 𝑛, of a sequence of 

∗–homomorphisms 𝜓𝑘: 𝑍𝑛,𝑛+1  → 𝐴 with the property that 

‖[𝜓𝑘(𝑓), 𝑥]‖ → 0, ∀𝑓 ∈ 𝑍𝑛,𝑛+1, ∀𝑥 ∈ 𝐴.  
The algebra 𝑍𝑛,𝑛+1 was shown in [264] to admit weakly stable relations, i.e., there exists a 

finite set of relations ℛ𝑛in 𝑙 (𝑛) indeterminates with the following properties: 

 (i) the universal 𝐶∗-algebra for ℛ𝑛is 𝑍𝑛+1; 

 (ii) for every 𝜖 > 0 there exists 𝛿(𝜖) > 0 such that if g1 , . . . , g𝑙 (𝑛)  are elements in a 𝐶∗-

algebra 𝐴 which satisfy the relations ℛ𝑛 to within 𝛿 (𝜖), then there exist ℎ1, . . . , ℎ𝑙 (𝑛) ∈ 𝐴 

which satisfy the relations ℛ𝑛 precisely and for which ‖g𝑖 − ℎ𝑖‖ <  𝜖.  
What is really relevant for us is that if g1 , . . . , g𝑙 (𝑛)  are elements in a 𝐶∗ -algebra 𝐴 which 

satisfy the relations ℛ𝑛  to within 𝛿 (𝜖), then there is a ∗–homomorphism  η: 𝑍𝑛,𝑛+1 → 𝐴 

such that the indeterminates for ℛ𝑛  are sent to elements 𝜖  -close to 𝑔1 , . . . , 𝑔𝑙(𝑛) , 
respectively. 

Using the equivalence of the parameterizations 𝛤 and 𝛤̂ for separable 𝐶∗-algebras, we may 

assume that the sequence 𝑦 in ℬ(ℋ)ℕ giving rise to 𝐶∗(𝑦) is in fact dense in 𝐶∗(𝑦).The 𝑍-

stability of 𝐶∗(𝑦) for 𝑦 = (𝑎𝑖)𝑖∈ℕ is then equivalent to the following statement: 

 (∀𝑘)(∀𝑛)(∀𝑗) (∃(𝑖1, . . . , 𝑖𝑙(𝑛)))such that 𝑎𝑖1, . . . , 𝑎𝑖𝜄(𝑛)are a 𝛿 (1/𝑘)‑representation of ℛ𝑛 

and‖ [𝑎𝑖𝑠, 𝑎𝑚]‖ <  1/𝑘 for each 𝑠 ∈  {1, . . . , 𝑙 (𝑛)} and 𝑚 ∈ {1, . . . , 𝑗}. 
If we fix 𝑘, 𝑛, 𝑗 and (𝑖1, . . . , 𝑖𝑙(𝑛))it is clear that those 𝑦 ∈ 𝛤̂ for which (𝑎𝑖1, . . . , 𝑎𝑖𝜄(𝑛)) satisfy 

the latter two conditions above form a norm open and hence Borel set. This theorem follows 

immediately: 

Theorem (4.1.32)[257]: {𝑦 ∈ 𝛤 | 𝐶∗ (𝑦) is 𝑍‑ stable} is Borel. 

A completely positive map ∅: 𝐴 → 𝐵  between 𝐶∗ -algebras has order zero if it is 

orthogonality preserving, in the sense that for positive 𝑎, 𝑏 in 𝐴 we have 𝑎𝑏 = 0 implies 

𝜙(𝑎)𝜙(𝑏) = 0 

𝐴 𝐶∗-algebra 𝐴 has nuclear dimension at most 𝑛 if the following holds. For every 𝜀 > 0, for 

every finite 𝐹 ⊆ 𝐴,  there are finite-dimensional 𝐶∗ -algebras 𝐵1, . . . , 𝐵𝑛  and completely 

positive maps 𝜓:𝐴 →  

n

i 1 𝜓:𝐴 →⊕ such that 

 (i) ‖𝜓 ∘ 𝜙 (𝑎) − 𝑎‖ < 𝜀 for all 𝑎 ∈ 𝐹,  
 (ii) ‖𝜓‖ ≤ 1, and 

 (iii) 𝜙 ↾ 𝐵𝑖 has order zero for every 𝑖 ≤ 𝑛. 
The nuclear dimension of 𝐴, denoted dimnuc 𝐴,is the minimal n (possibly ∞) such that 𝐴 

has nuclear dimension ≤  𝑛 (see [196]). 

The proof of the following theorem is based on Effros’s proof that nuclear 𝐶∗-algebras form 

a Borel subset of 𝛤 (see [265]). 

Theorem (4.1.33)[257]: The map dimnuc: 𝛤 → ℕ ∪ {∞} is Borel. 

Proof: It suffices to check that the set of all 𝑦 such that dimnuc(𝐶
∗(𝑦)) ≤ 𝑛 is Borel. Let 

𝑀𝑛(𝐴
∗)denote the space of 𝑛 ×  𝑛 matrices of the elements of the Banach space dual of 𝐴, 

naturally identified with the space of bounded linear maps from 𝐴 into 𝑀𝑛(ℂ).We consider 

this space with respect to the weak∗ topology, which makes it into a 𝐾𝜎 Polish space. 
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As demonstrated in [265], there is a Borel map 𝛶: 𝛤 ×  𝑛 → (𝑀𝑛(𝐴
∗))

ℕ
 such that 𝛶 (𝑦, 𝑛) 

enumerates a dense subset of the (weak∗-compact) set of completely positive maps from 𝐴 

into 𝑀𝑛(ℂ). Note that order zero maps form a closed subset of the set of completely positive 

maps, and the proof from [265] provides a Borel enumeration of a countable dense set of 

completely positive order zero maps. 

Again as in [265], we use the fact that a map 𝜓 from 𝑀𝑛(ℂ)to 𝐴 is completely positive if 

and only if 𝜓(𝑥𝑖𝑗)∑ 𝑥𝑖,𝑗𝑖,𝑗 𝑎𝑖,𝑗  where (𝑎𝑖,𝑗) is a positive element of 𝑀𝑛(𝐴) of norm ≤  1. 

By Farah et al.[262] there is a Borel function 𝛯: 𝛤 → (𝛤 𝑛×𝑛)ℕ  such that 𝛯(𝑦)  is an 

enumeration of a countable dense set of such (𝑎𝑖,𝑗). 

Inspection of (i)– (iii)in the definition of dimnuc(𝐶
∗(𝑦)) ≤ 𝑛 reveals that the verification 

of these conditions is only required over countable subsets of the allowable 𝜙,𝜓, and a, 

subsets which are computed in a Borel manner from 𝑦 using the maps 𝑌, 𝛯, and 𝑦 itself, 

respectively. It follows that the set of 𝑦 for which dimnuc(𝐶
∗(𝑦)) ≤ 𝑛 is Borel. 

Corollary (4.1.34)[370]: (i) The relation 𝑟2 ⊆ Γ × ℕ × ℕ defined by 

𝑟1(𝑦
2 − 1, 𝑛 + 𝜖, 𝑛) ⟺ 𝑝𝑟𝑜𝑗(𝑦2 − 1)(𝑛 + 𝜖)~𝐶∗(𝛾)𝑝𝑟𝑜𝑗(𝑦2 − 1)(𝑛) 

is Borel. 

 (ii) The reˆlation 𝑌2 ⊆ Γ × ℕ × ℕ × ℕ defined by 

𝑟2(𝑦
2 − 1, 𝑛 + 𝜖, 𝑛, 𝑘)

⟺ 𝑝𝑟𝑜𝑗(𝑦2 − 1)(𝑛 + 𝜖)⨁𝑝𝑟𝑜𝑗(𝑦2 − 1)(𝑛)~𝑀2(𝐶
∗(𝑦2 − 1))𝑝𝑟𝑜𝑗(𝑦2

− 1)(𝑘)⨁0 

 is Borel. 

Proof: To see (i), note that 

𝑟1(𝑦
2 − 1, 𝑛 + 𝜖, 𝑛) ⇔ (∃𝑘)‖𝑝𝑘(𝑦2 − 1)𝑝𝑘(𝑦2 − 1)∗ − proj(𝑦2 − 1)(𝑛 + 𝜖)‖ <

1

4
∧

‖𝑝𝑘(𝑦2 − 1)∗𝑝𝑘(𝑦2 − 1) − proj(𝑦2 − 1)(𝑛)‖ <
1

4
. 

For (ii), note that for 𝑛 + 𝜖, 𝑛, 𝑘 ∈ ℕ the maps Γ → 𝑀2( 𝐵(𝐻)) 

𝑦2 − 1 ↦ proj(𝑦2 − 1)(𝑛 + 𝜖)⨁ proj(𝑦2 − 1)(𝑛)and y ↦ proj(𝑦2 − 1)(𝑘)⨁ 0 

are Borel by farah et al. [262]. Thus, 

𝑟2(𝑛 + 𝜖, 𝑛, 𝑘)

⇔ (∃𝑖)‖𝑝𝑖(𝑀2(𝑦
2 − 1))𝑝𝑖(𝑀2(𝑦

2 − 1))
∗

− proj(𝑦2 − 1)(𝑛 + 𝜖)⨁proj(𝑦2 − 1)(𝑛)‖

<
1

4
∧ ‖𝑝𝑖(𝑀2(𝑦

2 − 1))𝑝𝑖(𝑀2(𝑦
2 − 1))

∗
− proj(𝑦2 − 1)(𝑘)⨁ 0‖ <

1

4
 

gives a Borel definition of 𝑟2. 
Corollary (4.1.35)[370]: There is a Borel map 𝐾0: Γ → 𝐺ord such that  

𝐾0(𝑦
2 − 1) ≃ (𝐾0(𝐶

∗(𝑦2 − 1)),𝐾0
+(𝐶∗(𝑦2 − 1))). 

Proof: By Farah et al [262] the unitization 𝐶̃∗(𝑦2 − 1) of 𝐶∗(𝑦2 − 1) is obtained via a 

Borel function, and by the above proof so is 𝐾0 (𝐶̃
∗(𝑦2 − 1)).  Then 𝐾0𝐶

∗(𝑦2 − 1)  is 

isomorphic to the quotient of 𝐾0 (𝐶̃
∗(𝑦2 − 1))by its subgroup generated by the image of 

the identity in 𝐶̃∗(𝑦2 − 1). 
Corollary (4.1.36)[370]: Let (𝑆, 𝐷) ∈ 𝐶𝑢0. Then (𝑎𝑛) ≪

↗ (𝑎𝑛 + 𝜖) in 𝐷↗  if and only if 
[𝑎𝑛] ≤ [𝑎𝑛 + 𝜖] in 𝑊(𝐷) ≅ 𝑆. 
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Proof: Suppose that (𝑎𝑛) ≪
↗ (𝑎𝑛 + 𝜖). It follows that for each 𝑛 ∈ ℕ there is 𝑚(𝑛)such 

that 

𝑎𝑛𝑎𝑚(𝑛) + ϵ ≪ 𝑎𝑚(𝑛)+1 + 𝜖. 

The statement [(𝑎𝑛)] ≤ [(𝑎𝑛 + 𝜖)] amounts to the existence of (𝑎𝑛 + 2𝜖) ∈ 𝐷
↗ such hat 

(𝑎𝑛) ≈ (𝑎𝑛 + 2𝜖)  and (𝑎𝑛 + 2𝜖) ≪
↗ (𝑎𝑛 + 𝜖).  Here we can take (𝑎𝑛 + 2𝜖) = (𝑎𝑛), 

completing the forward implication. 

 Suppose, conversely, that [(𝑎𝑛)] ≤ [(𝑎𝑛 + 𝜖)], so that there is some (𝑎𝑛 + 2𝜖) ∈ 𝐷
↗ such 

that (𝑎𝑛) ≅ (𝑎𝑛 + 2𝜖)and (𝑎𝑛 + 2𝜖) ≤ (𝑎𝑛 + 𝜖).Since (𝑎𝑛)and (𝑎𝑛 + 2𝜖)are cofinal in 

each other with respect to ≪, it is immediate that (𝑎𝑛) ≤
↗ (𝑎𝑛 + 𝜖).  

Corollary (4.1.37)[370]: Let (𝑆, 𝐷) ∈ 𝐶𝑢0.Then 𝑎 ≤ 𝑎 + 𝜖 in 𝐷 if and only if [𝜂(𝑎)] ≤
[𝜂(𝑎 + 𝜖)] in 𝑊(𝐷) ≅ 𝑆. 
Proof: By Lemma (4.1.17), it is enough to prove that 𝜖 ≥ 0  iff 𝜂(𝑎) ≤↗ 𝜂(𝑎 + 𝜖)  in 

𝐷↗.Suppose first that. 𝑎 ≤ 𝑎 + 𝜖. The sequence (𝜂(𝑎)𝑛),being cofinal with respect to ≪ in 

{𝑎 + 2𝜖 ∈ 𝐷 | 𝑎 + 2𝜖 ≪ 𝑎},  has a supremum in 𝑆,  namely, 𝑎  itself. 𝐴  similar statement 

holds for 𝑎 + 𝜖. For any 𝑛 ∈ ℕ, we have 𝜂(𝑎)𝑛 ≪ 𝑎, and sup𝜂(𝑎 + 𝜖)𝑚 = 𝑎 + 𝜖 ≥ 𝑎. It 
follows that 𝜂(𝑎 + 𝜖)𝑚 ≫ 𝜂(𝑎)𝑛  for all 𝑚  sufficiently large, whence [𝜂(𝑎)] ≤ [𝜂(𝑎 +
𝜖)], as desired. 

 Suppose, conversely, that 𝜂(𝑎) ≤↗ 𝜂(𝑎 + 𝜖)  in 𝐷↗ . Since sup 𝜂(𝑎)𝑛 = 𝑎, sup 𝜂(𝑎 +
𝜖)𝑚 = 𝑎 + 𝜖, and fo11r each 𝑛 there is 𝑚 such that 𝜂(𝑎)𝑛 ≪ 𝜂(𝑎 + 𝜖)𝑚, it is immediate 

that 𝜖 ≥ 0 in 𝑆. 
Corollary (4.1.38)[370]: Let  (𝑆𝑗 , e) ∈ 𝐶𝑢𝑢 , and let 𝐷𝑗 ⊆ 𝑆𝑗  be a countable sup-

subsemigroup of 𝑆𝑗  containing 𝑒.  It follows that, with respect to the common element 

𝑒, 𝑟(𝑆𝑗 , 𝑒) = 𝑟 (𝐷𝑗, 𝑒). 

Proof: We suppress the 𝑒 and write only 𝑟(𝐷𝑗)and 𝑟(𝑆𝑗). It is clear that 𝑟(𝐷𝑗) ≤ 𝑟(𝑆𝑗). 

Given 𝜖 > 0, we will prove 𝑟(𝑆𝑗) ≤ 𝑟𝐷𝑗 + 𝜖. Choose 𝑛 + 𝜖, 𝑛 ∈ ℕ to satisfy 

𝑟(𝐷𝑗) <
𝑛 + 𝜖

𝑛
< 𝑟(𝐷𝑗) + 𝜖 

Let 𝑥2, 𝑦2 ∈ 𝑆𝑗 satisfy 

(𝑛 + 1) × +(𝑛 + 𝜖)𝑒 ≤ 𝑛𝑦2. 
There are rapidly increasing sequences (𝑥𝑘

2) and (𝑦𝑘
2) in 𝐷𝑗  having suprema 𝑥2  and 𝑦2, 

respectively. Since 𝑒 is compact, so is (𝑛 + 𝜖)𝑒, that is (𝑛 + 𝜖)𝑒 ≪ (𝑛 + 𝜖)𝑒. Since 𝑥𝑘
2 ≪

(𝑛 + 1) for any 𝑘, we can use the fact that addition respects ≪ to conclude that 

(𝑛 + 1)𝑥𝑘
2 + (𝑛 + 𝜖)𝑒 ≪ (𝑛 + 1)𝑥2 + (𝑛 + 𝜖)𝑒 ≤ 𝑛𝑦2. 

It follows that 

(𝑛 + 1)𝑥𝑘
2 + (𝑛 + 𝜖)𝑒 ≪ 𝑛𝑦2. 

Since the operation of addition respects the operation of taking suprema, we have 

sup 𝑛𝑦𝑙
2 =  𝑛𝑦2, whence for some (and hence all larger) 𝑙𝑘 ∈ ℕ,we have 

(𝑛 + 1)𝑥𝑘
2 + (𝑛 + 𝜖)𝑒 ≤ 𝑛𝑦𝑙𝑘.

2 . 

Now since 
𝑛+𝜖

𝑛
 > 𝑟(𝐷𝑗) we conclude that 𝑋𝑘 ≤ 𝑌𝜄𝑘. Taking suprema yields 𝑋 ≤ 𝑌, proving 

that 𝑟(𝑆𝑗) ≤
𝑛+𝜖

𝑛
> 𝑟(𝐷𝑗) + 𝜖, as desired. 
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Section (4.2): Automorphisms of Separable 𝑪∗-Algebras 

If 𝐴 is a separable 𝐶∗-algebra, the group Aut(𝐴)of automorphisms of 𝐴 is a Polish 

group with respect to the topology of pointwise norm convergence. An automorphism of 𝐴 

is called (multiplier) inner if it is induced by the action by conjugation of a unitary element 

of the multiplier algebra 𝑀(𝐴) of 𝐴. Inner automorphisms form a Borel normal subgroup 

𝐼𝑛𝑛(𝐴) of the group of automorphisms of 𝐴.  The relation of unitary equivalence of 

automorphisms of 𝐴 is the coset equivalence relation on Aut(𝐴)determined by 𝐼𝑛𝑛(𝐴). The 

main result presented here asserts that if 𝐴 does not have continuous trace, then it is not 

possible to effectively classify the automorphisms of 𝐴 up to unitary equivalence using 

countable structures as invariants; in particular this rules out classification by 𝐾-theoretic 

invariants. (The 𝐾-theoretic invariants of 𝐶∗-algebras were shown to be computable by a 

Borel function in [257]. Even though [257]. does not consider the 𝐾 -theory of 

∗−homomorphisms, it is not difficult to verify that the proof can be adapted to show that the 

computation of 𝐾 -theory of ∗-homomorphisms is given by a Borel functor. The main 

ingredient of the proof is the fact that one can enumerate in a Borel fashion dense sequences 

of projecti ons and of unitary elements of the algebra and of all its amplifications [254].) We 

will show that the existence of an outer derivation on a 𝐶∗-algebra 𝐴 is equivalent to a 

seemingly stronger statement, that we will refer to as Property AEP (see Definition (4.2.11)), 

implying in particular the existence of an outer derivable automorphismof 𝐴. 
The notion of effective classification can be made precise by means of Borel 

reductions in the framework of descriptive set theory (see [264] and [259]). If 𝐸 and 𝐸′ are 

equivalence relations on standard Borel spaces 𝑋 and 𝑋 respectively, then a Borel reduction 

from 𝐸 to 𝐹 is a Borel function 𝑓: 𝑋 → 𝑋′such that for every 𝑥, 𝑦 ∈ 𝑋, 𝑥𝐸𝑦if and only if 

𝑓(𝑥)𝐸′𝑓(y). The Borel function 𝑓 witnesses an effective classification of the objects of 𝑋 

up to 𝐸,  with 𝐸′-equivalence classes of objects of 𝑋′ as invariants. (In [254] and [257] the 

computation of most of the invariants in the theory of 𝐶∗-algebras is shown to be Borel.) 

If 𝐸 and 𝐹 are, as before, equivalence relations on standard Borel spaces, then 𝐸 is Borel 

reducibleto 𝐹 if there is a Borel reduction from 𝐸 to 𝐹. This can be interpreted as a notion 

that allows one to compare the complexity of different equivalence relations. Some 

distinguished equivalence relations are used as benchmarks of complexity. Among these are 

the relation =𝑌  of equality for elements of a Polish space 𝑌,  and the relation ≃𝐶  of 

isomorphism within some class of countable structures 𝐶. If 𝐸 is an equivalence relation on 

a standard Borel space 𝑋,  we say that: 

(a)  𝐸 is smooth (or the elements of 𝑋 are concretely classifiable up to 𝐸) if 𝐸 is Borel 

reducible to =𝑌 for some Polish space 𝑌; 
(b) 𝐸  is classifiable by countable structures (or the elements of 𝑋  are classifiable by 

countable structures up to 𝐸) if 𝐸 is Borel reducible to ≃𝐶for some class 𝐶 of countable 

structures. 

 A nontrivial example of smooth equivalence relation is the relation of unitary equiva-

lence of irreducible representations of a Type I 𝐶∗ -algebra — see [100]. Since all 

uncountable Polish spaces are Borel isomorphic to ℝ,  the class of smooth equivalence 

relations includes only the equivalence relations that are effectively classifiable using real 

numbers as invariants. The class of equivalence relations that are classifiable by countable 

structures is much wider. In fact most classification results in mathematics involve some 

class of countable structures as invariants. Elliott's seminal classification of AF algebras by 
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the ordered 𝐾0group in [161] is of this sort, as well as the 𝐾-theoretical classification of 

purely infinite simple nuclear 𝐶∗-algebras in the UCT class obtained by Kirchberg and 

Phillips in [289] and [193]. In the last decade a number of natural equivalence relations 

arising in different areas of mathematics have been shown to be not classifiable by countable 

structures. For example the type of invariants that appears in the spectral theorem for normal 

operators transcend countable structures by a result of Kechris and Sofronidis [263]. The 

theory of turbulence, developed by Greg Hjorth in the second half of the 1990s, plays a key 

role in the proof of this and of many other analogous results. 

Turbulence is a dynamic condition on a continuous action of a Polish group on a 

Polish space, implying that the associated orbit equivalence relation is not classifiable by 

countable structures. Many nonclassifiability results were established directly or indirectly 

using this criterion. Hjorth showed in [260] that the orbit equivalence relation of a turbulent 

Polish group action is Borel reducible to the relation of homeomorphism of compact spaces, 

which in turn is reducible to the relation of isomorphism of separable simple nuclear unital 

𝐶∗ -algebras by a result of Farah, Toms and Tornquist [254]. As a consequence these 

equivalence relations are not classifiable by countable structures. 

We use Hjorth's theory of turbulence to prove the following theorem. (See Definition 

(4.2.3) for the notion of continuous trace 𝐶∗-algebra.) 

Theorem(4.2.1)[278]: If 𝐴 is a separable 𝐶∗-algebra that does not have continuous trace, 

then the automorphisms of 𝐴  are not classifiable by countable structures up to unitary 

equivalence. 

Theorem(4.2.1) strengthens , where the automorphisms of 𝐴 are shown to be not 

concretely classifiable under the same assumptions on the 𝐶∗-algebra 𝐴. We will in fact 

show that the same conclusion holds even if one only considers the subgroup consisting of 

approximately inner automorphisms of 𝐴, i.e. pointwise limits of inner automorphisms. 

A particular implication of Theorem (4.2.1) is that it is not possible to classify the 

automorphisms of any separable 𝐶∗ -algebra that does not have continuous trace up to 

unitary equivalence by Borel-computable 𝐾-theoretic invariants. This should be compared 

with the classification results of (sufficiently outer) automorphisms up to other natural 

equivalence relations, such as outer conjugacy; see [244]. Nakamura showed in [244] that 

aperiodic automorphisms of Kirchberg algebras are classified by their 𝐾𝐾-classes up to 

outer conjugacy. Theorem 1.4 of [239] asserts that there is only one outer conjugacy class 

of uniformly aperiodic automorphisms of UHF algebras. These results were more recently 

generalized and expanded to classification of actions of ℤ2and ℤ𝑛  up to outer conjugacy or 

cocycle conjugacy (see [294], [293], [287], and [295]). 

  Phillips and Raeburn obtained in [85] a cohomological classification of automorphisms of 

a 𝐶∗-algebra with continuous trace up to unitary equivalence. Such classification implies 

that if 𝐴 has continuous trace and the spectrum of 𝐴 is homotopy equivalent to a compact 

space, then the normal subgroup Inn(𝐴)of inner automorphisms is closed in Aut(𝐴); see 

[60]. In particular (cf. [100]) this conclusion holds when 𝐴 is unital and has continuous trace. 

It follows from a standard result in descriptive set theory —see [259] — that the 

automorphisms of 𝐴 are concretely classifiable up to unitary equivalence if and only if 

Inn(𝐴)is a closed subgroup of Aut(𝐴). Theorem 0.8 of [60] and Theorem (4.2.1) therefore 

imply the following dichotomy result: 
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Theorem(4.2.2)[278]: If 𝐴 is 𝑎 separable unital 𝐶∗-algebra, then the following statements 

are equivalent: 

(i)  the automorphisms of 𝐴 are concretely classifiable up to unitary equivalence; 

(ii)  the automorphisms of 𝐴 are classifiable by countable structures up to unitary equiv-

alence; 

(iii)  𝐴 has continuous trace. 

  More generally the same result holds if 𝐴 is a separable 𝐶∗-algebra with (not necessarily 

Hausdorff) compact spectrum. Without this hypothesis the implication 3 ⟹ 1of Theorem 

(4.2.2) does not hold, as pointed out in [60]. We do not know if the implication 3 ⟹ 2 holds 

for a not necessarily unital 𝐶∗-algebra 𝐴. This is commented on more extensively. 

  In particular Theorem (4.2.2) offers another characterization of unital 𝐶∗-algebras that have 

continuous trace, in addition to the classical Fell-Dixmier spectral condition (see [57], [282]) 

or the reformulation in terms of central sequences by Akemann and Pedersen; see [1]. 

  The dichotomy in the Borel complexity of the relation of unitary equivalence of au-

tomorphisms of a unital 𝐶∗-algebra expressed by Theorem (4.2.2) should be compared with 

the analogous phenomenon concerning the relation of unitary equivalence of irreducible 

representations of a 𝐶∗-algebra 𝐴. It is a classical result of Glimm from [286] that such a 

relation is smooth if and only if 𝐴 is Type I. It was proved in [267] and, independently, 

 
Fig. (1)[278]: Proof strategy. This diagram illustrates the strategy of the proof of Theorem 

(4.2.1). 

In [283] that the irreducible representations of a 𝐶∗-algebra that is not Type I are in fact not 

classifiable by countable structures up to unitary equivalence. 

The strategy of the proof of Theorem (4.2.1), summarized in Fig. (1), is the following: We 

first introduce in Definition (4.2.11) and (4.2.16)  Properties AEP and AEP+ , named after 

Akemann, Elliott, and Pedersen since they can be found in nuce in their works [1] and [64]. 

(The main result of [64] is a characterization of 𝐶∗-algebras with only inner derivations as 

direct sum of simple 𝐶∗-algebras and 𝐶∗-algebras with no nontrivial central sequence [64]. 

Theorem 2.4 of [1] shows that a 𝐶∗-algebra is does not have any nontrivial central sequence 

if and only if it has continuous trace.) We then show in Proposition (4.2.17) that Property 

AEP+  is stronger than Property AEP;  moreover by Theorem (4.2.20) Property AEP  is 

equivalent to the existence of an outer derivation, and by Lemma (4.2.10)  it implies that the 

conclusion of Theorem (4.2.1) holds. 
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This concludes the proof under the assumption that the 𝐶∗ -algebra 𝐴  has an outer 

derivation. We then assume that 𝐴  does not have continuous trace and has only inner 

derivations. Using the already mentioned characterization of 𝐶∗-algebras with only inner 

derivations from [64] and the characterization of continuous trace 𝐶∗-algebras in terms of 

central sequences given in [1], we infer that in this case 𝐴 has a simple nonelementary direct 

summand. We then deduce in Proposition (4.2.25) that 𝐴 contains a central sequence that is 

not strict-hypercentral. (𝐴 similar result was proved by Phillips in the unital case, cf. [298].) 

The proof is finished by proving that the existence of a central sequence that is not strict-

hypercentral implies that the conclusion of Theorem (4.2.1) holds. This is done in 

Proposition (4.2.26). 

Contains some background on 𝐶∗-algebras and introduces the notations used in the 

rest; infers from Hjorth's theory of turbulence a criterion of nonclassifiability by countable 

structures, to be applied in the proof of Theorem (4.2.1); establishes Theorem (4.2.1) in the 

case of 𝐶∗-algebras with outer derivations, while deals with the case of 𝐶∗-algebras with 

only inner derivations; present a dichotomy result for derivations analogous to Theorem 

(4.2.2).  

We have tried to equally accessible to both set-theorists and operator-algebraists. A 

deep knowledge about operator algebras, see [297],  [100], [83] and [296].  

A 𝐶∗-algebra is a norm-closed self-adjoint subalgebra of the Banach ∗–algebra 𝐵(𝐻).of 

bounded linear operators on some Hilbert space 𝐻. The group Aut(𝐴).of automorphisms of 

𝐴 is a Polish group with respect to the topology of pointwise convergence; see [60]. A 𝐶∗-
algebra is called unital if it contains a multiplicative identity, usually denoted by 1. If 𝐴 is 

unital and 𝑢 is a unitary element of 𝐴 (i.e. such that 𝑢𝑢∗ = 𝑢∗𝑢 = 1), then 

 

Ad(𝑢)(𝑥) = 𝑢𝑥𝑢∗ 

defines an automorphism Ad(𝑢)  of A. When 𝐴  is not unital one can consider unitary 

elements of the multiplier algebra of 𝐴. The multiplier algebra 𝑀(𝐴)of𝐴is the largest unital 

𝐶∗ -algebra containing 𝐴  as an essential ideal; see [100]. It can be regarded as the 

noncommutative analog of the Stone-Cech compactification of a locally compact Hausdorff 

space. The strict topology on 𝑀(𝐴) is the locally convex vector space topology on 

𝑀(𝐴) generated by the seminorm 𝑥 ↦ ‖𝑎𝑥‖ + ‖𝑥𝑎‖𝑓𝑜𝑟 𝑎 ∈ 𝐴  [100]. A positive 

contraction 𝑏0 of 𝐴 is strictly positive if 

𝑎𝑏0

1

𝑛 → 𝑎 

for every 𝑎 ∈ 𝐴[100]. If 𝑏0 is any strictly positive contraction in 𝐴, then the strict topology 

on 𝑀(𝐴)can be equivalently defined as the locally convex vector space topology on 𝐴 

generated by the single seminorm 

𝑥 ↦ ‖𝑚0𝑥‖ + ‖𝑥𝑏0‖ . The multiplier algebra of a separable 𝐶∗ -algebra 𝐴  is not norm 

separable (unless 𝐴 is unital, in which case 𝑀(𝐴) coincides with A). Nonetheless the strict 

topologyof 𝑀(𝐴) is Polish and induces a Polish group structure on the group 𝑈(𝐴)of unitary 

elements of 𝑀(𝐴). If 𝑢 is a unitary multiplier of A, i.e. an element of 𝑈(𝐴), then one can 

define as before the automorphism Ad(𝑢)of 𝐴. An automorphism of 𝐴 is called innerif it is 

of the form Ad(𝑢)for some unitary multiplier 𝑢, and outer otherwise. Inner automorphisms 

of a separable 𝐶∗-algebra 𝐴 form a Borel normal subgroup of Aut(𝑢). Two automorphisms 

𝑎 and 𝛽of 𝐴 are called unitarily equivalent 𝛼 ∘ 𝛽−1is inner or, equivalently, 
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𝛼(𝑥) = 𝛽(𝑢𝑥𝑢∗) 
for some unitary multiplier 𝑢 and every x GA. This defines a Borel equivalence relationon 

Aut(𝑢). 
A representationof a 𝐶∗-algebra 𝐴 on a Hilbert space 𝐻 is a ∗–homomorphism from 𝐴to the 

𝐶∗-algebra 𝐵(𝐻)of bounded linear operators on 𝐻; see [100]. Two representations 𝜋, 𝜋′of 

𝐴on Hilbert spaces 𝐻,𝐻′are unitarily equivalentif there is a surjective linear isometry 

𝑈:𝐻 → 𝐻′such that 

𝑈𝜋(𝑎) = 𝜋′(𝑎)𝑈 
for every 𝑎 ∈  𝐴. 𝐴 representation 𝑛 of 𝐴 on a Hilbert space 𝐻 is called irreducibleif there 

is no nontrivial closed subspace of 𝐻  which is 𝜋(𝑎) -invariant for every 𝑎 ∈ 𝐴 . The 

spectrum 𝐴̂  of a separable 𝐶∗ -algebra 𝐴  is the space of unitary equivalence classes of 

irreducible representations of 𝐴  on a separable Hilbert space [83]. This is canonically 

endowed with the hull-kernel topology, which is the topology having as open basis the 

collection of sets of the form 

𝒪𝐼 = {[𝜋] ∈ 𝐴 ̂: 𝐼 ⊆ Ker(𝜋)} 

for some closed ideal 𝐼 of 𝐴. In general this topology has very poor separation properties, 

and can even fail to be 𝑇0. Aclosed ideal of 𝐴 is primitive if it is the kernel of an irreducible 

representation of 𝐴. A 𝐶∗-algebra 𝐴 is called primitive if {0} is a primitive ideal in A, i.e. 𝐴 

has a faithful irreducible representation. The primitive spectrum 𝐴̌of 𝐴  is the space of 

primitive ideals of 𝐴 endowed with the quotient topology from the canonical surjection 

𝐴̂ → 𝐴̌ 
[𝜋] ↦ Ker(𝜋). 

An element 𝑥  of a 𝐶∗-algebra 𝐴 is abelianif the closure of 𝑥∗𝐴𝑥 in 𝐴 is a commutative 

subalgebra. 

Definition(4.2.3)[278]: A separable 𝐶∗-algebra 𝐴 has continuous trace if it is generated by 

abelian elements, and the spectrum 𝐴̂ endowed with the hull-kernel topology is a Hausdorff 

space. 

Equivalent reformulations of the notion of continuous trace 𝐶∗-algebras can be found in 

[100]. The class of 𝐶∗-algebras that do not have continuous trace is fairly large, and in 

particular includes all 𝐶∗-algebras that are not Type I. (A 𝐶∗-algebra A is Type I if every 

nonzero quotient of 𝐴  contains a nonzero abelian element. Several equivalent 

characterizations of Type I 𝐶∗-algebras are listed in [100].) More information about 𝐶∗-
algebras with continuous trace can be found in the monograph [299]. 

We assume all 𝐶∗-algebras to be norm separable, apart from multiplier algebras and 

enveloping von Neumann algebras. If 𝐴 is a 𝐶∗-algebra, then the universal representation 

𝜋𝑢of 𝐴 is the direct sum of all cyclic representations of 𝐴 associated with states of 𝐴 [83]. 

The enveloping von Neumann algebra of 𝐴 is the closure of 𝜋𝑢[𝐴]in the strong operator 

topology. It is a well known theorem (see [83]) that the enveloping von Neumann algebra 

of 𝐴 is isometrically isomorphic — as a Banach space —to the second dual of 𝐴. We will 

therefore denote in the following by 𝐴∗∗ the enveloping von Neumann algebra of A. The 𝜎-

weak topology on 𝐴∗∗  coincides with the weak∗  topology of 𝐴∗∗  regarded as the dual 

Banach space of 𝐴∗. The algebra 𝐴 can be identified with a 𝜎-weakly dense subalgebra of 

𝐴∗∗.Moreover by [83] we can identify the multiplier algebra 𝑀(𝐴) of𝐴with the idealizer of 

𝐴 inside 𝐴∗∗;i.e. the algebra of elements 𝑥such that 𝑥𝑎 ∈ 𝐴 and 𝑎𝑥 ∈ 𝐴 for every 𝑎 ∈ 𝐴.  
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Analogously, the unitization 𝐴̃  of 𝐴  [100] is identified with the subalgebra of 𝑀(𝐴) 
generated by 𝐴 and 1. 

If 𝑥is a normal element of 𝐴, i.e. commuting with its adjoint, and 𝑓 is a complex-valued 

continuous function defined on the spectrum of 𝑥,  then 𝑓(x)  denotes the element of 𝐴 

obtained from 𝑥 and 𝑓 using functional calculus (II.2 of [100]). If 𝑥, 𝑦are element of a 𝐶∗-
algebra, then [𝑥, 𝑦]denotes their commutator𝑥𝑦 − 𝑦𝑥; moreover if 𝑆is a subset of a C*-

algebra 𝐴, then 𝑆′ ∩ 𝐴denotes the relative commutantof 𝑆  in 𝐴; see [100]. The set ℕ of 

natural numbers is supposed not to contain 0. Boldface letters 𝑡 and 𝑠indicate sequences of 

real numbers whose 𝑛-th terms are 𝑡𝑛and 𝑠𝑛  respectively. Analogously 𝑥  stands for the 

sequence (𝑥𝑛)𝑛∈ℕof elements of a 𝐶∗-algebra 𝐴. 

Recall that a subset 𝐴 of a Polish space 𝑋 has the Baire property [264] if its symmetric 

difference with some open set is meager. 𝐴  function between Polish spaces is Baire 

measurable [264] if the inverse image of any open set has the Baire property. Observe that, 

in particular, any Borel function is Baire measurable. Suppose that 𝐸 and 𝑅 are equivalence 

relations on Polish spaces 𝑋 and 𝑌, respectively. We say that 𝐸 is generically 𝑅-ergodic if, 

for every Baire measurable function 𝑓: 𝑋 → 𝑌 such that 𝑓(𝑥)𝑅𝑓(y) whenever 𝑥𝐸y, there is 

a comeager subset 𝐶 of 𝑋 such that 𝑓(𝑥)𝑅𝑓(y) for every 𝑥, y ∈ 𝐶[259]. Observe that if 𝐸 

is generically 𝑅-ergodic and no equivalence class of 𝐸 is comeager then, in particular, 𝐸 is 

not Borel reducible to 𝑅. 

The study of Borel complexity of equivalence relations is Hjorth's theory of 

turbulence. See [260]. Turbulence is a dynamical property of a continuous group action of 

a Polish group 𝐺 on a Polish space 𝑋; see [260]. The main result about turbulent actions is 

the following result of Hjorth (Theorem 3.21 in [260]): 

The orbit equivalence relation 𝐸𝐺
𝑥 associated with 𝑎  turbulent action 𝐺 ↷ 𝑋  of 𝑎 

Polish group 𝐺 on 𝑎 Polish space 𝑋 is generically ≃C-ergodic for every class 𝐶 of count-

able structures, where ≃C denotes the relation of isomorphism for elements of 𝐶.Since (by 

definition of turbulence) 𝐸𝐺
𝑥  hasmeager equivalence classes, it is in particular not 

classifiable by countable structures. 

This result is valuable because it allows one to obtain several nonclassification results. 

In order to apply such result it will be useful to first state and prove the following to easy 

lemmas: 

Lemma(4.2.4)[278]: Suppose that 𝐸, 𝐹, and 𝑅 are equivalence relations on Polish spaces 

𝑋, 𝑌, and 𝑍, respectively, and that 𝐹 is generically 𝑅-ergodic. If there is 𝑎 comeager subset 

𝐶 of 𝑌 and 𝑎 Baire measurable function 𝑓: 𝐶 ̃ → 𝐾 such that: 

(a)   𝑓(𝑥)𝐸(𝑦) for any 𝑥, 𝑦 ∈ 𝐶 ̃ such that 𝑥𝐹𝑦; 
(b )   𝑓(𝐶) is comeager in 𝑋 for every comeager subset 𝐶 of 𝐶;̃ 

then the relation 𝐸 is generically 𝑅-ergodic as well. 

Proof: Suppose that 𝑔: 𝑋 → 𝑍is a Baire measurable function such that 𝑔(𝑥)R𝑔(𝑥′) for any 

𝑥, 𝑥′ ∈ 𝑋 such that 𝑥𝐸𝑥′. The composition 𝑔 𝑜𝑓 is a Baire measurable function from 𝐶 ̃ to 

𝑍 such that (𝑔 𝑜𝑓)(𝑦)𝑅(𝑔 𝑜𝑓)(𝑦′)for any 𝑦, 𝑦′ ∈ 𝐶 such that 𝑦𝐸𝑦′.. Since 𝐶 ̃ is comeager 

in 𝑌,  and 𝐹  is generically 𝑅 -ergodic, there is a comeager subset 𝐶  of 𝐶 ̃  such that 
(𝑔 𝑜𝑓)(𝑦)𝑅(𝑔 𝑜𝑓)(𝑦′)for every 𝑦, 𝑦′ ∈ 𝐶. Therefore, 𝑓[𝐶]is a comeager subset of 𝑋 such 

that 𝑔(𝑥)R𝑔(𝑥′)for every 𝑥, 𝑥′ ∈ 𝑓[𝐶].    
Observe that if 𝑓 is continuous, open, and onto, then it will automatically satisfy the 

second condition of Lemma (4.2.4). 
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Lemma(4.2.5)[278]: Suppose that 𝐸 and 𝐹 are equivalence relations on Polish spaces 𝑋 

and 𝑌,  respectively, and 𝐹  is generically ≃ 𝐶 -ergodic for every class 𝐶  of countable 

structures. If there is 𝑎 Baire measurable function 𝑓: 𝑌 → 𝑋such that 

(a)  𝑓(𝑥)𝐸𝑓(𝑦) whenever 𝑥𝐹𝑦, and 

(b)  no preimage of an 𝐸-class is comeager, 

then the relation 𝐸 is not classifiable by  countable structures. 

Proof: Suppose by contradiction that there is a class 𝐶 of countable structures and a Borel 

reduction 𝑔: 𝑋 → 𝐶  of 𝐸  to ≃C  The composition   𝑔 o𝑓: 𝑌 → 𝐶 is a Baire measurable 

function from 𝑌to 𝐶 such that (𝑔o𝑓)(𝑦) ≃ 𝐶(𝑔 𝑜 𝑓)(𝑦′)for any 𝑦, 𝑦′ ∈ 𝑌 such that 𝑦𝐸𝑦′. 
Since 𝐹  is generically ≃C -ergodic, there is a comeager subset 𝐶  of 𝑌  such that 

(𝑔o𝑓)(𝑦) ≃C (𝑔 𝑜 𝑓)(𝑦
′)  for every 𝑦, 𝑦′ ∈ 𝐶 . Therefore, being 𝑔  a reduction of 𝐸  to 

≃C , 𝑓(𝑦)𝐸𝑓(𝑦
′)for every 𝑦, 𝑦′ ∈ 𝐶. This contradicts our assumptions .    

Consider ℝℕ as a Polish space with the product topology and ℓ1as a Polish group with its 

Banach space topology. The fact that the action of ℓ1on ℝℕ by translation is turbulent is a 

particular case of [260]. It then follows by Hjorth's turbulence theorem that the associated 

orbit equivalence relation 𝐸ℝℕ
ℓ1  is generically ≃C -ergodic for every class 𝐶  of countable 

structures. It is not difficult to see that the function  𝑓: (ℝ ∖ {0})ℕ → (0, 1)ℕ,defined by 

𝑓(𝑡) = (
|𝑡𝑛|

|𝑡𝑛| + 1
)
𝑛∈ℕ

 

satisfies both the first (being continuous, open, and onto) and the second condition of 

Lemma (4.2.4), where: 

(a)   𝐹 is the relation 𝐸ℝℕ
ℓ1 of equivalence modulo ℓ1of sequences of real numbers; 

(b )   𝐸is the relation 𝐸ℝℕ
ℓ1 of equivalence modulo ℓ1of sequences of real numbers be-

tween 0 and 1. 

 

It follows that the latter relation is generically ≃ 𝐶-ergodic for every class 𝐶 of countable 

structures. Considering the particular case of Lemma (4.2.5) when 𝐹  is the relation 

𝐸(0 ,1)ℕ
ℓ1 one obtains the following nonclassifiability criterion: 

Criterion(4.2.6)[278]: If 𝐸 is an equivalence relation on a Polish space 𝑋 and there is a 

Baire measurable function 𝑓: (0, 1)ℕ → 𝑋 such that: 

 

(a)  𝑓(𝑥)𝐸𝑓(𝑦)for any 𝑥, 𝑦 ∈ (0, 1)ℕ,such that 𝑥 − 𝑦 ∈ ℓ1; 
 (b)  any comeager subset of (0, 1)ℕ contains elements 𝑥, 𝑦 such that  then the relation 𝐸 

is not classifiable by countable structures. 

In order to apply Criterion (4.2.6). we will need the following fact about nonmeager subsets 

of (0, 1)ℕ: 
Lemma(4.2.7)[278]: If 𝑋 is 𝑎 nonmeager subset of (0, 1)ℕ,then there is an uncountable 

𝑌 ⊂ 𝑋 such that, for every pair of distinct points 𝑡, 𝑠 of 𝑌,  ‖ 𝑠 − 𝑡‖∞ ≥
1

4
 , where 

‖𝑡 − 𝑠‖∞ = sup
𝑛∈ℕ
|𝑡𝑛 − 𝑠𝑛|. 

Proof: Define for every 𝑠 ∈ (0, 1), 
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𝐾𝑠 = {𝑡 ∈ (0, 1)
ℕ|‖𝑡 − 𝑠‖∞ ≤

1

4
}. 

Observe that 𝐾𝑠is a closed nowhere dense subset of (0, 1)ℕ. Consider the class 𝒜 of subsets 

𝑌  of 𝑋  with the property that, for every 𝑠, 𝑡  in 𝑌  distinct, ‖𝑠 − 𝑡‖ ≥
1

4
. If 𝒜  is partially 

ordered by inclusion, then it has some maximal element 𝑌 by Zorn's lemma. By maximality, 

 

𝑋 ⊂⋃{𝑠 ∈ (0, 1)ℕ|‖𝑡 − 𝑠‖∞ ≤
1

4
} .

𝑡∈𝑌

 

Since the set 𝑋 is nonmeager, 𝑌 is uncountable. 

The aim is to show that if a 𝐶∗-algebra 𝐴 has an outer derivation, then the relation of 

unitary equivalence of approximately inner automorphisms of 𝐴  is not classifiable by 

countable structures. In proving this fact we will also show that any such 𝐶∗-algebra satisfies 

a seemingly stronger property, that we will refer to as Property AEP  (see Definition 

(4.2.13)). 

A derivation of a 𝐶∗-algebra 𝐴 is a linear function 

 𝛿: 𝐴 → 𝐴 
satisfying the derivation identity: 

𝛿(𝑥𝑦) = 𝛿(𝑥)𝑦 + 𝑥𝛿(𝑦) 
for 𝑥 , 𝑦 ∈ 𝐴. The derivation identity implies that 𝛿 is a bounded linear operator on 𝐴; see 

[83]. The set ∆(𝐴) of derivations of 𝐴 is a closed subspace of the Banach space 𝐵(𝐴) of 

bounded linear operators on 𝐴. 𝐴 derivation is called a ∗–derivation if it is a positive linear 

operator, i.e. it sends positive elements to positive elements. Any element 𝑎of the multiplier 

algebra of 𝐴defines a derivation ad(𝑖𝑎)of 𝐴,by 

𝑎d(𝑖𝑎)(𝑥) = [𝑖𝑎, 𝑥]. 

This is a ∗–derivation if and only if 𝑎 is self-adjoint. 𝐴 derivation of this form is called 

inner, and outer otherwise. More generally, if 𝑎 is an element of the enveloping von Neu-

mann algebra of 𝐴 that derives 𝐴, .ie. 𝑎𝑥 − 𝑥𝑎 ∈ 𝐴 for any 𝑥 ∈ 𝐴,then one can define the 

(not necessarily inner) derivation ad(𝑖𝑎) of 𝐴. Since any derivation is linear combination of 

∗–derivations (see [83]), the existence of an outer derivation is equivalent to the existence 

of an outer ∗–derivation. The set ∆0(𝐴) of inner derivations of 𝐴 is a Borel (not necessarily 

closed) subspace of ∆(𝐴). The norm on ∆0(𝐴) defined by 

‖𝑎d(𝑖𝑎)‖∆0(𝐴) = inf{‖𝑎 − 𝑧‖⎹ 𝑧 ∈ 𝑍(𝐴)},  

where 𝑍(𝐴) denotes the center of 𝐴, makes ∆0(𝐴) a separable Banach space isomet-rically 

isomorphic to the quotient of 𝐴 by 𝑍(𝐴) The inclusion of ∆0(𝐴)in ∆(𝐴)is continuous, and 

the closure ∆0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ of ∆0(𝐴)  in ∆(𝐴). is a closed separable subspace of ∆0(𝐴)  If 𝛿  is a 

∗– derivation then the exponential 𝑒𝑥𝑝(𝛿)of 𝛿,  regarded as an element of the Banach 

algebra 𝐵(𝐴)of bounded linear operators of 𝐴, is an automorphism of 𝐴. Automorphisms of 

this form are called derivable. If 𝛿 = 𝑎d(𝑖𝑎)is inner then 

 

exp(𝛿) = 𝐴𝑑(𝑒𝑥𝑝(𝑖𝑎)) 
is inner as well. Lemma (4.2.7) provides a partial converse to this statement. (The converse 

is in fact false in general; see [42].) For more information on derivations and derivable 

automorphisms, see[83]. 
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Lemma(4.2.8)[278]: Suppose that 𝐴 is a primitive 𝐶∗-algebra. If 𝛿 is a ∗−derivation of 𝐴 

with operator norm strictly smaller than 2𝜋 such that  𝑒𝑥𝑝(𝛿) is inner, then 𝛿 is inner. 

The lemma is proved in [42] under the additional assumption that 𝐴 is unital. It is not 

difficult to check that the same proof works without change in the nonunital case. 

Definition(4.2.9)[278]: Suppose that 𝐴 is a 𝐶∗-algebra, (𝑎𝑛)𝑛∈ℕ is a dense sequence in the 

unit ball of 𝐴, and  𝘹 = (𝑥𝑛)𝑛∈ℕ is a sequence of pairwise orthogonal positive contractions 

of 𝐴 such that for every 𝑛 ∈ ℕ  and 𝑖 ≤ 𝑛, 
 

‖[ 𝑥𝑛, 𝑎𝑖]‖ ≤ 2
−𝑛. (1) 

Since the 𝑥𝑛 ′𝑠 are pairwise orthogonal, if 𝑡 is a sequence of real numbers of absolute value 

at most 1, then the series 

∑𝑡𝑛
𝑛∈ℕ

𝑥𝑛 

converges in the strong operator topology to a self-adjoint element of 𝐴∗∗. Moreover, the 

sequence of inner automorphisms 

(𝐴𝑑 (𝑒𝑥𝑝 (𝑖∑(𝑡𝑘𝑥𝑛)

𝑘≤ℕ

)))

𝑛∈ℕ

 

 

of 𝐴 converges—in view of(1)—to the approximately inner automorphism 

𝛼𝑡 ∶= 𝐴𝑑 (𝑒𝑥𝑝(𝑖∑(𝑡𝑛 − 𝑠𝑛)𝑡𝑛
𝑛∈ℕ

𝑥𝑛)) 

The equivalence relation 𝐸𝑥 on (0, 1)ℕ is defined by 

𝑠𝐸𝑥𝑡 iff  𝛼𝑡 and 𝛼𝑠are unitarily equivalent. 

 

 Observe that this equivalence relation is finer than the relation of ℓ1 -equivalence in-

troduced. In fact if 𝑠, 𝑡 ∈ (0, 1)ℕ and 𝑠, 𝑡 ∈ ℓ1,  then the series 

∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

 

converges in 𝐴. It is then easily verified that 

𝑢 ∶= 𝑒𝑥𝑝 (𝑖∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

) 

is a unitary multiplier of 𝐴 such that 

 Ad(𝑢)𝜊𝛼𝑠 = 𝛼𝑡 . 
Therefore, if the equivalence classes of 𝐸𝑥 are meager, the continuous function 

(0, 1)ℕ → Aut(𝐴) 
𝑡 ⟼ 𝛼𝑡 

satisfies the hypothesis of Criterion (4.2.6). This concludes the proof of the following 

lemma: 

Lemma(4.2.10)[278]: Suppose that 𝐴 is 𝑎  𝐶∗-algebra. If for some sequence 𝑥 of pairwise 

orthogonal positive contractions of 𝐴  satisfying the commutation condition (1) the 
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equivalence relation 𝐸𝑥  has meager equivalence classes, then the approximately inner 

automorphisms of 𝐴 are not classifiable by  countable structures. 

 Lemma (4.2.10) motivates the following definition. 

Definition(4.2.11)[278]: 𝐴  𝐶∗ -algebra 𝐴  has Property AEP  if for every dense sequence 
(𝑎𝑛)𝑛∈ℕ  in the unit ball of 𝐴  there is a sequence 𝘹 = (𝑥𝑛)𝑛∈ℕ  of pairwise orthogonal 

positive contractions of 𝐴 such that: 

(i)   ‖[𝑥𝑛 − 𝑎𝑖]‖ < 2
−n for 𝑖 ∈ {1,2, … , 𝑛}; 

(ii)  the relation 𝐸𝑥 as in Definition (4.2.9) has meager conjugacy classes. 

   It is clear that if a 𝐶∗-algebra 𝐴 has Property AEP, then 𝐴 has an outer ∗−derivation. In 

fact, if 𝑠, 𝑡 ∈ (0, 1)ℕ are such that s𝐸𝑥 𝑡, then the self-adjoint element 

𝑎 = ∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

 

 

of 𝐴∗∗  derives 𝐴.  The automorphism Ad(exp(𝑖𝑎))  is outer, and hence such is the 

∗− derivation ad(𝑖𝑎).  The rest is devoted to prove that, conversely, if 𝐴  has an outer 

derivation, then 𝐴 has Property 𝐴𝐸𝑃. 

The following lemma shows that primitive nonsimple 𝐶∗-algebras have Property AEP. The 

main ingredients of the proof are borrowed from [64] and [1]. 

Lemma(4.2.12)[278]: If 𝐴 is 𝑎 primitive nonsimple infinite-dimensional 𝐶∗-algebra, then 

it has Property AEP. 

Proof: Fix a faithful irreducible representation 𝜋 ∶ 𝐴 → 𝐵(𝐻). By [83]  𝜋 extends to a 𝜎-

weakly continuous representation  𝜋∗∗: 𝐴∗∗ → 𝐵(𝐻). Fix a dense sequence (𝑎𝑛)𝑛∈ℕ in the 

unit ball of 𝐴 and a strictly positive contraction 𝑏0 of 𝐴. (Recall that a positive contraction 

𝑏0 of 𝐴 is strictly positive if 

𝑎𝑏0

1

𝑛 → 𝑎 

for every 𝑎 ∈ 𝐴 [100].) As in the proof of [1], one can define a sequence 𝑥 = (𝑥𝑛)𝑛∈ℕ of 

pairwise orthogonal projections such that for some 𝜀 > 0 and every 𝑘, 𝑛 ∈ ℕ such that 𝑘 ≤
𝑛, 
(a)   ‖𝑥𝑛𝑏0‖ > 𝜀; 
(b )  ‖𝑥𝑛 , 𝑎𝑘‖ < 2

−𝑛. 
 

Now suppose by contradiction that the equivalence relation 𝐸𝑥 has a nonmeager equivalence 

class 𝑋. Thus for every 𝑡 , 𝑠 ∈ 𝑋 the automorphism 

𝛼𝑡 ,𝑠 = Ad(exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

)) 

 

is inner. Fix 𝑡 , 𝑠 ∈ 𝑋. Observe that 𝛼𝑡 ,𝑠 is the exponential of the ∗−derivation 

𝛿𝑡 ,𝑠 = ad(𝑖∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

). 

By Lemma (4.2.8) the ∗−derivation 𝛿𝑡 ,𝑠 is inner. Thus, there is an element 𝑧𝑡 ,𝑠 of the center 

of the enveloping von Neumann algebra of 𝐴 such that 
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∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

+ 𝑧𝑡 ,𝑠 ∈ 𝑀(𝐴). 

 

Recall that 𝜋 has been extended to a 𝜎-weakly continuous representation  𝜋∗∗: 𝐴∗∗ → 𝐵(𝐻) 
by [83]. The image of a central element of 𝐴∗∗ under 𝜋∗∗ belongs to the relative commutant 

of 𝜋[𝐴] in 𝐵(𝐻), which consists only of scalar multiples of the identity by [100]. Thus, 

𝜋 (∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

) ∈ 𝜋∗∗[𝑀(𝐴)]. 

Hence 

𝜋 (𝑏0∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

) ∈ 𝜋[𝐴]. 

By Lemma (4.2.7) one can find an uncountable subset 𝑌 of 𝑋 such that any pair of distinct 

elements of 𝑌 has uniform distance at least 
1

4
. Fix 𝑠 ∈ 𝑌. For all 𝑡, 𝑡′ ∈ 𝑌,  there is 𝑚 ∈ ℕ 

such that 

|𝑡𝑚 − 𝑡
′
𝑚| ≥

1

4
. 

 

Henceforth, 

‖𝜋(𝑏0 (∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

)) − 𝜋(𝑏0 (∑(𝑡𝑛
′ − 𝑠𝑛)𝑥𝑛

𝑛∈ℕ

))‖ = ‖𝜋(𝑏0∑(𝑡𝑛 − 𝑡𝑛
′ )𝑥𝑛

𝑛∈ℕ

)‖

= ‖𝑏0∑(𝑡𝑛 − 𝑡𝑛
′ )𝑥𝑛

𝑛∈ℕ

‖ ≥ ‖𝑏0∑(𝑡𝑛 − 𝑡𝑛
′ )𝑥𝑛𝑥𝑚𝑎0

𝑛∈ℕ

‖

≥ |𝑡𝑚 − 𝑡𝑚
′ |‖(𝑥𝑚𝑏0)

∗(𝑥𝑚𝑏0)‖ ≥
𝜀2

4
. 

Since 𝑌 is uncountable, this contradicts the separability of  𝜋[𝐴]. 
In order to prove Property AEP for all 𝐶∗-algebra with outer ∗‑derivations we need the fact 

that Property AEP is liftable. This means that if a ∗‑homomorphic image of a 𝐶∗-algebra 𝐴 

has Property AEP, then 𝐴 has Property AEP. (See Chapter 8 of [292].) 

Lemma(4.2.13)[278]: If 𝜋: 𝐴 → 𝐵  is 𝑎  surjective ∗‑homomorphism and 𝐵  has Property 

𝐴𝐸𝑃, then 𝐴 has Property 𝐴𝐸𝑃. 

Proof: Suppose that (𝑎𝑛)𝑛∈ℕ is a dense sequence in 𝐴Thus, (𝜋(𝑎𝑛))𝑛∈ℕis a dense sequence 

in 𝐵 . Pick a sequence (𝑦𝑛)𝑛∈ℕ,  in 𝐵  obtained from (𝜋(𝑎𝑛))𝑛∈ℕ  as in the definition of 

Property AEP . By [292], there is a sequence (𝑧𝑛)𝑛∈ℕ of pairwise orthogonal positive 

contractions of 𝐴 such that 𝜋(𝑧𝑛) = 𝑦𝑛   for every 𝑛 ∈ ℕ. Fix an increasing quasicentral 

approximate unit of Ker(π)  (cf. [100]), i.e. a sequence (𝑢𝑘)𝑛∈ℕ of elements of Ker(π) such 

that: 

(a)   𝑙𝑖𝑚𝑘→+∞‖𝑢𝑘𝑥 − 𝑥‖ = 𝑙𝑖𝑚𝑘→+∞‖𝑥𝑢𝑘 − 𝑥‖ = 0 for every 𝑥 ∈ ker(𝜋); 
(b)  𝑙𝑖𝑚𝑘→+∞‖[𝑢𝑘, 𝑎]‖ = 0 for every 𝑎 ∈ 𝐴. 

For every 𝑛, 𝑖 ∈ ℕ such that 𝑖 ≤ 𝑛,by [100], 
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𝑙𝑖𝑚
𝑘→+∞

‖𝑧𝑛

1

2(1 − 𝑢𝑘)𝑧𝑛

1

2𝑎𝑖 − 𝑎𝑖𝑧𝑛

1

2(1 − 𝑢𝑘)𝑧𝑛

1

2‖

= 𝑙𝑖𝑚
𝑘→+∞

‖(1 − 𝑢𝑘)(𝑧𝑛𝑎𝑖 − 𝑎𝑖𝑧𝑛)‖ = ‖𝑦𝑛𝜋(𝑎𝑖 − 𝜋(𝑎𝑖)𝑦𝑛)‖ < 2
−𝑛. 

 

Thus, there is 𝑘𝑛 ∈ ℕ such that, if 

𝑥𝑛 = 𝑧𝑛

1

2(1 − 𝑢𝑘𝑛)𝑧𝑛

1

2  , 

then 

‖𝑥𝑛𝑎𝑖 − 𝑎𝑖𝑥𝑛‖ < 2
−𝑛 

for every 𝑖 ≤ 𝑛.  Observe that (𝑥𝑛)𝑛∈ℕ is a sequence of pairwise orthogonal positive 

contractions of 𝐴. Moreover, if 𝐸 ⊂ (0, 1)ℕ is nonmeager, consider 𝑠, 𝑡 ∈ 𝐸,    such that the 

automorphism 

Ad (exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)

𝑛∈ℕ

𝑦𝑛)). 

 

of 𝐵 is outer. We claim that the automorphism 

Ad (exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)

𝑛∈ℕ

𝑥𝑛)). 

of 𝐴 is outer. Suppose that this is not the case. Thus, there is 𝑧 in the center of the enveloping 

von Neumann algebra of 𝐴 such that 

exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)

𝑛∈ℕ

𝑥𝑛) + 𝑧 ∈ 𝑈(𝐴). 

 

Denoting by 𝜋∗∗: 𝐴∗∗ → 𝐵∗∗ the normal extension of 𝜋— see [100] — one has that 

exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)

𝑛∈ℕ

𝑦𝑛) + 𝜋
∗∗(𝑧) = 𝜋∗∗ (exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)

𝑛∈ℕ

𝑥𝑛) + 𝑧) ∈ 𝑈(𝐵) 

by Theorem 4.2 of [3]. Since 𝜋∗∗(𝑧) belongs to the center of the enveloping von Neumann 

algebra of 𝐵,  

exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)

𝑛∈ℕ

𝑦𝑛) + 𝜋
∗∗(𝑧) 

is a unitary multiplier of 𝐵 that implements 

Ad (exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)

𝑛∈ℕ

𝑦𝑛)). 

Hence, the latter automorphism of 𝐵 is inner, contradicting the assumption. 

Liftability of Property AEP allows one to easily bootstrap Property AEP from primitive 

nonsimple 𝐶∗-algebras to 𝐶∗-algebra whose primitive spectrum is not 𝑇1. 
Lemma(4.2.14)[278]: If 𝐴 is 𝑎 𝐶∗-algebra whose primitive spectrum 𝐴̌ is not 𝑇1, then 𝐴 has 

Property AEP. 
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Proof: Since 𝐴̌ is not 𝑇1, by [83] there is an irreducible representation 𝜋 of 𝐴 whose kernel 

is not a maximal ideal. This implies that the image of 𝐴 under 𝜋 is a nonsimple primitive 

𝐶∗-algebra. By Lemma (4.2.13) the latter 𝐶∗-algebra has Property AEP. Therefore, being 

Property AEP liftable by Lemma (4.2.14), 𝐴 has Property AEP.    

In order to show that a 𝐶∗-algebra 𝐴 has Property AEP, it is sometimes easier to show that 

it has a stronger property that we will refer to as Property AEP+. Property AEP+ appears, 

without being explicitly defined, and the main theorem of [64], as well as in the proofs of 

Lemma 3.5 and Lemma 3.6 of [1]. 

Recall that a bounded sequence (𝑥𝑛)𝑛∈ℕ, of elements of 𝐴 is called central if for every 𝑎 ∈
𝐴, 

min
𝑛→+∞

‖[𝑥𝑛, 𝑎]‖ 

The beginning of contains a discussion about the notion of central sequence, the related 

notion of hypercentral sequence, and their basic properties. 

 

Definition(4.2.15)[278]: 𝐴 𝐶∗-algebra 𝐴 has Property AEP+if there is a sequence (𝜋𝑛)𝑛∈ℕ 

of irreducible representations of 𝐴 such that, for some positive contraction 𝑏0 of 𝐴 and a 

central sequence (𝑥𝑛)𝑛∈ℕ of pairwise orthogonal positive contractions of  𝐴: 
 

(a) the sequence 

(𝜋𝑛((𝑥𝑛 − 𝜆)𝑏0))
𝑛∈ℕ

 

does not converge to 0 for any 𝜆 ∈ ℂ; 
(b )  𝑥𝑚 ∈ Ker(𝜋𝑛) for every pair of distinct natural numbers 𝑛,𝑚.  

To show that Property AEP+ implies Property AEP we will need the following lemma: 

Lemma(4.2.16)[278]: Fix a strictly positive real number 𝜂. For every 𝜀 > 0 there is 𝛿 > 0 

such that for every 𝐶∗-algebra 𝐴 and every pair of positive contractions 𝑥, 𝑏 of 𝐴 such that 

‖𝑏‖ ≥ 𝜂, if 
‖(𝑒𝑥𝑝(𝑖 𝑥) − 𝜇)𝑏‖ ≤ 𝛿 

for some  𝜇 ∈ ℂ then 

‖(𝑥 − 𝜆)𝑏‖ ≤ 𝜀 
for some  𝜆 ∈ ℂ. 
Proof:  Fix 𝜀 > 0. Let 𝐿 be the principal branch of the logarithm. Since 𝐿 is an analytic 

function on the open disc of radius 1 centered in 1, there is a polynomial 

𝑝(𝑍) = 𝜌0, 𝜌1𝑍 +⋯+ 𝜌𝑛𝑍
𝑛 

Such that 

|𝑝(𝑧) − 𝐿(𝑧)| ≤
𝜀

2
 

for every 𝑧 ∈ ℂ such that |𝑧 − 1| ≤ exp(𝑖). In particular for every 𝑡 ∈ [0,1] 

|𝑝(exp(𝑖𝑡)) − t| = |𝑝(exp(𝑖𝑡)) − L(exp(𝑖𝑡))| ≤
𝜀

2
. 

 If  𝜇 ∈ ℂ is such that |𝜇| ≤
2

𝜂
 ,define 𝜌

𝜇
(𝑧) to be the polynomial in 𝑍 obtained from 𝑝(𝑍) by 

replacing the indeterminate 𝑍 by 𝑍 + μ. Observe that the 𝑗-th coefficient of 𝜌
𝜇
(𝑧) is 

𝜌𝑗
𝜇
=∑|𝜌𝑖| (

𝑖
𝑗
) 𝜇𝑗−𝑖

𝑛

𝑖=𝑗
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for  0 ≤ 𝑗 ≤ 𝑛.  Finally define 

𝐶 = ∑ |𝜌𝑖| (
𝑖
𝑗
) (
3

𝜂
)
𝑗−𝑖

1≤𝑗≤𝑖≤𝑛

(
2

𝜂
)
𝑗−1

 

and 

𝛿 = 𝑚𝑖𝑛 {
𝜀

2𝐶
, 1} . 

Suppose that 𝐴 is a 𝐶∗-algebra and 𝑥, 𝑏 ∈ 𝐴 are positive contractions such that ‖𝑏‖ ≥ 𝜂 

and, for some 𝜇 ∈ ℂ, 
 

‖(exp(𝑖𝑥) − 𝜇)𝑏‖ ≤ 𝛿. 
 

Thus, 

|𝜇| ≤
2

𝜂
. 

Moreover 

‖(𝑥 − 𝜌0
𝜇
)𝑏‖ = ‖(𝑝(exp(𝑖𝑥)) − 𝜌0

𝜇
)𝑏‖ +

𝜀

2
= ‖(∑𝜌𝑗

𝜇

𝑛

𝑗=1

(exp(𝑖𝑥) − 𝜇)𝑗)𝑏‖ +
𝜀

2

≤∑|𝜌𝑗
𝜇
|‖exp(𝑖𝑥) − 𝜇‖𝑗−1 𝛿 +

𝜀

2

𝑛

𝑗=1

≤∑∑|𝜌𝑖| (
𝑖
𝑗
) (
2

𝜂
)
𝑗−𝑖𝑛

𝑖=𝑗

𝑛

𝑗=1

(
3

𝜂
)
𝑗−1

𝛿 +
𝜀

2

≤ 𝐶𝛿 +
𝜀

2
≤ 𝜀. 

This concludes the proof. 

We can now show that Property AEP+ implies Property AEP. 
Proposition(4.2.17)[278]: If 𝑎 𝐶∗-algebra 𝐴 has Property AEP+, then it has Property 

AEP. 

Proof: Suppose that (𝜋𝑛)𝑛∈ℕ  is a sequence of irreducible representations of 𝐴, 𝑏0  is a 

positive contraction of 𝐴  of norm 1, and (𝑥𝑛)𝑛∈ℕ  is a sequence of orthogonal positive 

elements of 𝐴 as in the definition of Property AEP+. Fix a dense sequence (𝑎𝑛)𝑛∈ℕ in the 

unit ball of 𝐴. After passing to a subsequence of the sequence (𝑥𝑛)𝑛∈ℕ, we can assume that 

for some  𝜀 > 0, for every 𝜇 ∈ ℂ and every 𝑛 ∈ ℕ, 

‖𝜋𝑛((𝑥𝑛 − 𝜇)𝑏0)‖ ≥ 𝜀 
and 

‖[𝑥𝑛, 𝑎𝑖]‖ < 2
−𝑛 

for 𝑖 > 𝑛.  Thus, for every 𝜇 ∈ ℂ, 𝑛 ∈ ℕ and 𝑡 ∈ (
1

4
, 1), 

                               ‖𝜋𝑛((𝑡𝑥𝑛 − 𝜇)𝑏0)‖ ≥
𝜀

4
.                                              (2) 

Observe that, in particular, 

 ‖𝜋𝑛(𝑏0)‖ ≥ 𝜀 

for every 𝑛 ∈ ℕ. Consider 𝛿 > 0 obtained from 
𝜀

8
 as in Lemma (4.2.17) (where we set  𝜂 =

𝜀). We claim that for every 𝑡 ∈ (
1

4
, 1) , 𝑛 ∈ ℕ, and 𝜇 ∈ ℂ, 

‖𝜋𝑛((exp(𝑖𝑡𝑥𝑛 ) − 𝜇)𝑏0)‖ < 𝛿. 
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 In fact suppose by contradiction that there are  𝑡 ∈ (
1

4
, 1) , 𝑛 ∈ ℕ, and 𝜇 ∈ ℂ, such that 

‖(exp(𝑖𝑡𝜋𝑛(𝑥𝑛)) − 𝜇)𝜋𝑛(𝑏0)‖ = ‖𝜋𝑛((exp(𝑖𝑡𝑥𝑛) − 𝜇)𝑏0)‖ < 𝛿. 
Thus by our choice of 𝛿 there is 𝜇 ∈ ℂ  such that 

‖𝜋𝑛((𝑖𝑡𝑥𝑛 − 𝜇)𝑏0)‖ = ‖(𝑖𝑡𝜋𝑛(𝑥𝑛) − 𝜇)𝜋𝑛(𝑏0)‖ ≤
𝜀

8
. 

 

Such inequality contradicts (2).This concludes the proof of the assertion that for every  𝑡 ∈

(
1

4
, 1) , 𝑛 ∈ ℕ,  and  𝜇 ∈ ℂ, 

‖𝜋𝑛((exp(𝑖𝑡𝑥𝑛) − 𝜇)𝑏0)‖ ≥ 𝛿. 
We now claim that the sequence (𝑥𝑛)𝑛∈ℕ  witnesses the fact that 𝐴  has Property AEP . 

Assume by contradiction that there is a nonmeager subset 𝑋 of (0, 1)ℕ such that for every  

𝑠, 𝑡 ∈ 𝑋, the automorphism 

Ad(exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛
𝑛∈ℕ

)) 

of 𝐴 i s  inner. If 𝑠, 𝑡 ∈ 𝑋,  then there is an element 𝑧𝑡,𝑠 in the center of the enveloping von 

Neumann algebra of 𝐴 such that 

exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛 + 𝑧𝑡,𝑠
𝑛∈ℕ

) 

multiplies 𝐴 Hence, 

𝑦𝑡,𝑠 = exp(𝑖∑(𝑡𝑛 − 𝑠𝑛)𝑥𝑛 + 𝑧𝑡,𝑠
𝑛∈ℕ

)𝑏0 

is an element of 𝐴. By Lemma (4.2.10), one can find an uncountable subset 𝑌 of  𝑋 such 

that, for any 𝑠, 𝑡 ∈ 𝑌, there is 𝑚 ∈ ℕ such that 

|𝑡𝑚 − 𝑠𝑚| ≥
1

4
. 

Fix  𝑠 ∈ 𝑌, and observe that, for  𝑡, 𝑡′ ∈ 𝑌, 

𝜋𝑛𝑜 (exp(𝑧𝑡′,𝑠 − 𝑧𝑡,𝑠)) = 𝜇1 

is a scalar multiple of the identity. Therefor 

‖𝑦𝑡,𝑠 − 𝑦𝑡′,𝑠‖ = ‖(exp(𝑖∑(𝑡𝑛 − 𝑡𝑛
′ )𝑥𝑛

𝑛∈ℕ

) − exp(𝑧𝑡′ ,𝑠 − 𝑧𝑡,𝑠))𝑎0‖

≥ ‖𝜋𝑛𝑜((exp(𝑖∑(𝑡𝑛 − 𝑡𝑛
′ )𝑥𝑛

𝑛∈ℕ

) − exp(𝑧𝑡′ ,𝑠 − 𝑧𝑡 ,𝑠))𝑎0)‖

= ‖𝜋𝑛𝑜 ((exp((𝑡𝑛𝑜 − 𝑡𝑛𝑜
′ )𝑥𝑛) − 𝜇)𝑎0)‖ ≥ 𝜀. 

This contradicts the separability of 𝐴. 

The proofs of Lemma (4.2.19) and Lemma (4.2.20) are contained, respectively, in the proofs 

of Lemmas 3.6 and 3.7 of [1] and in the proof of the implication (𝑖) ⇒ (𝑖𝑖) at page 139 of 

[64]. 
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Recall that a point 𝑥 of a topological space 𝑋 is called separated if, given any point 𝑦 of 𝑋 

distinct from 𝑥, there are disjoint open neighbourhoods of 𝑥 and 𝑦. 
Lemma(4.2.18)[278]: Suppose that 𝐴  is 𝑎   𝐶∗ -algebra whose primitive spectrum 𝐴̌  is 

𝑇1.Consider 𝑎 sequence (𝜉𝑛)𝑛∈ℕ of separated points in 𝐴̌. Define 𝐹 to be the set of limit 

points of the sequence (𝜉𝑛)𝑛∈ℕ N and 𝐼  to be the closed self-adjoint ideal of 𝐴 

corresponding to 𝐹 . If either the quotient 𝐴/𝐼  does not have continuous trace, or the 

multiplier algebra of 𝐴/𝐼 has nontrivial center, then 𝐴 has Property AEP+. 

Lemma(4.2.19)[278]: If 𝐴 is  𝑎  𝐶∗-algebra whose spectrum 𝐴̂ is homeomorphic to the one-

point compactification of 𝑎 countable discrete space, then 𝐴 has Property AEP+. 
We can now show the following result that Property AEP as defined in Definition 

(4.2.11) is equivalent to having an outer ∗‑derivation. 

Theorem(4.2.20)[278]: If 𝐴 is 𝑎  𝐶∗-algebra, the following statements are equivalent: 

(i)  𝐴 has an outer derivation; 

(ii)  𝐴 has Property 𝐴𝐸𝑃. 

Proof. We have already pointed out that Property AEP implies the existence of an outer 

∗‑derivation. It remains only to show the converse. Suppose that 𝐴 has an outer derivation. 

By [64], either there is a quotient 𝐵 of 𝐴 whose spectrum 𝐵̂ is homeomorphic to the one 

point compactification of a countable discrete space, or the primitive spectrum 𝐴̌ of 𝐴 is not 

Hausdorff. In the first case, 𝐴 has Property AEP by virtue of Lemma (4.2.20) and Lemma 

(4.2.14). Suppose that, instead, the primitive spectrum 𝐴̌ of 𝐴 is not Hausdorff. If 𝐴̌ is not 

even 𝑇1,  the conclusion follows from Lemma (4.2.15). Suppose now that 𝐴̌ is 𝑇1. Since 𝐴̌ is 

not Hausdorff, there are two points 𝜌0, 𝜌1 1 of 𝐴̌  that do not admit any disjoint open 

neighbourhoods. By [281] the set of separated points is dense in 𝐴̌. Therefore can find a 

sequence (𝜉𝑛)𝑛∈ℕ  of separated points of 𝐴  whose set 𝐹  of limit points contains both 

𝜌0𝑎𝑛𝑑𝜌1 . Define 𝐼 to be the closed self-adjoint ideal 𝐼 of 𝐴 corresponding to the closed 

subset 𝐹 of 𝐴̌. Since 𝐹 contains at least two points, 𝐴/𝐼 is nonsimple. Consider now two 

cases: If 𝐴/𝐼 has continuous trace then by [1] and [3], the multiplier algebra of 𝐴/𝐼 has 

nontrivial center. Therefore 𝐴 has Property AEP+ by Lemma (4.2.19). On the other hand if 

𝐴/𝐼 does not have continuous trace, then again 𝐴 has Property AEP+ by Lemma (4.2.19). In 

either case, it follows that 𝐴 has Property AEP+ and, in particular, Property AEP.    
We show that, if a 𝐶∗-algebra 𝐴 with only inner derivations does not have continuous 

trace, then the relation of unitary equivalence of approximately inner automorphisms of 𝐴 

is not classifiable by countable structures. In proving this fact we will also show that any 

such 𝐶∗-algebra contains a central sequence that is not strict-hypercentral. 

If 𝐴 is a 𝐶∗-algebra, denote by 𝐴∞ the quotient of the direct product ∏𝑛∈ℕ 𝐴 by the direct 

sum ⊕𝑛∈ℕ  𝐴; see [100]. Identifying as it is customary 𝐴 with the algebra of elements of 𝐴∞ 

admitting constant representative sequence, denote by 𝐴∞ the relative commutant 

(𝐴′ ∩ 𝐴∞) = {𝑥 ∈ 𝐴∞⎹ ∀𝑦∈ 𝐴, [𝑥, 𝑦] = 0}. 
Finally define 

Ann(𝐴, 𝐴∞) = {𝑥 ∈ 𝐴∞⎹∀𝑦∈ 𝐴, 𝑥𝑦 = 0} 

to be the annihilator ideal of 𝐴 in 𝐴∞. Observe that, if 𝐴 is unital, then Ann(𝐴, 𝐴∞) is the 

trivial ideal. 

A central sequence in a 𝐶∗-algebra 𝐴 is a bounded sequence (𝑥𝑛)𝑛∈ℕ of elements of 𝐴 that 

asymptotically commute with any element of 𝐴. This means that for any 𝑎 ∈ 𝐴, 
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lim
𝑛→+∞

‖[𝑥𝑛, 𝑎]‖ = 0. 

Equivalently the image of (𝑥𝑛)𝑛∈ℕ in the quotient of ∏𝑛∈ℕ 𝐴  by ⊕𝑛∈ℕ  𝐴 belongs to 𝐴∞. 
From the last characterization it is clear that if (𝑥𝑛)𝑛∈ℕ is a central sequence of normal 

elements 𝐴 with spectra contained in some subset 𝐷 of ℂ and 𝑓: 𝐷 → ℂ  is a continuous 

function such that 𝑓(0) = 0, then the sequence (𝑓(𝑥𝑛))𝑛∈ℕ is central. It is not difficult to 

verify that, if (𝑥𝑛)𝑛∈ℕ is a central sequence and  𝑏 ∈ 𝑀(𝐴), then the sequence ([ 𝑏, 𝑥𝑛])𝑛∈ℕ 

converges strictly to 0. (The strict topology on 𝑀(𝐴) has been defined.) 

Let us call a central sequence (𝑥𝑛)𝑛∈ℕ norm-hypercentral  if it asymptotically com-

mutes in the norm topology with any other central sequence. This amounts to say that for 

any other central sequence (𝑦𝑛)𝑛∈ℕ 

lim
𝑛→+∞

‖[𝑥𝑛, 𝑦𝑛]‖ = 0. 

Equivalently the image of (𝑥𝑛)𝑛∈ℕ in the quotient of  ∏𝑛∈ℕ 𝐴 by ⊕𝑛∈ℕ  𝐴 belongs to the 

center of 𝐴∞.  For our purposes it will be more convenient to look at central sequences that 

asymptotically commute in  the  s tr ic t  topology  with any other central sequence. This 

motivates the following definition: 

Definition(4.2.21)[278]: Suppose that 𝐴 is a 𝐶∗-algebra. 𝐴 sequence (𝑥𝑛)𝑛∈ℕof elements 

of 𝐴 is strict-hypercentral if it is central and, for any other central sequence (𝑦𝑛)𝑛∈ℕ, the 

sequence 

([𝑥𝑛, 𝑦𝑛])𝑛∈ℕ 

converges to 0 in the strict topology. 

Observe that a central sequence (𝑥𝑛)𝑛∈ℕ is strict-hypercentral if and only if the image 

of the element of 𝐴∞  having (𝑥𝑛)𝑛∈ℕ  as representative sequence in the quotient 𝐴∞ ∕
Ann(𝐴, 𝐴∞) belongs to the center of 𝐴∞ Ann(𝐴, 𝐴∞)⁄ . It is clear from this characterization 

that, if (𝑥𝑛)𝑛∈ℕ  is a strict-hypercentral sequence of normal elements of 𝐴  with spectra 

contained in some subset 𝐷 of ℂ and 𝑓:𝐷 → ℂ  is a complex-valued continuous function 

such that 𝑓(0) = 0,  then the sequence (𝑓(𝑥𝑛))𝑛∈ℕ  is strict-hypercentral. When 𝐴 is unital 

the ideal Ann(𝐴, 𝐴∞) i s  trivial, and hence the notions of strict-hypercentral and norm-

hypercentral sequence coincide. Therefore in the unital case a norm-hypercentral sequence 

will be simply called hypercentral. 

The fact that a unital simple infinite-dimensional 𝐶∗-algebra contains a central sequence that 

is not hypercentral is a particular case of [298]. We will show here how one can generalize 

this fact to all simple nonelementary 𝐶∗-algebras. The proof deeply relies on ideas from 

[298]. 

Lemma(4.2.22)[278]: If (𝑥𝑛)𝑛∈ℕ  is a  strict-hypercentral sequence in 𝐴  and 𝛼  is an 

approximately inner automorphism of 𝐴, then (𝛼(𝑥𝑛) − 𝑥𝑛)𝑛∈ℕ converges strictly to 0. 
Proof:  The same proof of Kaplansky's density theorem [83] shows that the unit ball of 𝐴 is 

strictly dense in the unit ball of 𝑀(𝐴); see [291]. (The strict topology on the multiplier 

algebra of 𝐴 has been defined.) It follows that, if 𝜀 > 0 and 𝑎 is an element of 𝐴, then there 

is a finite subset 𝐹 of the unit ball of 𝐴, a positive real number δ, and a natural number 𝑛0 

such that, for every 𝑛 ≥ 𝑛0  and every 𝑦 in the unit ball 𝑀(𝐴)such that ‖[𝑦, 𝑧]‖ ≤ 𝜀 for 

every 𝑧 ∈ 𝐹 ,, 
max{‖𝑎(𝑥𝑛𝑦 − 𝑦𝑥𝑛)‖, ‖(𝑥𝑛𝑦 − 𝑦𝑥𝑛)𝑎‖} ≤ 𝜀. 

Consider the open neighbourhood 

𝑈 = {𝛼 ∈ Aut(𝐴)| ‖𝛼(𝑥) − 𝑥‖ < 𝛿 for every 𝑥 ∈ 𝐹} 
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of 𝑖𝑑 𝐴 in Aut(𝐴). Observe that if 𝛽 ∈ 𝑈 is inner, then for every 𝑛 ≥ 𝑛𝑛  

‖(𝛽(𝑥𝑛) − 𝑥𝑛)𝑎‖ ≤ 𝜀 
and 

‖𝑎(𝛽(𝑥𝑛) − 𝑥𝑛)‖ ≤ 𝜀. 
 

Approximating with inner automorphisms, one can see that the same is true if 𝛽 ∈ 𝑈 is just 

approximately inner. Since 𝛼 is approximately inner, there is a unitary multiplier 𝑢 of 𝐴 and 

an approximately inner automorphism 𝛽 of 𝐴 in 𝑈 such that 

𝛼 = 𝛽 𝑜 Ad(𝑢). 
Consider a natural number 𝑛1 ≥ 𝑛0 such that, for 𝑛 ≥ 𝑛1, 

= ‖𝛽−1(𝑎)[𝑥𝑛, 𝑢 ]‖ ≤ 𝜀 
and 

‖[𝑥𝑛, 𝑢
∗]𝛽−1(𝑎)‖ ≤ 𝜀. 

It follows that, if 𝑛 ≥ 𝑛1, 
‖𝑎(𝛼(𝑥𝑛) − 𝑥𝑛)‖ ≤ ‖𝑎𝛽(Ad(𝑢)(𝑥𝑛)) − 𝑥𝑛‖ + ‖𝛽(𝑧𝑛) − 𝑥𝑛‖ 

                        ≤ ‖𝛽−1(𝑎)(𝑢𝑥𝑛𝑢
∗ − 𝑧𝑛)‖ + 𝜀 

                        = ‖𝛽−1(𝑎)[𝑥𝑛, 𝑢 ]‖ + 𝜀 
                        ≤ 2𝜀 
and, analogously, 

‖(𝛼(𝑥𝑛) − 𝑥𝑛)𝑎‖ ≤ 2𝜀. 
Since 𝜀 was arbitrary, this concludes the proof of the fact that 

(𝑎(𝑧𝑛) − 𝑥𝑛)𝑛∈ℕ 

converges strictly to 0.    
If 𝛼 is an automorphism of a 𝐶∗-algebra 𝐴, then 𝛼∗∗ denotes the unique extension of 𝛼 to a 

𝜎 -weakly continuous automorphism of the enveloping von Neumann algebra 𝐴∗∗  of 𝐴 

(defined as in [100]). 

Lemma(4.2.23)[278]: Suppose that 𝐴 is 𝑎 𝐶∗-algebra such that every central sequence in 

𝐴 is strict-hypercentral. If 𝛼 is an approximately inner automorphism of 𝐴, then 𝛼∗∗ fixes 

pointwise the center of 𝐴∗∗,  i.e. 𝛼∗∗(𝑧) = 𝑧 for every central element of 𝐴∗∗. 
 

Proof:  Observe that 𝑧 derives 𝐴, since 

𝑧𝑎 − 𝑎𝑧 = 0 ∈ 𝐴. 
for every 𝑎 ∈ 𝐴. Thus, by Lemma 1.1 of [1], there is a bounded net (𝑧𝜆) in 𝐴 converging 

strongly to 𝑧 such that, for every 𝑎 ∈ 𝐴,  
𝑙𝑖𝑚
𝜆
‖[𝑧𝜆 − 𝑧, 𝑎]‖ = 0. 

Recall that strong and  𝜎-strong topology agree on bounded sets, and that the 𝜎-strong 

topology is stronger than the 𝜎-weak topology; see [100]. Thus the net (𝑧𝜆) converges 𝑎 

fortiori 𝜎-weakly to 𝑧. Since the 𝜎-weak topology on 𝐴∗∗  is the weak∗  topology on 𝐴∗∗ 
regarded as the dual space of 𝐴∗, the unit ball of 𝐴∗∗  is 𝜎-weakly compact by Alaoglu's 

theorem [297]. Moreover by Kaplansky's Density Theorem [83] the unit ball of 𝐴 is 𝜎-

weakly dense in the unit ball of 𝐴∗∗. As a consequence the unit ball of 𝐴∗∗ is 𝜎 -weakly 

metrizable, and the same holds for balls of arbitrary radius. Thus we can find a bounded 

sequence (𝑧𝑛) 𝑛∈ℕ in 𝐴 converging  𝜎-weakly to 𝑧 such that, for every 𝑎 ∈ 𝐴, 
𝑙𝑖𝑚
𝑛→+∞

‖[𝑧𝑛 − 𝑧, 𝑎]‖ = 0. 
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Since 

[𝑧𝑛 − 𝑧, 𝑎] = [𝑧𝑛, 𝑎] 
for every 𝑛 ∈ ℕ, (𝑧𝑛) 𝑛∈ℕ is a central and hence strict-hypercentral sequence (every central 

sequence of 𝐴 is strict-hypercentral by assumption). Since 𝛼∗∗  is a 𝜎-weakly continuous 

automorphism of 𝐴∗∗  extending 𝛼, (𝛼(𝑧𝑛))𝑛∈ℕ  converges 𝜎-weakly to 𝛼∗∗(𝑧). It follows 

from Lemma (4.2.23) and from the facts that 𝛼 is approximately inner and the sequence 

(𝑧𝑛)𝑛∈ℕ  is strict-hypercentral that the bounded sequence (𝑧𝑛 − 𝛼(𝑧𝑛))𝑛∈ℕ  converges 

strictly to 0. By [292] and since weak and 𝜎-weak topology agree on bounded sets, the 

sequence (𝑧𝑛 − 𝛼(𝑧𝑛))𝑛∈ℕ converges 𝜎-weakly to 0. Therefore 𝑧 = 𝛼∗∗(𝑧).    

 

A 𝐶∗-algebra is called elementary if it is ∗−isomorphic to the algebra of compact operators 

on some Hilbert space; see [100]. By Corollary 1 of Theorem 1.4.2 in [279] any elementary 

𝐶∗-algebra is simple. Moreover by Corollary 3 of Theorem 1.4.4 in [279] any automorphism 

of an elementary 𝐶∗-algebra is inner; in particular the group Inn(𝐴)of inner automorphisms 

of an elementary 𝐶∗-algebra 𝐴 is closed inside the group Aut(𝐴)of  all automorphisms. 

Conversely if the group of inner automorphisms of a simple 𝐶∗-algebra 𝐴 is closed, then 𝐴 

is elementary by [100]. 

Recall that all 𝐶∗-algebras (apart from multiplier algebras and enveloping von Neumann 

algebras) are assumed to be norm separable. In particular separability of 𝐴 is assumed in 

Proposition (4.2.24); however we do not know if the separability assumption is necessary 

there. (This is also asked in [284].) 

Proposition(4.2.24)[278]: If 𝐴 is 𝑎 simple 𝐶∗-algebra such that every central sequence in 

𝐴 is strict-hypercentral, then 𝐴 is elementary. 

Proof: It is enough to show that Inn(𝐴)i s  closed in Aut(𝐴)or ,  equivalently, that no outer 

automorphism is approximately inner. Fix an outer automorphism 𝛼 of 𝐴. Since 𝐴 is simple, 

by [290], there is an irreducible representation 𝜋  such that 𝜋 and 𝜋 𝑜 𝛼 are not unitarily 

equivalent. If 𝑧 is the central cover of 𝜋 in 𝐴∗∗ (defined as in [83]), then 𝛼∗∗(𝑧) is the central 

cover of 𝜋 𝑜 𝛼 moreover, being 𝜋 and 𝜋 𝑜 𝛼 not equivalent, 𝛼∗∗(𝑧) is different from 𝑧 by 

[83]. Thus 𝛼∗∗does not fixes pointwise the center of 𝐴∗∗ and, by Lemma (4.2.23), 𝛼 is not 

approximately inner.   

Proposition (4.2.24) shows that any simple nonelementary 𝐶∗-algebra contains a central 

sequence that is not strict-hypercentral. It is clear that the same conclusion holds for any 𝐶∗-
algebra containing a simple nonelementary 𝐶∗-algebra as a direct summand. By Theorem 

3.9 of [1], this class of 𝐶∗-algebras coincides with the class of 𝐶∗-algebras that have only 

inner derivations and do not have continuous trace. This concludes the proof of the following 

proposition: 

Proposition(4.2.25)[278]: If 𝐴 is 𝑎  𝐶∗-algebra that does not have continuous trace and has 

only inner derivations, then 𝐴 contains 𝑎 central sequence that is not strict-hypercentral. 

In order to finish the proof of Theorem (4.2.1), it is enough to show that its conclusion 

holds for a 𝐶∗-algebra 𝐴 containing a central sequence that is not strict-hypercentral. 

Proposition(4.2.26)[278]: If 𝐴 is 𝑎  𝐶∗-algebra containing 𝑎 central sequence that is not 

strict-hypercentral, then the approximately inner automorphisms of 𝐴 are not classifiable 

by  countable structures up to unitary equivalence. 
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Proof:  Fix a dense sequence  (𝑎𝑛)𝑛∈ℕ  in the unit ball of 𝐴. Suppose that (𝑥𝑛)𝑛∈ℕ  is a 

central sequence in 𝐴 that is not strict-hypercentral. Thus there is a central sequence (𝑦𝑛)𝑛∈ℕ 

in 𝐴 such that the sequence 

([𝑥𝑛, 𝑦𝑛])𝑛∈ℕ 

does not converge strictly to 0.  This implies that, for some positive contraction 𝑏 in 𝐴, 

then the sequence 

(𝑏[𝑥𝑛, 𝑦𝑛])𝑛∈ℕ 

does not converge to 0 i s  norm. Without loss of generality we can assume that, for every 

𝑛 ∈ ℕ, 𝑥𝑛 and 𝑦𝑛 are positive contractions. Observe that the sequence (exp(𝑖𝑡𝑥𝑘) − 1)𝑛∈ℕ 

is not strict-hypercentral for any 𝑡 ∈ (0,1). After passing to subsequences, we can assume 

that for some strictly positive real number 𝜀,  for every 𝑡 ∈ (0,1), every 𝑠 ∈ (
1

2
, 1),  and 

every 𝑛 , 𝑘 ∈ ℕ such that 𝑘 ≤ 𝑛: 

(a)  ‖[(𝑎𝑘, 𝑒𝑥𝑝(𝑖𝑡. 𝑥𝑛))]‖ < 2
−𝑛; 

(b) ‖𝑏[𝑥𝑛, 𝑦𝑛]‖ ≥ 𝜀; 

(c) ‖𝑏[𝑒𝑥𝑝(𝑖𝑠𝑥𝑛), 𝑦𝑛]‖ ≥ 𝜀; 

Define 𝜂 =
𝜀

20
. After passing to a further subsequence, we can assume that, for every 𝑡 ∈

(0,1) and every 𝑛, 𝑘 ∈ ℕ such that 𝑘 ≤ 𝑛: 
(a)  ‖[𝑒𝑥𝑝(𝑖𝑡. 𝑥𝑘), 𝑦𝑛]‖ < 2

−𝑛𝜂; 

(b)  ‖[𝑦𝑘 , 𝑒𝑥𝑝(𝑖𝑡. 𝑥𝑛)]‖ < 2
−𝑛𝜂; 

(c) ‖[𝑒𝑥𝑝(𝑖𝑡. 𝑥𝑘), 𝑒𝑥𝑝(𝑖𝑠. 𝑥𝑛)]‖ < 2
−𝑛𝜂. 

 It is not difficult to verify that, if  𝑡 ∈ (0,1) then the sequence 

(Ad(exp(𝑖𝑡𝑛𝑥𝑛)))n∈ℕ 

is Cauchy in Aut(𝐴). Denoting by 𝑓(𝑡)i t s  limit, one obtains a function 

 

𝑓: (0,1)ℕ → Inn(A).̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

 

In the rest of the proof we will show that 𝑓 satisfies the hypothesis of Criterion (4.2.6).  

Suppose that 𝑀  is a Lipschitz constant for the function 𝑡 ↦ 𝑒𝑥𝑝(𝑖𝑡)  on [0, 1].  If 
𝑡, 𝑠 ∈ (0,1)ℕ and 𝑛 ∈ ℕ are such that |𝑡𝑘 − 𝑠𝑘| < 𝜀 for 𝑘 ∈ {1, 2,… , 𝑛} then it is easy to 

see that 

 

‖𝑓(𝑡)(𝑎𝑘) − 𝑓(𝑠)(𝑎𝑘)‖ ≤ 2
−𝑛+1 + 𝜀𝑀 

 

for 𝑘 ≤ 𝑛.This shows that the function 𝑓  is continuous, particularly, Baire measurable. 

Moreover, if 𝑡, 𝑠 ∈ (0,1)ℕare such that 𝑠 − 𝑡 ∈ ℓ1,  then the sequence 

 (exp(𝑖𝑡1𝑥1)⋯exp(𝑖𝑡𝑛𝑥𝑛)exp(−𝑖𝑠𝑛𝑥𝑛)⋯  exp(−𝑖𝑠1𝑥1))𝑛∈ℕ 

is Cauchy in 𝑈(𝐴), and hence has a limit 𝑢 ∈ 𝑈(𝐴). It is now readily verified that 

𝑓(𝑡) = Ad(𝑢) 𝑜 𝑓(𝑠) 
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and hence 𝑓(𝑡)and 𝑓(𝑠)are  unitarily equivalent. Finally, suppose that 𝐶 is a comeager 

subset of (0,1)ℕ. Thus, there are 𝑡, 𝑠 ∈ 𝐶  such that |𝑡𝑛 − 𝑠𝑛| ∈ (
1

2
, 1)for infinitely many 

𝑛 ∈ ℕ.We claim that 𝑓(𝑡)and  𝑓(𝑠)are  not unitarily equivalent. Suppose by contradiction 

that this is not the case. Thus there is 𝑢 ∈ 𝑈(𝐴)such  that 

𝑓(𝑡) = Ad(𝑢) o 𝑓(𝑠). 
This implies that the sequence 

 (𝑢 exp(𝑖𝑡1𝑥1)⋯exp(𝑖𝑡𝑛𝑥𝑛)exp(−𝑖𝑠𝑛𝑥𝑛)⋯  exp(−𝑖𝑠1𝑥1))𝑛∈ℕ 

in 𝑈(𝐴)i s  central, i.e. asymptotically commutes (in norm) with any element of 𝐴.  Fix now 

any 𝑡𝑠   𝑛𝑜 ∈ ℕ,such that |𝑡𝑛𝑜 − 𝑠𝑛𝑜| ∈ (
1

2
, 1) and 

 

‖𝑏[𝑦𝑛, 𝑢]‖ < 𝜂 

for 𝑛 ≥ 𝑛𝑜.  Suppose that 𝑛 > 𝑛𝑜. Using the fact that the elements exp(𝑖𝑡𝑚𝑥𝑚) and 

exp(𝑖𝑡𝑘𝑥𝑘) commute up to 5𝜂−𝑚 for 𝑘,𝑚 ∈ ℕ, one can show that 

 

𝑏𝑢𝑦𝑛𝑜 𝑢 exp(𝑖𝑡1𝑥1)⋯exp(𝑖𝑡𝑛𝑥𝑛)exp(−𝑖𝑠𝑛𝑥𝑛)⋯  exp(−𝑖𝑠1𝑥1) 
is at distance at most 5𝜂 from 

𝑏𝑢𝑦𝑛𝑜 exp(𝑖(𝑡𝑛𝑜 − 𝑠𝑛𝑜)𝑥𝑛𝑜)exp(𝑖𝑡1𝑥1)⋯  exp(𝑖𝑡𝑛𝑜𝑥𝑛𝑜̂ ) 

⋯exp(𝑖𝑡𝑛𝑥𝑛)exp(−𝑖𝑠𝑛𝑥𝑛)⋯exp(𝑖𝑠𝑛𝑜𝑥𝑛𝑜̂ )⋯exp(−𝑖𝑠1𝑥1), 
where exp(𝑖𝑡𝑛𝑜𝑥𝑛𝑜̂ )and  exp(𝑖𝑠𝑛𝑜𝑥𝑛𝑜̂ )indicate omitted terms in the product. Similarly 

𝑏𝑢 exp(𝑖𝑡1𝑥1)⋯ exp(𝑖𝑡𝑛𝑥𝑛)exp(−𝑖𝑠𝑛𝑥𝑛)⋯  exp(−𝑖𝑠1𝑥1)𝑦𝑛𝑜  

is at distance at most 5𝜂 from 

𝑏𝑢 exp(𝑖(𝑡𝑛𝑜 − 𝑠𝑛𝑜)𝑥𝑛𝑜)𝑦𝑛𝑜exp(𝑖𝑡1𝑥1)⋯  exp(𝑖𝑡𝑛𝑜𝑥𝑛𝑜̂ )   

⋯ exp(𝑖𝑡𝑛𝑥𝑛) exp(−𝑖𝑠𝑛𝑥𝑛) ⋯ exp(𝑖𝑡𝑛𝑜𝑥𝑛𝑜̂ )⋯ exp(−𝑖𝑠1𝑥1) 
Thus, the norm of the commutator of 

𝑢 exp(𝑖𝑡1𝑥1)⋯  exp(𝑖𝑡𝑛𝑥𝑛)exp(−𝑖𝑠𝑛𝑥𝑛)⋯  exp(−𝑖𝑠1𝑥1) 
and 𝑦0 is at least 

 

‖𝑏[exp(𝑖(𝑡𝑛𝑜 − 𝑠𝑛𝑜)𝑥𝑛𝑜), 𝑦𝑛𝑜]‖ − 10𝜂 ≥ 𝜀 − 10𝜂 ≥
𝜀

2
 . 

This contradicts the fact that the sequence 

 

(𝑢 exp(𝑖𝑡1𝑥1)⋯  exp(𝑖𝑡𝑛𝑥𝑛)exp(−𝑖𝑠𝑛𝑥𝑛)⋯  exp(−𝑖𝑠1𝑥1))𝑛∈ℕ 

 

is central and concludes the proof. 

If 𝐴 is a 𝐶∗-algebra, then we denote by 𝐴0(𝐴) the  separable Banach space of inner 

derivations of 𝐴 endowed with the norm  ‖. ‖∆0(𝐴) and by ∆0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ the  closure of ∆0(𝐴) 
inside the space ∆(𝐴) o f  derivations of 𝐴 endowed with the operator norm. Suppose that 

𝐸∆(𝐴) is the Borel equivalence relation on ∆0(𝐴)̅̅ ̅̅ ̅̅ ̅̅  defined by 

𝛿0𝐸∆(𝐴)𝛿1   iff  𝛿0 − 𝛿1 ∈ ∆0(𝐴). 

Observe that 𝐸∆(𝐴) is the orbit equivalence relation associated with the continuous action of 

the additive group of ∆0(𝐴)on ∆0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ by translation. 

Theorem(4.2.27)[278]: If A is a unital 𝐶∗-algebra, then the following statements are 

equivalent: 
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(i)  ∆0(𝐴)  i s  c losed  in  ∆(𝐴); 
(ii)  𝐸∆(𝐴) i s  smooth;  

(iii)  𝐸∆(𝐴) is classifiable by  countable structures; 

 𝐴 has continuous trace. 

The equivalence of (i) and (iv) follows from [42] together with the equivalence of (i) and 

(iii) in Theorem (4.2.2). The implication  (i)⇒(ii) follows from [259]. Trivially (ii) is 

stronger than (iii). Finally observe that ∆0(𝐴)and ∆0(𝐴)satisfy the hypothesis of [301]. In 

fact, as discussed at the beginning, ∆0(𝐴)endowed with the norm 

‖ad(𝑖𝑎)‖∆(A) = inf {‖𝑎 − 𝑧‖⃒  𝑧 ∈ 𝐴′ ⋂ 𝐴} 

is a separable Banach space. Moreover the inclusion map of ∆0(𝐴)in ∆0(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ⊂ ∆(𝐴)   is 

bounded with norm at most (ii). Thus, if ∆0(𝐴)is not closed in ∆(𝐴)then the continuous 

action of the additive group ∆0(𝐴)on ∆0(𝐴)by translation is turbulent. Hjorth's turbulence 

theorem recalled at the beginning concludes the proof of the implication  (iii)⇒(i). 

The implication  (iii)⇒(i) of Theorem (4.2.1) does not hold in general. Remark 0.9 of [60] 

provides an example of a 𝐶∗ -algebra 𝐴  that has continuous trace such that the group 

Inn(𝐴)of inner automorphisms of 𝐴  is not closed inside Aut(𝐴).  This implies that the 

automorphisms of 𝐴 are not concretely classifiable up to unitary equivalence. It would be 

interesting to know if the automorphisms of 𝐴  are at least classifiable by countable 

structures up to unitary equivalence. 

Corollary(4.2.28)[370]: Fix a strictly positive real number 𝜂. For every 𝜀 > 0 there is 𝛿 >
0 such that for every 𝐶∗-algebra 𝐴 and every pair of positive contractions 𝑥𝑟

2, 𝑎2 + 𝜖 of 𝐴 

such that ‖𝑎2 + 𝜖‖ ≥ 𝜂, if 

∑ 

𝑟

‖(𝑒𝑥𝑝(𝑖 𝑥𝑟
2) − 𝜇𝑟

2)(𝑎2 + 𝜖)‖ ≤ 𝛿 

for some  𝜇𝑟
2 ∈ ℂ then 

∑ 

𝑟

‖(𝑥𝑟
2 − 𝜆2)(𝑎2 + 𝜖)‖ ≤ 𝜀 

for some  𝜆2 ∈ ℂ. 
Proof:  Fix 𝜀 > 0. Let 𝐿 be the principal branch of the logarithm. Since 𝐿 is an analytic 

function on the open disc of radius 1 centered in 1, there is a polynomial 

𝑝(𝑍) = 𝜌0, 𝜌1𝑍 +⋯+ 𝜌𝑛𝑍
𝑛 

Such that 

∑ 

𝑟

|𝑝(𝑧𝑟
2) − 𝐿(𝑧𝑟

2)| ≤
𝜀

2
 

for every 𝑧𝑟
2 ∈ ℂ such that ∑  𝑟 |𝑧𝑟

2 − 1| ≤ exp(𝑖). In particular for every 𝑡 ∈ [0,1] 

|𝑝(exp(𝑖𝑡)) − t| = |𝑝(exp(𝑖𝑡)) − L(exp(𝑖𝑡))| ≤
𝜀

2
. 

 If  𝜇𝑟
2 ∈ ℂ is such that |𝜇𝑟

2| ≤
2

𝜂
 ,define 𝜌𝜇𝑟2(𝑧𝑟

2) to be the polynomial in 𝑍 obtained from 

𝑝(𝑍)  by replacing the indeterminate 𝑍  by 𝑍 + 𝜇𝑟
2.  Observe that the 𝑗 -th coefficient of 

𝜌𝜇𝑟
2(𝑧𝑟

2) is 
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∑ 

𝑟

𝜌𝑗
𝜇𝑟
2

=∑∑ 

𝑟

|𝜌𝑖| (
𝑖
𝑗
) 𝜇𝑟

2(𝑗−𝑖)

𝑛

𝑖=𝑗

 

for  0 ≤ 𝑗 ≤ 𝑛.  Finally define 

𝐶 = ∑ |𝜌𝑖| (
𝑖
𝑗
) (
3

𝜂
)
𝑗−𝑖

1≤𝑗≤𝑖≤𝑛

(
2

𝜂
)
𝑗−1

 

and 

𝛿 = 𝑚𝑖𝑛 {
𝜀

2𝐶
, 1} . 

Suppose that 𝐴  is a 𝐶∗ -algebra and 𝑥𝑟
2, 𝑎2 + 𝜖 ∈ 𝐴  are positive contractions such that 

‖𝑎2 + 𝜖‖ ≥ 𝜂 and, for some 𝜇𝑟
2 ∈ ℂ, 

∑ 

𝑟

‖(exp(𝑖𝑥𝑟
2) − 𝜇𝑟

2)(𝑎2 + 𝜖)‖ ≤ 𝛿. 

Thus, 

∑ 

𝑟

|𝜇𝑟
2| ≤

2

𝜂
. 

Moreover 

∑ 

𝑟

‖(𝑥𝑟
2 − 𝜌0

𝜇𝑟
2

) (𝑎2 + 𝜖)‖ =∑ 

𝑟

‖(𝑝(exp(𝑖𝑥𝑟
2)) − 𝜌0

𝜇𝑟
2

) (𝑎2 + 𝜖)‖ +
𝜀

2

=∑ 

𝑟

‖(∑𝜌𝑗
𝜇𝑟
2

𝑛

𝑗=1

(exp(𝑖𝑥𝑟
2) − 𝜇𝑟

2)𝑗)(𝑎2 + 𝜖)‖ +
𝜀

2

≤∑∑ 

𝑟

|𝜌𝑗
𝜇𝑟
2

| ‖exp(𝑖𝑥𝑟
2) − 𝜇𝑟

2‖𝑗−1 𝛿 +
𝜀

2

𝑛

𝑗=1

≤∑∑|𝜌𝑖| (
𝑖
𝑗
) (
2

𝜂
)
𝑗−𝑖𝑛

𝑖=𝑗

𝑛

𝑗=1

(
3

𝜂
)
𝑗−1

𝛿 +
𝜀

2
≤ 𝐶𝛿 +

𝜀

2
≤ 𝜀. 

This concludes the proof. 

Corollary(4.2.29)[370]: If (𝑥𝑛
𝑚)𝑛∈ℕ  is a  strict-hypercentral sequence in 𝐴  and 𝛼𝑚  is an 

approximately inner automorphism of 𝐴, then (𝛼𝑚(𝑥𝑛
𝑚) − 𝑥𝑛

𝑚)𝑛∈ℕ converges strictly to 0. 
Proof:  The same proof of Kaplansky's density theorem [83] shows that the unit ball of 𝐴 is 

strictly dense in the unit ball of 𝑀(𝐴); see [291]. (The strict topology on the multiplier 

algebra of 𝐴 has been defined.) It follows that, if 𝜀 > 0 and 𝑎 is an element of 𝐴, then there 

is a finite subset 𝐹 of the unit ball of 𝐴, a positive real number δ, and a natural number 𝑛0 

such that, for every 𝑛 ≥ 𝑛0 and every 𝑦 in the unit ball 𝑀(𝐴)such that ‖[𝑦, 𝑧𝑚]‖ ≤ 𝜀 for 

every 𝑧𝑚 ∈ 𝐹 , 

∑ 

𝑚

max{‖𝑎(𝑥𝑛
𝑚𝑦 − 𝑦𝑥𝑛

𝑚)‖, ‖(𝑥𝑛
𝑚𝑦 − 𝑦𝑥𝑛

𝑚)𝑎‖} ≤ 𝜀. 

Consider the open neighbourhood 

𝑈 = {𝛼𝑚 ∈ Aut(𝐴)| ‖𝛼𝑚(𝑥
𝑚) − 𝑥𝑚‖ < 𝛿 for every 𝑥𝑚 ∈ 𝐹} 

of 𝑖𝑑 𝐴 in Aut(𝐴). Observe that if 𝛽𝑚 ∈ 𝑈 is inner, then for every 𝑛 ≥ 𝑛𝑛  
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∑ 

𝑚

‖(𝛽𝑚(𝑥𝑛
𝑚) − 𝑥𝑛

𝑚)𝑎‖ ≤ 𝜀 

and 

∑ 

𝑚

‖𝑎(𝛽𝑚(𝑥𝑛
𝑚) − 𝑥𝑛

𝑚)‖ ≤ 𝜀. 

 

Approximating with inner automorphisms, one can see that the same is true if 𝛽𝑚 ∈ 𝑈 is 

just approximately inner. Since 𝛼𝑚 is approximately inner, there is a unitary multiplier 𝑢 of 

𝐴 and an approximately inner automorphism 𝛽𝑚 of 𝐴 in 𝑈 such that 

∑ 

𝑚

𝛼𝑚 =∑ 

𝑚

𝛽𝑚 𝑜 Ad(𝑢). 

Consider a natural number 𝑛1 ≥ 𝑛0 such that, for 𝑛 ≥ 𝑛1, 

∑ 

𝑚

‖𝛽𝑚
−1(𝑎)[𝑥𝑛

𝑚, 𝑢 ]‖ ≤ 𝜀 

and 

∑ 

𝑚

‖[𝑥𝑛
𝑚, 𝑢∗]𝛽𝑚

−1(𝑎)‖ ≤ 𝜀. 

It follows that, if 𝑛 ≥ 𝑛1, 

∑ 

𝑚

‖𝑎(𝛼𝑚(𝑥𝑛
𝑚) − 𝑥𝑛

𝑚)‖ ≤∑ 

𝑚

‖𝑎𝛽𝑚(Ad(𝑢)(𝑥𝑛
𝑚)) − 𝑥𝑛

𝑚‖ +∑ 

𝑚

‖𝛽𝑚(𝑧𝑛
𝑚) − 𝑥𝑛

𝑚‖

≤∑ 

𝑚

‖𝛽𝑚
−1(𝑎)(𝑢𝑥𝑛

𝑚𝑢∗ − 𝑧𝑛
𝑚)‖ + 𝜀 =∑ 

𝑚

‖𝛽𝑚
−1(𝑎)[𝑥𝑛

𝑚, 𝑢 ]‖ + 𝜀 ≤ 2𝜀 

and, analogously, 

∑ 

𝑚

‖(𝛼𝑚(𝑥𝑛
𝑚) − 𝑥𝑛

𝑚)𝑎‖ ≤ 2𝜀. 

Since 𝜀 was arbitrary, this concludes the proof of the fact that 

(𝑎(𝑧𝑛
𝑚) − 𝑥𝑛

𝑚)𝑛∈ℕ 

converges strictly to 0. 
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Chapter 5 

Model Theory and Countable Chain Condition with Saturation 

 

We show a purely model-theoretic result to the effect that the theory of a separable 

metric structure is stable if and only if all of its ultrapowers associated with nonprincipal 

ultrafilters on ℕ are isomorphic even when the Continuum Hypothesis fails. We show 

independence from ZFC of the statement that this condition is preserved under the tensor 

products of C∗­algebras. We also characterize elementary equivalence of the algebras 𝐶(𝑋) 
in terms of 𝐶𝐿(𝑋) when 𝑋 is 0-dimensional, and show that elementary equivalence of the 

generalized Calkin algebras of densities ℵ𝛼 and ℵ𝛽 implies elementary equivalence of the 

ordinals 𝛼 and 𝛽. 

Section (5.1): Operator Algebras 

 We study operator algebras using a slightly modified version of the model theory for 

metric structures. This is a logical framework whose semantics are well-suited for the 

approximative conditions of analysis; as a consequence it plays the same role for analytic 

ultrapowers as first order model theory plays for classical (set theoretic) ultrapowers. We 

show that the continuum hypothesis (CH) implies that all ultrapowers of a separable metric 

structure are isomorphic, but under the negation of CH this happens if and only if its theory 

is stable. Stability is defined in logical terms (the space of 𝜑-types over a separable model 

is itself separable with a suitable topology), but it can be characterized as follows: a theory 

is not stable if and only if one can define arbitrarily long finite funiformly well-separated" 

totally ordered sets in any model, a condition called the order property. Provided that the 

class of models under consideration (e.g., II factors) is defined by a theory - not always 

obvious or even true - this brings the main question back into the arena of operator algebras. 

To deduce the existence of nonisomorphic ultrapowers under the negation of CH, one needs 

to establish the order property by defining appropriate posets. We proved in [120] that all 

infinite-dimensional 𝐶∗-algebras and II1 factors have the order property, while tracial von. 

Neumann algebras of type I do not. We will use the logic developed here to obtain new 

results about isomorphisms and embeddings between II1factors and their ultrapowers. 

We now review some facts and terminology for operator algebraic ultrapowers from 

[120]. 

A von Neumann algebra 𝑀 is tracial if it is equipped with a faithful normal tracial 

state tr. 

A finite factor has a unique tracial state which is automatically normal. The metric 

induced by the  ℓ2-norm, ‖𝑎‖2 = √𝑡𝑟(𝑎
∗𝑎), is not complete on 𝑀 , but it is complete on 

the (operator norm) unit ball of 𝑀. The completion of 𝑀 with respect to this metric is 

isomorphic to a Hilbert space (see, e.g., [100] or [315]). 

The algebra of all sequences in 𝑀  bounded in the operator norm is denoted by 

ℓ∞(𝑀). If 𝒰 is an ultrafilter on ℕ then 

𝑐𝑢 = {
𝑎
→∈ ℓ∞(𝑀): lim

𝑖→𝑢
‖𝑎𝑖‖2 =  0}  

is a norm-closed two-sided ideal in ℓ∞(𝑀), and the tracial ultrapower 𝑀𝑢(also denoted 

by∏ 𝑀𝑢 ) is de_ned to be the quotient ℓ∞(𝑀) ∕ 𝑐𝑢. It is well-known that 𝑀𝑢 is tracial, and 

a factor if and only if 𝑀 is| see, e.g., [100] or [321]; this also follows from axiomatizability 

and  Los's theorem (Proposition (5.1.8) and the remark afterwards). 
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     Elements of 𝑀𝑢 will either be denoted by boldface Roman letters such as a or represented 

by sequences in ℓ∞(𝑀). Identifying a tracial von Neumann algebra 𝑀 with its diagonal 

image in 𝑀𝑢, we will also work with the relative commutant of 𝑀 in its ultrapower,  

𝑀′ ∩  𝑀𝑢 = { 𝑏 ∶  (∀𝑎 ∈  𝑀)𝑎𝑏 =  𝑏𝑎} 
     Tracial ultrapowers were first constructed in the 1950s and became standard tools after 

the groundbreaking of McDuff ([317]) and Connes ([156]). The properties of an ultrapower 

are the approximate properties of the initial object; see [320]. 

      In defining ultrapowers for 𝐶∗-algebras (resp. groups with bi-invariant metric), 𝑐𝑢  is 

taken to be the sequences that converge to zero in the operator norm (resp. converge to the 

identity in the metric ([318])). All these constructions are special cases of the 

ultrapower/ultraproduct of metric structures (see [303] or [311]). 

The purpose is to introduce a logic which has some features geared to the treatment of 𝐶∗-
algebras and von Neumann algebras. In a treatment of such structures in bounded continuous 

logic (see [305]), it is typical to consider different sorts of balls of increasing radius. The 

logic presented here is entirely equivalent to that formulation but allows us to introduce 

function symbols like + and .  without treating them as infinitely many different functions 

mapping between sorts. This distinction is somewhat cosmetic but the treatment of terms in 

this logic highlights an issue that is common to both this logic and the multisorted version. 

Details are given below but to make clear what is at stake, suppose we are considering a 

normed linear space and we wish to assert that the unit ball is convex. The operation + when 

restricted to the unit ball would most naturally map to the ball of radius 2. Scalar 

multiplication by 1/2 maps the ball of radius 2 into the unit ball and so a natural way to set 

things up would be to have the term (𝑥 +  𝑦) ∕ 2 send the unit ball to itself and so the syntax 

guarantees that the unit ball is convex. If on the other hand, the scalar 1/2 on the ball of 

radius 2 was said to have range that same ball (a logical possibility), then (𝑥 +  𝑦) ∕ 2 

syntactically would only map the unit ball to the ball of radius 2 and we would need to have 

an axiom that said that this term in fact has range in the unit ball. Issues of the 

axiomatizability of the classes of structures we are dealing with are bound up with the choice 

of range of terms in our language and are highlighted below. 

A language consists of 

(a) Sorts, 𝑆 , and for each sort 𝑆 ∈ 𝑆,  a , set of domains 𝐷𝑆  meant to be domains of 

quantification, and a privileged relation symbol 𝑑S intended to be a metric. Each sort comes 

with a distinct set of variables. 

(b) Sorted functions, 𝑓: 𝑆1 × …× 𝑆𝑛 →  𝑆 together with, for every choice of domains 𝐷𝑖 ∈

 𝐷𝑆𝑖 , 𝑎 𝐷𝐷̅
𝑓
∈ 𝐷𝑆  and for each 𝑖 , a uniform continuity modulus 𝛿𝑖

𝐷̅,𝒯 , 𝑖. 𝑒. , 𝑎  real-valued 

function on ℝ, where 𝐷̅  =  〈𝐷1, …𝐷𝑛〉 
(c) Sorted relations 𝑅  on 𝑆1 ×…× 𝑆𝑛  there is a number such that for every choice of 

domains 𝐷̅ as above, as well as uniform continuity moduli dependent on 𝑖 and  𝐷̅. 

(d) Terms are formed by the usual composition of function symbols and variables. They 

inherit codomains and series of uniform continuity moduli from this composition. 

𝐴 structure ℳ assigns to each sort 𝑆 ∈  𝑆,𝑀(𝑆), a metric space where 𝑑S is interpreted as 

the metric. For each 𝐷 ∈ 𝐷𝑆  ,𝑀(𝐷) is a subset of 𝑀(𝑆) complete with respect to 𝑑S. The 

collection {𝑀(𝐷) ∶  𝐷 ∈  𝐷𝑆 }covers 𝑀(𝑆). 
Terms 𝑡  are interpreted as functions on a structure in the usual manner. If 𝑡𝑀  is the 

interpretation of 𝑡 and 𝐷̅ is a choice of domains from the relevant sorts then 𝑡𝑀:𝑀(𝐷̅) →
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𝑀(𝐷𝐷̅
𝑡 )  and 𝑡𝑀   is uniformly continuous as specified by the 𝛿𝐷̅,𝑡 ′𝑠  when restricted 

to 𝑀(𝐷̅). 
This means for instance that for every 𝜖 >  0, if 𝑎, 𝑏 ∈  𝑀(𝐷1) and 𝑐𝑖 ∈ 𝑀(𝐷𝑖) for 𝑖 =

 2,… , 𝑛  then 𝑑𝑆(𝑎, 𝑏) < 𝛿1
𝐷̅,𝑡(𝜖)  implies 𝑑𝑆′  (𝑡(𝑎, 𝑐̅), 𝑡(𝑏, 𝑐̅))  ≤ 𝜖 , where 𝑆  is the sort 

associated to 𝐷1 is the sort associated with the range of 𝑡. 
Sorted relations are maps 𝑅𝑀: 𝑆1 ×…× 𝑆𝑛 → ℝ.  They are handled similarly to sorted 

functions; uniform continuity is as above when restricted to the appropriate domains and a 

relation 𝑅 is bounded in absolute value by 𝑁𝐷̅
𝑅 when restricted to 𝑀(𝐷̅). 

We will think of a 𝐶∗-algebra 𝐴 as a one-sorted structure with sort 𝑈 for the algebra itself. 

The domains for 𝑈 are 𝐷𝑛 for every 𝑛 ∈ ℕ and are interpreted as all 𝑥 ∈  𝐴 with ‖𝑥‖ ≤  𝑛. 

The metric on 𝑈 is  

(a) The constant 0 which will be in 𝐷1. Note it is a requirement of the language to say this. 

(b) For every ⋋∈ ℂ a unary function symbol also denoted ⋋ to be interpreted as scalar 

multiplication. For simplicity we shall write ⋋ 𝑥 instead of ⋋ (𝑥). 
(c) A unary function symbol ∗ for involution. 

(d) Binary function symbols + and . 

Prescribing the uniform continuity moduli is straightforward. 

If A is a 𝐶∗-algebra then there is a model, ℳ(𝐴), in ℒ𝐶∗associated to it which is essentially 

𝐴 itself endowed with the domains 𝐷n interpreted as the operator norm 𝑛-ball. 

Tracial von Neumann algebras will be treated as a onesorted structure with domains 𝐷𝑛 

which as in the example of 𝐶∗-algebras will be interpreted as the operator norm 𝑛-ball. The 

metric 𝑑 will be the metric arising from the ℓ2 norm coming from the trace. 

The functions in the language are, in addition to functions, 

(a) The constant 1 in 𝐷1. 

(b) Two unary relation symbols 𝑡𝑟r and 𝑡𝑟i for the real and imaginary parts of the trace 

function. We will often just write 𝑡𝑟 and assume that the expression can be decomposed 

into the real and imaginary parts. 

Again, this describes a language ℒ𝑇𝑟 once we add the requirements about bounds on the 

range and uniform continuity. 

If 𝑁 is a tracial von Neumann algebra then there is a model, 𝑀(𝑁), in ℒ𝑇𝑟 associated to it 

which is essentially 𝑁 itself with the domains interpreted as above. 

The syntax for logic of unitary groups is simpler than that of tracial von Neumann algebras 

or 𝐶∗-algebras. In this case the metric is bounded and therefore we can have one domain are 

equal to the universe 𝑈. We have function symbols for the identity, inverse and the group 

operation. Since in this case our logic reduces to the standard logic of metric structures as 

introduced in [303] we omit the straightforward details and continue this practice of 

suppressing the details for unitary groups throughout. 

(a) Formulas: 

(i)  If 𝑅 is a relation and 𝑡1, … , 𝑡𝑛 are terms then 𝑅(𝑡1, … , 𝑡𝑛) is a basic formula. 

(ii) If 𝑓 ∶  ℝ𝑛 → ℝ is continuous and 𝜑1, … , 𝜑𝑛 are formulas, then 𝑅(𝜑1, … , 𝜑𝑛)is a 

formula. 

 If 𝐷 ∈  𝒟𝑆 and 𝜑 is a formula then both sup𝑥∈𝐷 𝜑 and in𝑓𝑥∈𝐷𝜑 are formulas. 

(b) Formulas are interpreted in the obvious manner in structures. The boundedness of 

relations when restricted to domains is essential to guarantee that the sups and infs exist 

when interpreted. For a fixed formula 𝜑 and real number 𝑟, the expressions 𝜑 ≤  𝑟 and 
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𝑟 ≤ 𝜑  are called conditions and are either true or false in a given interpretation in a 

structure. 

 In the above definition it was taken for granted that we have an infinite supply of 

distinct variables appearing in terms. We shall need to introduce a set of new constant 

symbols 𝐶. Each 𝑐 ∈ 𝐶 is assigned a sort 𝑆(𝑐) and a domain. 

In the expanded language ℒ𝐶 both variables and constant symbols from 𝐶 appear in terms. 

Formulas and sentences in ℒ𝐶 are defined as above. Note that, since the elements of 𝐶 are 

not variables, we do not allow quantification over them. 

A sentence is a formula with no free variables. If 𝜑is a sentence and ℳ is a structure then 

the result of interpreting 𝜑 in ℳ is a real number, 𝜑ℳ. The function which assigns these 

numbers to sentences is the theory of  , denoted by Th(ℳ). Because we allow all continuous 

functions as connectives, in particular the functions |𝑥 −⋋|, the theory of a model ℳ is 

uniquely determined by its zero-set{𝜑 ∶ 𝜑ℳ =  0}. We shall therefore adopt the convention 

that a set of sentences 𝑇 is a theory and say that ℳ  is a model of 𝑇,ℳ =  𝑇, if 𝜑ℳ =
 0 for all 𝜑 ∈  𝑇. 

     The following is proved by induction on the complexity of the definition of 𝜓  . 

Lemma(5.1.1)[302]: Suppose ℳ  is a model and 𝜓 (𝑥̅)  is a formula, possibly with 

parameters from 𝑀. For every choice of 𝐷̅ sequence of domains consistent with the sorts of 

the variables, 𝜓𝑀  is 𝑎 uniformly continuous function on 𝑀(𝐷̅) into 𝑎 compact subset of ℝ. 

     If Θ: ℳ → 𝒩 is an isomorphism then  𝜓ℳ = 𝜓𝒩 ∘  Θ. 
Two models ℳ and 𝒩 are elementarily equivalent if 𝑇ℎ(ℳ) = 𝑇ℎ(𝒩). 𝐴 map Θ: ℳ →
𝒩  is an elementary embedding if for all formulas 𝜓 with parameters in 𝑀, we have  𝜓ℳ =
𝜓𝒩 ∘ Θ. 

     If ℳ is a submodel of 𝒩 and the identity map from ℳ into 𝒩 is elementary then we 

say that ℳ is an elementary submodel of 𝒩. It is not difficult to see that every elementary 

embedding is an isomorphism onto its image,1but not vice versa. 

Definition(5.1.2)[302]: A category 𝐶 is axiomatizable if there is a language ℒ (as above), 

theory 𝑇 in ℒ, and a collection of conditions ∑ such that 𝐶 is equivalent to the category of 

models of 𝑇 with morphisms given by maps that preserve∑. 

     The reason for being a little fussy about axiomatizability is that in the cases we wish to 

consider, the models have more (albeit artificial) ̀ structure' than the underlying algebra. The 

language of the model will contain operation symbols for all the algebra operations (such as 

+ ,.and ∗ ) and possibly some distinguished constant symbols (such as the unit) and 

predicates (e.g., a distinguished state on a 𝐶∗-algebra). It will also contain domains that are 

not part of the algebra's structure. 

     In particular then, when we say that we have axiomatized a class of algebras 𝐶, we will 

mean that there is a first order continuous theory 𝑇 and specification of morphisms such that 

(a) for any 𝐴 ∈  𝐶, there is a model 𝑀(𝐴) of 𝑇 determined up to isomorphism; 

(b) for any model 𝑀 of 𝑇 there is 𝐴 ∈  𝐶 such that 𝑀 is isomorphic to 𝑀(𝐴); 
(c) if 𝐴;  𝐵 ∈ 𝐶 then there is a bijection between Hom(𝐴;  𝐵) and Hom (𝑀(𝐴);  𝑀(𝐵)). 

     Proving that a category is axiomatizable frequently involves somewhat tedious 

syntactical considerations. However, once this is proved we can apply a variety of model-

theoretic tools to study this category. We can immediately conclude that the category is 

closed under taking ultraproducts|a nontrivial theorem in the case of tracial von Neumann 
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algebras. From here it also follows that some natural categories of operator algebras are not 

axiomatizable (see Proposition (5.1.28)). 

We continue the discussion of model theory of 𝐶∗-algebras started. First we introduce two 

notational shortcuts. If one wants to write down axioms to express that 𝑡 = 𝜎 for terms 𝑡 
and 𝜎 then one can write 

𝜑𝐷̅: Sup
𝑎̅∈𝐷̅

𝑑𝑈(𝑡(𝑎̅), 𝜎(𝑎̅)) 

 where 𝐷̅ ranges over all possible choices of domains. Note that this is typically an infinite 

set of axioms. Remember that for a model to satisfy 𝜑𝐷̅, this sentence would evaluate to 0 

in that model. If this sentence evaluates to 0 for all choices of 𝐷̅then clearly 𝑡 = 𝜎 in that 

model. 

If one wants to write down axioms to express that 𝜑 ≥ 𝜓for formulas 𝜑and 𝜓 then one can 

write  

sup
𝑎̅∈𝐷̅

max (0, (𝜓(𝑎̅) − 𝜑(𝑎̅)))  

where 𝐷̅  ranges over all possible choices of domains. Again, we will get the required 

inequality if all these sentences evaluate to 0 in a model. 

Using the above conventions, we are taking the universal closures of the following formulas 

,where 𝑥;  𝑦;  𝑧;  𝑎;  𝑏, range over the algebra and ⋋, 𝜇 range over the complex numbers. 

Here are some sentences that evaluate to zero in a 𝐶∗-algebra 𝐴. The first item guarantees 

that we have a ℂ-vector space. 

(i) 𝑥 + (𝑦 + 𝑧)  =  (𝑥 + 𝑦)  + 𝑧, 𝑥 + 0 =  𝑥, 𝑥 + (𝑥)  =  0  (where−𝑥  is the scalar −1 

acting on 𝑥), 𝑥 + 𝑦 = 𝑦 + 𝑥,⋋ (𝜇𝑥) = (⋋ 𝜇)𝑥,⋋ (𝑥 +  𝑦) =⋋ 𝑥 +⋋ 𝑦, (⋋ +𝜇)𝑥 = ⋋ 𝑥 +
 𝜇𝑥. 

(ii) 1𝑥 = 𝑥, 𝑥(𝑦𝑧) = (𝑥𝑦)𝑧,⋋ (𝑥𝑦) = (⋋ 𝑥)𝑦 = 𝑥(⋋ 𝑦), 𝑥(𝑦 + 𝑧) = 𝑥𝑦 +
𝑥𝑧;   now we have 𝑎 𝐶∗ − algebra. 
(iii) (𝑥∗)∗ =  𝑥, (𝑥 +  𝑦)∗ = 𝑥∗ + 𝑦∗, (⋋ 𝑥)∗ =⋋̅ 𝑥∗. 
(iv) (𝑥𝑦)∗ = 𝑦∗𝑥∗. 
(v) 𝑑𝑈(𝑥;  𝑦)  =  𝑑𝑈 (𝑥  𝑦, 0); we will write ‖𝑥‖ for 𝑑𝑈(𝑥, 0). 
(vi) ‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖. 

(vii) ‖⋋ 𝑥‖ = |⋋|‖𝑥‖. 

(viii) (𝐶∗ − equality) ‖𝑥𝑥∗‖ =  ‖𝑥‖2. 
(ix) sup𝑎∈𝐷1‖𝑎‖  ≤  1. 

   One issue here is that these axioms are too weak to guarantee that 𝐷1 is the operator  norm 

unit ball. To get around this we expand the language of 𝐶∗ -algebras to include a 

functionsymbol 𝑡p  for every ∗-polynomial 𝑝 in one variable. The symbol𝑡pwill have the 

same uniform continuity modulus as 𝑝. In order to determine the proper codomains, for 

every 𝑛, let m be the least integer greater than or equal to max{‖𝑝(𝑎)‖ ∶  𝑎 ∈  𝑀,𝑀 ∈
𝐶 and ‖𝑎‖  ≤  𝑛} where 𝐶 is the class of 𝐶∗-algebras. We will require 𝑡𝑝: 𝐷𝑛 → 𝐷𝑚 and we 

will add the universally quantified axioms 

(x) 𝑡𝑝(𝑥)  =  𝑝(𝑥) for all polynomials 𝑝. This will force the polynomial 𝑝 to behave well 

with respect to where its range lands. To see the effect of these axioms, we do a small 

calculation. 

   Suppose that ℳ  is a structure that satisfies axioms 1  through 9  above. Suppose 𝑎 ∈
 𝑀, ‖𝑎 ‖ ≤ 1 and 𝑎 ∈  𝐷𝑛(ℳ). Define  
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𝑡𝑛(𝑥)  = {

1 0 ≤ 𝑥 ≤ 1
1

√𝑥6
1 < 𝑥 ≤ 𝑛 

and consider 𝑓(𝑢)  =  𝑢𝑡𝑛 (𝑢
∗ 𝑢). If we want to compute the norm of 𝑓(𝑢) for ‖𝑢‖  ≤ 𝑛, 

we see that ‖𝑓(𝑢)‖2 = ‖𝑡𝑛(𝑢
∗𝑢)𝑢∗𝑢𝑡𝑛(𝑢

∗𝑢)‖ =  ‖𝑔(𝑢∗𝑢)‖  where 𝑔(𝑥)  =
 𝑥𝑡𝑛

2 (𝑥). Since 

𝑔(𝑥) = {
𝑥  0 ≤ 𝑥 ≤ 1
1   1 < 𝑥 ≤ 𝑛

 

we obtain that the norm of 𝑓(𝑢) is at most 1 when ‖𝑢‖ ≤  𝑛. 

   Now fix polynomials 𝑝𝑘(𝑥) which tend to 𝑡𝑛(𝑥) from below on the interval [0, 𝑛]. By 

doinga calculation similar to the one above, the ∗ -polynomial 𝑞𝑘 =  𝑢𝑝𝑘(𝑢
∗𝑢)  sends 

operators of norm ≤  𝑛 to operators of norm ≤  1. This means that 𝑇𝑞𝑘 sends elements of 

𝐷𝑛  to elements of 𝐷1  by the specification of our language for 𝐶∗ -algebras. Moreover, 

𝑎𝑝𝑘(𝑎
∗𝑎) tends to 𝑎 as 𝑘 tends to infinity. Since 𝐷1(ℳ) is complete, we obtain that 𝑎 ∈

𝐷1(ℳ). 
Proposition(5.1.3)[302]: The class of 𝐶∗-algebras is axiomatizable by theory 𝑇𝐶∗ consisting 

of axioms (i)-(x). 

Proof: It is clear that for a 𝐶∗-algebra 𝐴 the model 𝑀(𝐴) as defined in satisfies 𝑇𝐶∗. 
Conversely, if a model 𝑀  of ℒ𝐶∗  satisfies 𝑇𝐶∗  then the algebra 𝐴𝑀 obtained from 𝑀  by 

forgetting the domains is a 𝐶∗-algebra by Gel'fand-Naimark. 

To see that this provides an equivalence of categories, we only need to show that 𝑀(𝐴𝑀) ≅
𝑀 . To see this, we must show that the domains on 𝑀  are determined by 𝐴𝑀 . Since 

multiplication by a scalar 𝑟 provides a bijection between the operator norm unit ball and the 

ball of radius 𝑟, it suffices to show that the operator norm unit ball and those elements of 

𝐷1(𝑀) coincide. By axiom 9, we have that the latter is contained in the former. The other 

direction is just the calculation we did immediately before the Proposition.  

We continue our discussion of model theory of tracial von Neumann algebras. Axioms for 

tracial von Neumann algebras and II1 factors appear in the context of bounded continuous 

logic in [304]; those axioms are restricted to axiomatizing the norm one unit ball. We feel 

in this context axiomatizing von Neumann algebras in the logic described in the previous 

makes the axioms more natural. Here are some sentences that evaluate to zero in a tracial 

von Neumann algebra 𝑁: 

(xi) All axioms (i)-(v) plus 1𝑥 =  𝑥 =  𝑥1 for the constant 1 of 𝑁. In case of (v) we will 

write ‖𝑥‖2 for 𝑑𝑈 (𝑥;  0). 
(xii) 𝑡𝑟(𝑥 +  𝑦)  =  𝑡𝑟(𝑥)  +  𝑡𝑟(𝑦) 
(xiii) 𝑡𝑟(𝑥∗)  = 𝑡𝑟(𝑥)̅̅ ̅̅ ̅̅ ̅, 𝑡𝑟(⋋ 𝑥)  =⋋  𝑡𝑟(𝑥), 𝑡𝑟(𝑥𝑦)  =  𝑡𝑟(𝑦𝑥), 𝑡𝑟(1)  =  1, 

(xiv) 𝑡𝑟(𝑥∗𝑥)  =  ‖𝑥‖2
2. 

Any model of these axioms will be a tracial ∗-algebra. The remaining axiom will guarantee 

that the relationship between the domains and the 2-norm is correct. 

(xv) For every 𝑛,𝑚 ∈ ℕ,  

sup
𝑎∈𝐷𝑛

sup
𝑥∈𝐷𝑚

max{0, ‖𝑎𝑥‖2 − 𝑛‖𝑥‖2} 

In addition to these axioms, we also introduce terms 𝑡𝑝  for all unary ∗-polynomials 𝑝 as 

discussed above for 𝐶∗-algebras. 
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Proposition(5.1.4)[302]: The class of tracial von Neumann algebras is axiomatizable by 

theory 𝑇T𝑟 consisting of axioms (x)-(xv). 

Proof: It is clear that for a tracial von Neumann algebra 𝑁 the model ℳ(𝑁) as defined in 

§2.3.2 satisfies 𝑇T𝑟. Assume ℳ satisfies 𝑇T𝑟. To see that in the sort 𝑈 we have a tracial von 

Neumann algebra suppose 𝐴 is the underlying set for 𝑈 in ℳ. Then 𝐴 is a complex pre-

Hilbert space with inner product given by 𝑡𝑟(𝑦∗𝑥). Left multiplication by 𝑎 ∈ 𝐴 is a linear 

operator on 𝐴 and axiom (xv) guarantees that 𝑎 is bounded. The operation∗ is the adjoint 

because for all 𝑥 and 𝑦 we have 〈𝑎𝑥, 𝑦〉  =  𝑡𝑟(𝑦∗𝑎𝑥)  =  𝑡𝑟((𝑎∗𝑦)∗𝑥)  =  〈𝑥, 𝑎∗𝑦〉. Thus 𝐴 

is faithfully represented as a ∗-algebra of Hilbert space operators. We know that 𝐷𝑛(𝐴) is 

complete with respect to the 2-norm for all 𝑛 and the 2-norm induces the strong operator 

topology on 𝐴 in this representation; it follows from the Kaplansky density theorem that 𝐴 

is a tracial von Neumann algebra. 

As in the case of 𝐶∗-algebras above, to show that we have an equivalence of categories, it 

will suffice to show that if ℳ is a model of the 𝑇𝑇𝑟   then 𝐷1(𝐴) is given by the operator 

norm unit ball on 𝐴 . Axiom (xv) guarantees that 𝑎 ∈  𝐷1(𝐴)  then ‖𝑎‖  ≤ 1  and the 

functional calculus argument from the proof of Proposition(5.1.3) shows 𝐷1(𝐴)equals the 

operator norm unit ball.  

   For 𝑎 in a tracial von Neumann algebras define the following: 

𝜉(𝑎) = √‖𝑎‖2
2 𝑡𝑟2(𝑎), 

𝜂(𝑎) =  sup
𝑏∈𝐷1

‖𝑎𝑏 − 𝑏𝑎‖2 

1Since 𝜉 and 𝜂 are interpretations of terms in the language of tracial von Neumann algebras, 

the following is a sentence of this language. 

(xvi) sup
𝑎∈𝐷1

max{0, (𝜉(𝑎) 𝜂(𝑎))}. 

Also consider the axiom 

 (xvii) inf
𝑎∈𝐷1

(‖𝑎𝑎∗ (𝑎𝑎∗)2‖ + |𝑡𝑟(𝑎𝑎∗) − 1 ∕ 𝜋|). 

Proposition(5.1.5)[302]: (i) The class of tracial von Neumann factors is axiomatizable by 

the theory consisting of axioms (x)-(xvi). 

(ii) The class of II1factors is axiomatizable by the theory 𝑇II1  consisting of axioms (x)-(xvii). 

Proof: For (i), by Proposition(5.1.4), it suffices to prove that if 𝑀 is a tracial von Neumann 

algebra then axiom (xvi) holds in 𝑀 if and only if 𝑀 is a factor. If it is not a factor, let 𝑝 be 

a nontrivial central projection. Then 𝜉(𝑝) = √𝑡𝑟(𝑝) − 𝑡𝑟(𝑝)2 >  0  but 𝜂(𝑝) =  0, 
therefore (xvi) fails in 𝑀. If it is a factor, the inequality 𝜂(𝑎)  ≥ 𝜉(𝑎) follows from [120]. 

For (ii) we need to show that axiom (xvii) holds in a tracial factor 𝑀 if and only if 𝑀 

is type II1. When 𝑀 is type II1, (xvii) is satisfied by taking 𝑎 to be a projection of trace 1 ∕
𝜋. On the other hand, a tracial factor 𝑀 not of type II1is some matrix factor 𝕄𝑘. If 𝕄𝑘 were 

to satisfy (xvii), by compactness of the unit ball there would be 𝑎 ∈ 𝕄𝑘  satisfying 

‖(𝑎𝑎∗) − (𝑎𝑎∗)2‖2 =  0 and |tr(𝑎𝑎∗)  1 ∕ 𝜋| =  0. Thus 𝑎𝑎∗ ∈ 𝕄𝑘would be a projection 

of trace 1 𝜋⁄ , which is impossible. (Of course this argument still works if 1 ∕ 𝜋 is replaced 

with any irrational number in (0, 1).)  

We introduce variants of some of the standard model-theoretic tools for the logic described. 

Assume ℳ𝑖, for 𝑖 ∈  𝐼 , are models of the same language and 𝒰 is an ultrafilter on 𝐼. The 

ultra product ∏ ℳ𝑖𝒰  is a model of the same language defined as follows. 
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   In a model ℳ, we write 𝑆M and 𝐷M  for the interpretations 𝑆 and 𝐷 in ℳ. For each sort 

𝑆 ∈  𝑆, let 

𝑋𝑆 = {𝑎̅  ∏ 𝑆ℳ𝑖

𝑖∈𝐼
: for some 𝐷 ∈  𝒟𝑆 , {𝑖 ∈  𝐼 ∶ 𝑎𝑖  𝐷

ℳ𝑖}  ∈ 𝒰} . 

For 𝑎̅ and 𝑏̅ in 𝑋𝑆, 𝑑𝑆
′ (𝑎̅, 𝑏̅) = lim

𝑖→𝒰
𝑑𝑆
ℳ𝑖  (𝑎𝑖 , 𝑏𝑖) defnes a pseudo-metric on 𝑋𝑆 . Let 𝑆ℳ

′
be 

the quotient space of 𝑋S with respect to the equivalence 𝑎̅ ~𝑏̅iff𝑑𝑆
′ (𝑎̅ , 𝑏̅) = 0  and Let 𝑑𝑆 

be the associated metric. For 𝐷 ∈ 𝒟𝑆 , let 𝑆ℳ
′
 be the quotient of  

{𝑎̅  ∈  𝑋𝑆: {𝑖 ∈ 𝐼 ∶  𝑎𝑖 ∈  𝐷
ℳ𝑖  } ∈ 𝒰}. 

All the functions and predicates are interpreted in the natural way. Their restrictions to each 

𝐷̅ are uniformly continuous and respect the corresponding uniform continuity moduli. If 

ℳ𝑖 =  ℳ for all 𝑖 then we call the ultraproduct an ultrapower and denote it by ℳ𝒰. 

The generalized ultraproduct construction' as introduced in [311] reduces to the model-

theoretic ultraproduct in the case of both tracial von Neumann algebras and 𝐶∗-algebras. 

     We record a straightforward consequence of the definitions and the axiomatizability, that 

the functors corresponding to taking the ultrapower and defining a model commute. The 

ultrapowers of 𝐶∗-algebras and tracial von Neumann algebras are defined in the usual way. 

Proposition(5.1.6)[302]: If 𝐴 is 𝑎 𝐶∗-algebra or 𝑎 tracial von Neumann algebra and 𝒰 is an 

ultrafilter then ℳ(𝐴𝒰)  =  ℳ(𝐴)𝒰. 

Corollary(5.1.7)[302]: A 𝐶∗ -algebra(or 𝑎  tracial von Neumann algebra) 𝐴  has 

nonisomorphic ultrapowers if and only if the model 𝑀(𝐴) has nonisomorphic ultrapowers. 

Proof: This is immediate by Proposition(5.1.3), Proposition(5.1.4) and Proposition (5.1.6).  

It is worth remarking that although the proof of Proposition(5.1.6) is straightforward, this 

relies on a judicious choice of domains of quantification. In general, it is not true that if one 

defines domains for a metric structure then the domains have the intended or standard 

interpretation in the ultraproduct. Von Neumann algebras themselves are a case in point. If 

we had defined our domains so that 𝐷𝑛 were those operators with 𝑙2-norm less than or equal 

to 𝑛 then there would be several problems. The most glaring is that these domains are not 

complete; even if one persevered to an ultraproduct, the resulting object would contain 

unbounded operators. 

    Ward Henson has pointed out to us that this same problem with domains manifests itself 

in pointed ultrametric spaces. If one defines domains as closed balls of radius 𝑛 about the 

base point, there is no reason to expect that the domains in an ultraproduct will also be closed 

balls. This unwanted phenomenon can be avoided by imposing a geodesic-type condition 

on the underlying metric; see for instance [307]. 

     The following is  Los's theorem, also known as the Fundamental Theorem of 

ultraproducts (see [303]). It is proved by chasing the definitions. 

Proposition(5.1.8)[302]: Let ℳ𝑖  , 𝑖 ∈  ℕ, be a sequence of models of language ℒ,𝒰 be an 

ultra filter on ℕ and 𝒩 = ∏ 𝑀𝑖𝒰  
(i) If 𝜙 is an ℒ -sentence then 𝜙𝒩 = limi→𝒰 𝜙

ℳ𝑖: 

(ii) If 𝜙  is an ℒ -formula then 𝜙𝒩(𝑎) = lim
𝑖→𝒰

𝜙ℳ𝑖(𝑎𝑖) where(𝑎𝑖: 𝑖 ∈ ℕ) is a representing 

sequence of 𝑎. 

(iii) The diagonal embedding of 𝑎 model ℳ in to ℳ𝒰 elementary. 

     Together with the axiomatizability (Propositions(5.1.3) and(5.1.4)) and 

Proposition(5.1.6), this implies the well-known fact that the ultraproduct of 𝐶∗-algebras 
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(tracial von Neumann algebras, II1 factors, respectively) is a 𝐶∗ -algebra (tracial von 

Neumann algebra, II1 factor, respectively). 

     In the setting of tracial von Neumann algebras, we have that for any formula 

𝜙(𝑥1, . . , 𝑥𝑛)with variables from the algebra sort there is a uniform continuity modulus 𝛿 

such that for every tracial von Neumann algebra ℳ,𝜙 defines a function 𝑔 on the operator 

norm unit ball of ℳ which is uniformly continuous with respect to 𝛿 and naturally extends 

to the operator norm unit ball of any ultrapower of ℳ. 
     In [120] we dealt with functions 𝑔 satisfying the properties in the previous paragraph and 

used them to define a linear ordering showing that some ultrapowers and relative 

commutants are nonisomorphic. Using model theory, we can interpret this in a more general 

context and instead of `tracial von Neumann algebra' consider 𝑔 defined with respect to any 

axiomatizable class of operator algebras. Clearly, Lemma(5.1.1) and Proposition(5.1.8) 

together imply the following, used in the proof of Theorem(5.1.27). 

Corollary (5.1.9)[302]: If𝜓 is an 𝑛-ary formula, then the function 𝑔  defined to be the 

interpretation of 𝜓 on 𝑎 tracial von Neumann algebra 𝑀 satisfies the following [120]: 

(G1) 𝑔 defines a uniformly continuous function on the 𝑔 -th power of the unit ball of 𝑀; the 

uniform continuity does not depend on the particular algebra 𝑖. 𝑒. for every 𝜖 there is  𝑎 𝛿 

independent of the choice of algebra; 

(G2) For every ultrafilter 𝒰 the function 𝑔 can be canonically extended to the 𝑛-th power 

of the unit ball of the ultrapower (𝑀≤1)
𝒰 = (𝑀𝒰)≤1 

The cardinality of the language andthe number of formulas are crude measures of the 

Loowenheim-Skolem cardinal for continuous logic. We define a topology on formulas 

relative to a given continuous theory in order to give a better measure. 

     Suppose 𝑇 is a continuous theory in a language ℒ . Fix variables 𝑥̅  =  𝑥1…𝑥𝑛  and 

domains 𝐷̅  =  𝐷1…𝐷𝑛 consistent with the sorts of the 𝑥′𝑠. For formulas 𝜑 and  𝜓 defined 

on 𝐷̅, set 

𝑑𝐷̅
𝑇(𝜑(𝑥̅), 𝜓(𝑥̅)) =  sup { sup

𝑥̅∈(𝐷̅ℳ)𝑛
|𝜑 − 𝜓(𝑥̅):ℳ| = 𝑇} . 

Now 𝑑𝐷̅
𝑇  is a pseudo-metric; let 𝜒(𝑇, 𝐷̅) be the density character of this pseudo-metric on 

the formulas in the variables 𝑥̅ and define the density character of ℒ with respect to 𝑇, 𝜒(𝑇), 
as ∑ 𝜒(𝑇, 𝐷̅)𝐷̅ . 

     We will say that ℒ is separable if the density character of ℒ is countable with respect to 

all ℒ -theories. Note that the languages considered, in particular ℒ𝑇𝑟 ,  and ℒ𝐶∗are separable. 

Proposition(5.1.10)[302]: Assume ℒ is 𝑎 separable language. Then for every model ℳ of 

ℒ the set of all interpretations of formulas of ℒ is separable in the uniform topology. 

Proof: Since we are allowing all continuous real functions as propositional connectives the 

set of formulas is not countable. However, a straightforward argument using polynomials 

with rational coefficients and the Stone-Weierstrass theorem gives a proof.  

     The following is a version of the downward Lowenheim-Skolem theorem (cf. [303]). 

Some of its instances have been rediscovered and applied in the context of 𝐶∗-algebras (see, 

e.g., [319] or the discussion of SI properties in [100]). We use the notation 𝜒(𝑋),  to 

represent the density character of a set 𝑋 in some ambient topological space. 

Theorem(5.1.11)[302]: Suppose that ℳ is 𝑎 metric structure and 𝑋 ⊆  𝑀. Then there is 

𝒩 ≺ℳ such that 𝑋 ⊆  𝑀 and 𝜒(𝒩)  ≤  𝜒(Th(ℳ)) +  𝜒(𝑋). 
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Proof: Fix ℱ , a dense set of formulas, witnessing 𝜒(Th(ℳ)) . Define two increasing 

sequences 〈𝑋𝑛: 𝑛 ∈ ℕ 〉and 〈𝐸𝑛: 𝑛 ∈ ℕ 〉of subsets of 𝑀 inductively so that: 

(i) 𝑋0 =  𝑋; 
(ii) 𝐸𝑛is dense in 𝑋n and 𝜒(𝑋𝑛) = |𝐸𝑛| for all 𝑛 ∈ ℕ; 

(iii) (𝜒(𝑋𝑛) ≤ 𝜒(Th(𝑀)) + 𝜒(𝑋); and,  

 

 (iv) for every rational number 𝑟, formula 𝜑(𝑥, 𝑦̅)  ∈  ℱ, domain 𝐷 in the sort of the variable 

𝑥 and 𝑎̅ =  𝑎1, … , 𝑎𝑘 ∈  𝐸𝑛  where 𝑘 is the length of 𝑦̅, if ℳ ⊨ inf
𝑥∈𝐷

𝜑(𝑥, 𝑎̅) ≤  𝑟 then for 

every 𝑛 >  0 there is 𝑏 ∈  𝑋𝑛+1 ∩ 𝐷(ℳ) such that ℳ ⊨ 𝜑(𝑏, 𝑎̅)  ≤  𝑟 + (1/𝑛). 
It is routine to check that ⋃ 𝑋𝑛𝑛∈ℕ

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  is the universe of an elementary submodel 𝒩 ≺
ℳ having the correct density character.  

Corollary (5.1.12)[302]: Assume ℒ is separable. If ℳ is 𝑎 model of ℒ and 𝑋 is an infinite 

subset of its universe, then ℳ has an elementary submodel whose density character is not 

greater than that of 𝑋 and whose universe contains 𝑋. 

Suppose that ℳ is a model in a language ℒ, 𝐴 ⊆ 𝑀 and 𝑥̅ is a tuple of free variables thought 

of as the type variables. 

     We follow [303] and say that a condition over 𝐴 is an expression of the form 𝜑(𝑥̅, 𝑎̅) ≤
 𝑟 where 𝜑 ∈ ℒ, 𝑎̅ ∈ 𝐴 and 𝑟 ∈ ℝ. If 𝒩 ≻ℳ and 𝑏̅ ∈ 𝑁if then 𝑏̅satisfies 𝜑(𝑥̅, 𝑎̅) ≤ 𝑟 if 𝒩 

satisfies𝜑(𝑏̅, 𝑎̅) ≤ 𝑟. 
   Fix a tuple of domains 𝐷̅ consistent with 𝑥 ̅, i.e., if 𝑥i is of sort 𝑆 then 𝐷i is a domain in 

𝑆. 𝐴 set of conditions over 𝐴 is called a 𝐷̅-type over  𝐴.  𝐴  𝐷̅-type is consistent if for every 

finite 𝑝0 ⊆  𝑝  and 𝜖 >  0  there is 𝑏̅  ∈ 𝐷̅(𝑀)  such that if ′′𝜑(𝑥̅, 𝑎̅)  ≤  𝑟" ∈  𝑝0  then 𝑀 

satisfies 𝜑(𝑏̅, 𝑎̅)  ≤  𝑟 + 𝜖. We say that a 𝐷̅-type 𝑝 over 𝐴 is realized in 𝒩 ≻ℳ if there is 

𝑎̅  ∈ 𝐷̅(𝑁) such that 𝑎̅ satisfies every condition in 𝑝. The following proposition links these 

two notions: 

Proposition(5.1.13)[302]: The following are equivalent: 

(i) 𝑝 is consistent. 

(ii) 𝑝 is realized in some 𝒩 ≻ℳ. 

(iii) 𝑝 is realized in an ultrapower of ℳ. 
Proof: (iii) implies (ii) and (ii) implies (i) are clear. To see that (i) implies (iii), let 𝐹 ⊆ 𝑝 ×
ℝ+ be a finite set, and let 𝑏̅𝐹 ∈ 𝐷̅(𝑀)  satisfy 𝜑(𝑥̅, 𝑎̅) ≤  𝑟 + 𝜖  for every (𝜑(𝑥̅, 𝑎̅) ≤
 𝑟, 𝜖)  ∈  𝐹. Let 𝒰 be a non-principal ultrafilter over 𝑃𝑓𝑖𝑛(𝑝 × ℝ+). Then 𝑝 is realized by 

(𝑏̅𝐹: 𝐹 ∈  𝒫𝑓𝑖𝑛(𝑝 × ℝ+)) ∕ 𝒰 in ℳ𝒰.  

    A maximal consistent 𝐷̅-type is called complete. Let 𝑆𝐷̅(𝐴) be the set of all complete𝐷̅-

types over 𝐴. In fact, 𝑝 is a complete𝐷̅-type over 𝐴 iff 𝑝 is the set of all conditions true for 

some 𝑎̅  ∈  𝐷̅(𝒩) where 𝒩 ≻ℳ. 

 Notation(5.1.14)[302]: Assume 𝑝 is a complete type over 𝐴 and 𝜙(𝓍, a̅) is a formula with 

parameters a̅ in 𝐴. Since 𝑝 is consistent and maximal, there is the unique real number 𝑟 =
 sup{𝑠 ∈ ℝ: the condition 𝜙(𝓍, a̅) ≤  𝑠 is in 𝑝} . In this situation we shall extend the 

notation by writing 𝜙(𝓍, a̅) =  𝑟 . We shall also use expressions such 

as |𝜙(𝓍, 𝑎̅)  _𝜙(𝑝, 𝑏̅) | > 𝜀. 

   We will also often omit the superscript D̅ when it either does not matter or is implicit. The 

set 𝑆D̅(𝐴) carries two topologies: the logic topology and the metric topology. 
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Fix 𝜑, 𝑎̅  ∈ 𝐴 and 𝑟 ∈ ℝ. A basic closed set in the logic topology has the form 

{𝑝 ∈  𝑆D̅(𝐴): 𝜑(𝑥̅, 𝑎̅)  ≤  𝑟 ∈  𝑝} 
The compactness theorem shows that this topology is compact and it is straightforward that 

it is Hausdorff. 

We can also put a metric on 𝑆D̅(𝐴)  as follows: for 𝑝, 𝑞 ∈ 𝑆D̅(𝐴)  define (𝑝, 𝑞) =
 inf{𝑑(𝑎, 𝑏):  there is an 𝒩 ≻ℳ,𝑎  realizes 𝑝 and b realizes 𝑞}: 

The metric topology is in general finer than the logic topology due to the uniform continuity 

of formulas. 

Example(5.1.15)[302]: Let 𝑀 be a model corresponding to a tracial von Neumann algebra 

or a unital 𝐶∗-algebra. 

(i)The relative commutant type of ℳ is the type over 𝑀 consisting of all conditions of the 

form  

𝑑([𝑎, 𝓍], 0) = 0  
    (ii) Another type over ℳ consists of all conditions of the form 

𝑑(𝑎, 𝓍) ≥ 𝜀  
for 𝑎 ∈ 𝑀 and a fixed 𝜀 > 0. 

   While the relative commutant type is trivially realized by the center of ℳ,  the type 

described in (ii) is never realized in ℳ. However, the second type is sometimes consistent. 

For instance, if ℳ is an infinite dimensional 𝐶∗-algebras then (ii) is consistent. Hence not 

every consistent type over ℳ is necessarily realized in ℳ.  
A model ℳ of language ℒ is countably saturated if for every countable subset 𝑋 of the 

universe of ℳ, every consistent type over 𝑋 is realized in ℳ. More generally, if 𝒦 is a 

cardinal then ℳ is 𝑘-saturated if for every subset 𝑋 of the universe of ℳ of cardinality <
𝐾every consistent type over 𝑋 is realized in ℳ. We say that ℳ is saturated if it is 𝒦-

saturated where 𝒦 is the density character of ℳ. 

   Thus countably saturated is the same as ℵ1-saturated, where ℵ1is the least uncountable 

cardinal. The following is a version of a classical theorem of Keisler for the logic of metric 

structures. 

Proposition(5.1.16)[302]: If ℳ𝑖, for 𝑖 ∈ ℕ,  are models of the same language and 𝒰 is 𝑎 

nonprincipal ultrafilter on ℕ then the ultraproduct ∏ ℳ𝑖𝒰  is countably saturated. If ℳ is 

separable then the relative commutant of ℳ in ℳ𝒰 is countably saturated. 

Proof: A straightforward diagonalization argument, cf. the proof of Proposition 4.8.  

The following lemma is a key tool. 

Lemma(5.1.17)[302]: Assume 𝒩  is a countably saturated ℒ -structure, 𝐴 and 𝐵  are 

separable ℒ structures,and 𝐵 is an elementary submodel of 𝐴.Also assumeψ: ℬ → 𝒩is an 

elementary embedding. Then 𝛹 can be extended to an elementary embedding 𝛷: 𝒜 → 𝒩. 

 
Proof: Enumerate a countable dense subset of 𝐴 as 𝑎𝑛, for 𝑛 ∈ ℕ, and fix a countable dense 

𝐵0 ⊆ 𝐵. Let 𝑡n be the type of 𝑎𝑛over 𝐵0 ∪ {𝑎𝑗: 𝑗 < 𝑛}. If 𝑡 is a type over a subset 𝑋 of 𝐴 
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then by 𝛹(𝑡) we denote the type over the 𝛹 -image of 𝑋 obtained from 𝑡 by replacing each 

𝑎 ∈ 𝐴 𝑏𝑦 𝛹(𝑎). By countable saturation realize 𝛹(𝑡0) in 𝒩 and denote the realization by 

𝛹(𝑎0) in order to simplify the notation. The type 𝛹(𝑡1)is realized in 𝒩 by an element that 

we denote by (𝑡1) . Continuing in this manner, we find elements 𝛹(𝑎𝑛)in 𝒩for  𝑛 ∈ ℕ. 

Since the sequence 𝑎n, for 𝑛 ∈ ℕ, is dense in 𝐴, by elementarity the map 𝑎𝑛 → 𝛹(𝑎𝑛) can 

be extended to an elementary embedding 𝛷: 𝒜 ⟶𝒩 as required.  

The analogue of Lemma(5.1.17) holds when, instead of assuming 𝒜  to be 

separable,𝒩  is assumed to be 𝒦-saturated for some cardinal 𝒦greater than the density 

characterof 𝒜 . Using a transfinite extension of Cantor's back-and-forth method, 

Proposition(5.1.12) and this analogue of Lemma(5.1.17) one proves the following. 

Proposition(5.1.18)[302]: Assume ℒ is a separable language. If ℳ and 𝒩 are elementarily 

equivalent saturated models of ℒ that have the same uncountable density character then they 

are isomorphic.  

We refer to tracial von Neumann algebras (𝐶∗‑algebras, unitary groups of a tracial 

von Neumann algebra or a 𝐶∗-algebra, respectively) as`algebras.' 

Corollary(5.1.19)[302]: Assume the Continuum Hypothesis. If 𝑀 is an algebra of density 

character ≤ 𝑐  then all of its ultrapowers associated with nonprincipal ultrafilters are 

isomorphic. If 𝑀 is separable, then all of its relative commutants in ultrapowers associated 

with nonprincipal ultrafilters are isomorphic. 

Proof: The Continuum Hypothesis implies that such ultrapowers are saturated and by 

Proposition(5.1.8), Proposition(5.1.16) and Proposition(5.1.18) they are all isomorphic. If 

𝑀 is separable, then the isomorphism between the ultrapowers can be chosen to send the 

diagonal copy of 𝑀 in one ultrapower to the diagonal copy of 𝑀 in the other ultrapower and 

therefore the relative commutants are isomorphic.  

     It should be noted that, even in the case when the Continuum Hypothesis fails, countable 

saturation and a transfinite back-and-forth construction together show that ultrapowers of a 

fixed algebra are very similar to each other. 

Corollary(5.1.20)[302]: Assume 𝑀 is a separable algebra and 𝒰 and 𝒱 are nonprincipal 

ultrafilters on ℕ. Then for all separable algebras 𝑁 we have the following: 

(i) 𝑁 is a subalgebra of 𝑀𝒰 if and only if it is a subalgebra of 𝑀𝒱; 
(ii) 𝑁 is 𝑎 subalgebra of 𝑀′ ∩ 𝑀𝒰 if and only if 𝑁 is a subalgebra of  𝑀′ ∩𝑀𝜈. 

Proof: These classes of algebras are axiomatizable, so instead of algebras we can work with 

the associated models. Supposing that 𝒩 ⊂ℳ𝒰 ,  apply the downward Lowenheim-Skolem 

theorem (Proposition (5.1.13) to find an elementary submodel 𝒫 of ℳ𝒰 whose universe 

contains 𝑁 and the diagonal copy of 𝑀. Now consider the elementary inclusion ℳ ⊆ 𝒫,  
and use Lemma(5.1.17) to extend the map which identifies ℳ with the diagonal subalgebra 

of ℳ𝒱 , the latter being countably saturated by Proposition(5.1.16). This extension carries 

𝑃 onto asubalgebra of 𝑀𝒱 and restricts to an isomorphism from 𝑁 onto its image. In case 𝑀 

and 𝑁 commute, their images in M𝒱 do too.  

     We also record a refining of the fact that the relative commutants of a separable algebra 

are isomorphic assuming CH. 

Corollary(5.1.21)[302]: Assume 𝑀,𝒱 and 𝒰 are as in Corollary(5.1.20). Then the relative 

commutants 𝑀′ ∩ 𝑀𝒰 and 𝑀′ ∩ 𝑀𝒱 are elementarily equivalent. 
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Proof: By countable saturation of ultrapowers, a type 𝑝 over the copy of 𝑀 inside 𝑀𝒰 is 

realized if and only the same type over the copy of 𝑀 inside 𝑀𝒱 is realized. By considering 

only types 𝑝 that extend the relative commutant type the conclusion follows.  

     The conclusion of Corollary(5.1.21) fails when 𝑀 is the 𝐶∗-algebra ℬ(ℓ2). By [309] CH 

implies ℬ(ℓ2)′ ∩ ℬ(ℓ2)𝒰  is trivial for one 𝒰  and infinite-dimensional for another.This 

implies that the assumption of separability is necessary in Corollary (5.1.21). 

This defines the two main model theoretic notions: stability and the order property. We show 

that each is equivalent to the negation of the other Theorem (5.1.26), and that the order 

property is equivalent to the existence of nonisomorphic ultrapowers when the continuum 

hypothesis fails Theorem (5.1.27). While the analogue of the former fact is well-known in 

the discrete case, we could not find a reference to the analogue of the latter fact in the discrete 

case. We have already seen that when the continuum hypothesis holds all ultrapowers are 

isomorphic Corollary (5.1.19). 

Definition(5.1.22)[302]: We say a theory 𝑇 is ⋋-stable if for any model 𝑀 of 𝑇 of density 

character ⋋ , the space of complete types 𝑆(𝑀)  has density character ⋋  in the metric 

topology on 𝑆(𝑀). We say 𝑇 is stable if it is stable for some ⋋ and 𝑇 is unstable if it is not 

stable. 

    For a theory 𝑇 in a separable language one can show that 𝑇 is stable if and only if it is 𝑐-
stable (see the proof of Theorem (5.1.2)). 

Our use of the term “stable” in agrees with model theoretic terminology in both continuous 

and discrete logic. Motivated by model theory, in 1981 Krivine and Maurey de_ned a related 

notion of stability for Banach spaces that is now more familiar to many analysts ([316]). It 

is characterized by the requirement 

(*)                   lim
𝑖→𝒰

lim
𝑖→𝒱
‖𝑥𝑖 + 𝑦𝑗‖  = lim

𝑖→𝒰
lim
𝑖→𝒱
‖𝑥𝑖 + 𝑦𝑗‖, 

for any uniformly bounded sequences {𝓍i} and {𝑦𝑗}  and any free ultrafilters 𝒰;𝒱 on ℕ. 

One can show ([314]) that a Banach space satisfies (*) if and only if no quantifier-free 

formula has the order property in that structure, so model theoretic stability of the theory of 

a Banach space 𝑋 implies stability of 𝑋 in the sense of Krivine-Maurey. 

    We proved in [120] that all infinite-dimensional 𝐶∗ -algebras are unstable. The same 

cannot be said for infinite-dimensional Banach algebras: take a stable Banach space and put 

the zero product on it. However a stable Banach space can become unstable when it is turned 

into a Banach algebra. We exhibit this behavior in Proposition(5.1.29) below. 

Definition(5.1.23)[302]: We say that a continuous theory 𝑇 has the order property if there 

is a formula  𝜓(𝓍̅, 𝑦̅) with the lengths of 𝑥̅ and 𝑦̅ the same, and a sequence of domains 𝐷̅ 

consistent with the sorts of 𝑥̅ and 𝑦,̅ and. a model 𝑀 of 𝑇 and 〈𝑎̅𝑖: 𝑖 ∈ ℕ〉 ⊆ 𝐷̅(𝑀) 
such that 

 𝜓(𝑎𝑖 , 𝑎𝑗) = if 𝑖 < 𝑗and 𝜓(𝑎𝑖 , 𝑎𝑗) = 1 if 𝑖 ≥ 𝑗. 

     Note that these evaluations are taking place in 𝑀 . Also note that by the uniform 

continuity𝜀 = 0 such that 𝑑(𝑎̅𝑖 , 𝑎̅𝑗) ≥ 𝜀 for every 𝑖 ≠  𝑗 where the metric here is interpreted 

as the supremum of the coordinatewise metrics. 

Proposition(5.1.24)[302]: Th(𝐴) has the order property if and only if there is 𝜓 and 𝐷̅ such 

that for all n and 𝛿 >  0, there are 𝑎1, . . . , 𝑎𝑛 ∈ 𝐷̅(𝐴) such that 

 𝜓(𝑎𝑖 , 𝑎𝑗) ≤ 𝛿 if 𝑖 < 𝑗 and 𝜓(𝑎𝑖 , 𝑎𝑗) ≥ 1 − 𝛿 if 𝑖 ≥ 𝑗. 



 

152 

Definition(5.1.25)[302]: Suppose that 𝑀 is a metric structure and 𝑝(𝑥̅)  ∈ 𝑆𝐷̅(𝑀) is a type. 

We say that 𝑝 is finitely determined if for every formula 𝜑(𝑥̅, 𝑦̅), choice of domains 𝐷̅′ 
consistent with the variables 𝑦̅, and 𝑚 ∈ ℕ,  there is 𝑘 ∈ ℕ and a finite set 𝐵 ⊆ 𝐷̅(𝑀)  
such that for every 𝑐1̅, 𝑐2̅ ∈ 𝐷̅

′ (𝑀) . 

lim
𝑏̅∈𝐵
|𝜑(𝑏̅, 𝑐1̅) − 𝜑(𝑏̅, 𝑐1̅)|  ≤

1

𝑘
⇒ |𝜑(𝑝, 𝑐1̅) − 𝜑(𝑝, 𝑐1̅)| ≤

1

𝑚
. 

Theorem(5.1.26)[302]: The following are equivalent for 𝑎 continuous theory 𝑇: 

(i) 𝑇 is stable.  

(ii) 𝑇 does not have the order property. 

(iii) If 𝑀 is a model of 𝑇 and 𝑝 ∈ 𝑆(𝑀) then 𝑝 is finitely determined. 

Proof: (i) implies (ii) is standard: suppose that 𝑇 has the order property via a formula𝜃and 

choose any cardinal ⋋.  Fix 𝜇 ≤⋋  least such that 2𝜇 >⋋ (note that 2<𝜇 ≤⋋ . By 

compactness, using the order property, we can find 〈𝑎̅𝑖: 𝑖 ∈ 2
<𝜇〉such that 𝜃(𝑎̅𝑖 , 𝑎̅𝑗) = 0 if 

𝑖 <  𝑗  in the standard lexicographic order and 1  otherwise. Clearly, 𝜒(𝑆(𝐴))  > 𝜒(𝐴) 
where 𝐴 =  {𝑎̅𝑖: 𝑖 ∈ 2

<𝜇} so 𝑇 is not ⋋-stable for any ⋋. 

To see that (iii) implies (i), fix a model 𝑀 of 𝑇 with density character ⋋ where ⋋𝜒(𝑇)=⋋ 

By assumption, every type over 𝑀 is finitely determined and so there are at most ⋋𝜒(𝑇)=⋋
 many types over 𝑀 and so 𝑇 is ⋋-stable. 
Finally, to show that (ii) implies (iii), suppose that there is a type over a model of 𝑇 

which is not finitely determined. Fix 𝑝(𝑥̅) 2 𝑆𝐷̅(𝑀), 𝜑(𝑥̅, 𝑦̅), domains 𝐷̅′ consistent with 

the variables 𝑦̅  and 𝑚 ∈ ℕ  so that for all 𝑘  and finite 𝐵 ⊆ 𝐷̅(𝑀),  there are 𝑛1 , 𝑛1 ∈
𝐷̅′(𝑀)such that 

max
𝑏∈𝐵

|𝜑(𝑏, 𝑛1) − 𝜑(𝑏, 𝑛2)| ≤ 1 ∕ 𝑘 

but 

|𝜑(𝑏, 𝑛1) − 𝜑(𝑏, 𝑛2)| > 1 𝑚⁄ . 
      We now use this 𝑝 to construct an ordered sequence. Define sequences 𝑎𝑗 , 𝑏𝑗𝑐𝑗  and sets 

𝐵𝑗   as follows: 𝐵0 = ∅ . If we have defined 𝐵j , choose 𝑏𝑗 , 𝑐𝑗 ⊆ 𝐷̅
′(𝑀)  such that 

𝑚𝑎𝑥𝑏∈𝐵𝑗|𝜑(𝑏, 𝑏𝑗) − 𝜑(𝑏, 𝑐𝑗)| ≤  1 ∕ 2𝑚 but |𝜑(𝑝, 𝑏𝑗) − 𝜑(𝑝, 𝑐𝑗)| ≤  1 ∕ 𝑚. 

Now choose 𝑎𝑗 ∈ 𝐷̅(𝑀) so that 𝑎j realizes  𝜑(𝑥̅, 𝑏𝑗) − 𝜑(𝑝, 𝑏𝑗) and 𝜑(𝑥̅, 𝑐𝑖) for all 𝑖 ≤  𝑗. 

Let  𝐵𝑗+1 = 𝐵𝑗  {𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗}. It follows that if 𝑖 ≥  𝑗 then |𝜑(𝑎𝑖 , 𝑏𝑗) − 𝜑(𝑎𝑖 , 𝑐𝑗)| ≤  1 ∕ 𝑚. If 

𝑖 ≥  𝑗 then |𝜑(𝑎𝑖 , 𝑏𝑗) − 𝜑(𝑎𝑖 , 𝑐𝑗)| ≤  1 ∕ 2𝑚 since 𝑎𝑖 ∈ 𝐵𝑗. Consider the formula 

𝜃(𝑥1, 𝑦1, 𝑧1, 𝑥2, 𝑦2, 𝑧2) − |𝜑(𝑥1, 𝑦2) − 𝜑(𝑥1, 𝑧2)|. 
Then 𝜃 orders 〈𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖: 𝑖 ∈ ℕ〉 
Theorem(5.1.27)[302]: Suppose that 𝐴  is 𝑎  separable metric structure in 𝑎  separable 

language. 

(i) If the theory of 𝐴 is stable then for any two non-principal ultrafilters 𝒰,𝒱 on ℕ, 𝐴𝒰 ≅
𝐴𝒱. 

(ii) If the theory of 𝐴 is unstable then the following are equivalent: 

(a) 𝐴 has fewer than 22
ℵ0

nonisomorphic ultrapowers associated with nonprincipal 

ultrafilters on ℕ. 

(b) for any two non-principal ultrafilters 𝒰,𝒱 on ℕ,𝐴𝒰 ≅ 𝐴𝒱;  
(c) the Continuum Hypothesis holds. 
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   It is worth mentioning that Theorem(5.1.27) is true in the first order context, as can be 

seen by considering a model of a first-order theory as a metric model with respect to the 

discrete metric. Although this is undoubtedly known to many, we were unable to find a 

direct reference. The proof of (i) will use tools from stability theory, see [305]. 

Proof: (i) Assume that the theory of 𝐴 is stable. We will show that 𝐴𝒰 is 𝑐-saturated and so 

it will follow that 𝐴𝒰 ≅ 𝐴𝒱 no matter what the size of the continuum is (see Proposition 

(5.1.18)). 

   So suppose that 𝐵 ⊆  𝐴𝒰 , |𝐵|  <  𝑐, , and 𝑞 is a type over 𝐵. We may assume that 𝐵 is an 

elementary submodel and that 𝑞 is nonprincipal and complete. As the theory of 𝐴 is stable, 

choose a countable elementary submodel 𝐵0 ⊆ 𝐵 so that 𝑞 does not fork over 𝐵0. We shall 

show that in 𝐴𝒰 one can always find a Morley sequence in 𝑞|𝐵0 of size 𝑐. 

   Towards this end, fix a countable Morley sequence 𝐼  in the type of 𝑞|𝐵0  and let 𝑞̅  =

𝑡𝑝(𝐼 ∕ 𝐵0), a type in the variables 𝑥n for 𝑛 ∈ ℕ. Since 𝐵0 is countable and the language is 

separable, there are countably many formulas   𝜓𝑛(𝑥1, … , 𝑥𝑛, 𝑏𝑛)  over 𝐵0  such that 

𝜓𝑛(𝑥1, … , 𝑥𝑛, 𝑏𝑛) = 0 ∈ 𝑞̅ and {𝜓𝑛(𝑥1, … , 𝑥𝑛, 𝑏𝑛) = 0: 𝑛 ∈  ℕ} axiomatizes 𝑞̅. 

   Now let 𝐷𝑖 = {𝑛 ≥ 𝑖: inf𝑥𝜓𝑖  (𝑥, 𝑏𝑖(𝑛)) < 1 ∕ 𝑖}; For a fixed 𝑛, consider {𝑖: 𝑛 ∈ 𝐷𝑖}. This 

set has a maximum element; call it 𝑖n . Now fix 𝑎1
𝑛, … , 𝑎𝑖𝑛

𝑛 ∈  𝐴  such that  𝜓𝑖𝑛 =

(𝑎1
𝑛, … , 𝑎𝑖𝑛

𝑛 , 𝑏𝑖𝑛) < 1 ∕ 𝑖𝑛 . Now consider the set 𝐽  of all 𝑔 ∶ ℕ →  𝐴  such that 𝑔(𝑛)  ∈

{𝑎1
𝑛, … , 𝑎𝑖𝑛

𝑛 }  for all 𝑛. Any 𝑔 ∈ 𝐽 will satisfy 𝑞|𝐵0in 𝐴𝒰 since every element of 𝐼 realized 

that type. If 𝑔0, … , 𝑔𝑘 are in 𝐽  and distinct modulo 𝑈  then they are independent over 

𝐵0 since 𝐼 was a Morley sequence. To finish then, we need to see that there are 𝑐-many 

distinct 𝑔 ′𝑠  modulo 𝑈. 
This follows from the fact that the in0 ′𝑠 are not bounded. To see this, for a fixed 𝑚, let 𝑋 =
{𝑛 ≥ 𝑚 ∶  inf𝑥 𝜓𝑚(𝑥, 𝑏(𝑛)) ≤  1 ∕ 𝑚}. Pick any 𝑛 ∈ 𝑋. We have that 𝑛 ∈  𝐷𝑚   So 𝑖𝑛 ≥ 𝑚 

and we conclude that the 𝑖𝑛 ′𝑠 are not bounded. 

   Since |𝐵 | <  𝑐,  there is a 𝐽0 of cardinality less than 𝑐 such that 𝐵 is independent from 𝐽 
over 𝐽0. Choosing any 𝑎 ∈  𝐽 \ 𝐽0 and using symmetry of non-forking remembering that 𝐽 
is a Morley sequence over 𝐵0 , it follows that 𝑎 is independent from 𝐵 over 𝐵0 is a model, 

𝑞|𝐵0 has a unique non-forking extension to 𝐵 and it follows that 𝑎 realizes 𝑞. This nishes 

the proof of (i). 

(ii) If the Continuum Hypothesis holds then 𝐴𝒰  is always saturated and so for any two 

ultrafilters 𝒰,𝒱, 𝐴𝒰 ≅ 𝐴𝒱 even if we fix the embedded copy of 𝐴 (Corollary (5.1.19)). 

The implication (a) implies (c) follows from [310] and of course (b) implies (a). However, 

(b) implies (c) also can be proved by a minor modification of proof from [120] (which is in 

turn a modification of a proof from [308]), so we assume that the reader has a copy of the 

former handy and we sketch the differences. Assume the theory of 𝐴 is unstable. Then by 

Theorem(5.1.26) it has the order property. The formula  witnessing the order property 

satisfies [120] by Corollary(5.1.9). Therefore the analogues of [120] can be proved by 

quoting their proofs verbatim. 

Hence if 𝒰 is a nonprincipal ultrafilter on ℕ then 𝐾(𝒰)  =⋋ (defined in [120]) if and only 

if there is a (ℵ0,⋋) − 𝜓 −gap in 𝐴𝒰. By [308], if CH fails then there are ultrafilters 𝒰 and 

𝒱 on ℕ such that 𝑘(𝒰)  ≠ 𝑘(𝒱) and this concludes the proof.  

We include two examples promised earlier and state three rather different problems. 
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Recall that UHF, or uniformly hyperfinite, algebras are 𝐶∗ -algebras that are 𝐶∗ -tensor 

products of (finite-dimensional) matrix algebras. They form a subcategory of 𝐶∗-algebras 

and the morphisms between them are *-homomorphisms. 

Proposition(5.1.28)[302]: The category of UHF algebras is not axiomatizable. 

Proof: By Proposition(5.1.6) it will suffice to show that this category is not closed under 

taking (𝐶∗-algebraic) ultraproducts. We do this by repeating an argument from Ge-Hadwin 

([311]) exploiting the fact that UHF algebras have unique traces that are automatically 

faithful. 

   Let 𝐴 be the CAR algebra ⨂𝑛∈ℕ𝑀2(ℂ) with trace 𝑡𝑟, let 𝒰 be a nonprincipal ultrafilter on 

ℕ, and let {𝑝𝑛} ⊂ 𝐴 be projections with 𝑡𝑟(𝑝𝑛) = 2
−𝑛 . The sequence (𝑝𝑛) represents a 

nonzero projection in 𝐴𝒰 , but 𝑡𝑟𝒰((𝑝𝑛)) = 0. Thus 𝑡𝑟𝒰 is a non-faithful tracial state, so that 

𝐴𝒰 is not UHF.  

The same argument shows that simple 𝐶∗-algebras are not axiomatizable. 

Since every UHF algebra has a unique trace one could also consider tracial ultraproducts, 

instead of norm-ultraproducts, of UHF algebras. However, such an ultraproduct is always a 

factor ([313]) and therefore not a UHF algebra (because projections in UHF algebras have 

rational traces). 

The 𝐿P Banach spaces (1 ≤ 𝑝 < ∞) are known to be stable ([303]), and they become stable 

Banach algebras when endowed with the zero product. Actually  ℓ𝑝(1 ≤ 𝑝 < ∞) with 

pointwise multiplication is also stable; this can be shown by methods similar to [120]. We 

now prove that the usual convolution product turns ℓ1(ℤ) into an unstable Banach algebra, 

as was mentioned. 

Proposition(5.1.29)[302]: The branch algebra ℓ1 = ℓ1(ℤ,+) (with convolution product) is 

unstable. 

Proof: It suffices to show the order property for ℓ1 algebra. This means we must give a 

formula 𝜑(𝑥, 𝑦) of two variables (or 𝑛-tuples) on ℓ1,  a bounded sequence {𝑥𝑖  } ⊂ ℓ
1 and 

𝜀 > 0 such that 𝜑(𝑥𝑖 , 𝑥𝑗) ≤  𝜀 when 𝑖 ≤  𝑗 and 𝜑(𝑥𝑖 , 𝑥𝑗) ≥ 2𝜀 when 𝑖 >  𝑗.  

    Let {𝑓𝑛 }𝑛∈ℤ  denote the standard basis for ℓ1,  so that multiplication is governed by the 

rule 𝑓𝑚𝑓𝑛 = 𝑓𝑚+𝑛. Also let ℓ1 ∋  𝑥 ↦ 𝑥  ∈  𝐶(𝕋) be the Gel'fand transform on ℓ1so that 𝑓𝑛 

is the function [𝑒𝑖𝑡 ↦ 𝑒𝑖𝑛𝑡]. The Gel'fand transform is always a contractive homomorphism; 

on ℓ1it is injective but not isometric. 

We take 𝜑(𝑥, 𝑦) =  inf‖𝑧‖≤1‖𝑥𝑧 −  𝑦‖, 𝑥𝑖 = (
𝑓1+𝑓−1

2
)
2𝑖

,  and 𝜀 =
1

8
. are unit vectors, being 

convolution powers of a probability measure on ℤ, and 𝑥𝑖 = [𝑒
𝑖𝑡 ↦ (cost)2

𝑖
∈ 𝐶(𝕋)] . 

For 𝑖 ≤  𝑗 , we have 𝜑(𝑥𝑖 , 𝑥𝑗) = 0 by taking 𝑧 =  (
𝑓1+𝑓−1

2
)2
𝑗−2𝑖 . 

For 𝑖 >  𝑗 , let 𝑡0 ∈  (0,2𝜋) be such that (𝑐𝑜𝑠 𝑡0)
2𝑖   For any 𝑧 ∈ (ℓ1)≤1 

‖𝑥𝑖𝑧 − 𝑥𝑗‖ℓ1 ≥ ‖𝑥𝑖𝑧̂ − 𝑥𝑗‖𝐶(𝕋) ≥ |(
1

2
)
2𝑖−𝑗

𝑧(𝑒𝑖𝑡0) −
1

2
| ≥

1

4
, 

where the middle inequality is justified by evaluation at 𝑡0. We conclude that 𝜑(𝑥𝑖 , 𝑥𝑗) ≥
1

4
as desired. 

A well-known problem of Brown{Douglas{Fillmore ([306]) asks whether there is an 

automorphism of the Calkin algebra that sends the image of the unilateral shift to its adjoint. 
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The main result of [104] implies that if ZFC is consistent then there is a model of ZFC in 

which there is no such automorphism. A deep metamathematical result of Woodin, known 

as the∑ ‑21 absoluteness theorem, essentially (but not literally) implies that the Brown- 

Douglas-Fillmore question has a positive answer if and only if the Continuum Hypothesis 

implies a positive answer (see [322]). The type referred to in the following question is the 

type over the empty set. 

We end with discussion of finite-dimensional matrix algebras and a result that 

partially complements [120], where it was proved that if the Continuum Hypothesis fails 

then the matrix algebras 𝑀𝑛(ℂ), for 𝑛 ∈ ℕ,  have nonisomorphic tracial ultraproducts. 

Proposition(5.1.30)[302]: Every increasing sequence 𝑛(𝑖), for 𝑖 ∈ ℕ, of natural numbers 

has a further subsequence 𝑚(𝑖), for 𝑖 ∈ ℕ such that if the Continuum Hypothesis holds then 

all tracial ultraproducts of 𝑀𝑚(𝑖)(ℂ),  for 𝑖 ∈ ℕ, are isomorphic. 

Proof: The set of all ℒ-sentences is separable. Let 𝑇𝑛 = Th(𝑀𝑛(ℂ)), the map associating 

the value  𝜓𝑀𝑛(ℂ)of a sentence 𝜓 in 𝑀𝑛(ℂ) to 𝜓.  Since the set of sentences is separable we 

can pick a sequence 𝑚(𝑖) so that the theories 𝑇𝑚(𝑖)  converge pointwise to some theory 𝑇∞ . 

Let 𝒰  be a nonprincipal ultrafilter such that {𝑚(𝑖): 𝑖 ∈ ℕ} ∈ 𝒰.  By  Los's theorem, 

Proposition(5.1.8), Th( ∏ 𝑀𝑛(ℂ)) =  𝑇∞.𝒰  By Proposition(5.1.16) and the Continuum 

Hypothesis all such ultrapowers are saturated and therefore Proposition(5.1.18) implies all 

such ultrapowers are isomorphic.  

 

Section (5.2): 𝑪∗-Algebras Shuhei Masumoto 

A topological space is said to have the countable chain condition (CCC for short) if 

every family of mutually disjoint nonempty open subsets is countable. 

Any separable space clearly has CCC. Conversely, every metric space which has CCC 

is separable. 

The relation between separability and direct products is simple. The direct product of 

a family of separable spaces are separable when its cardinality is less than or equal to 2ω; 
but if the cardinality of the family is greater than 2ω,  then its direct product can be 

nonseparable. On this point, CCC behaves differently: it is irrelevant to the cardinality of the 

family. It is known that the direct product of a family of CCC spaces has CCC if for every 

finite subfamily, its direct product has CCC; however, the statement that the direct product 

of two CCC spaces has CCC cannot be proved or disproved in ZFC [106]. 

Now we shall restrict our interest to locally compact Hausdorff spaces. Let  be a 

locally compact Hausdorff space and 𝐶0(𝑋) be the 𝐶∗-algebra of the continuous functions 

on 𝑋 which vanish at infinity. In view of the Gelfand-Naimark theorem, 𝐶0(𝑋) contains all 

the information about the topological structure of 𝑋. 

In particular, there is a canonical one to one correspondence between the open sets of 𝑋 and 

the closed ideals of 𝐶  0(𝑋),  and 𝐶𝐶𝐶  can be reformulated as a condition on the ideal 

structure of 𝐶0(𝑋),whence this condition can be generalized for noncommutative 𝐶∗ -

algebras. Moreover, since 𝐶0 (𝑋 ×  𝑌)  is canonically isomorphicto 𝐶0(𝑋)⨂𝐶0(𝑌),  the 

discussion on the relation between CCC and direct products yields information about the 

ideal structure of tensor products of 𝐶∗ -algebras. In this way, we prove the following 

theorems: 

   The precise definition of CCC for 𝐶∗-algebras is introduced. Martin’s Axiom, which is 

known to be independent from ZFC, is explained. Here it is also verified that the negation 
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of the Suslin Hypothesis, which is another independent statement explained, implies the 

opposite conclusion of Theorem (5.2.19). We prove Theorems (5.2.16) and (5.2.19). 

Combining this fact with Theorem (5.2.16), we conclude that the statement that tensor 

products of CCC C∗-algebras has CCC is independent from ZFC. 

Definition(5.2.1)[323]:Two nonzero ideals in a 𝐶∗-algebra are said to be orthogonal if their 

intersection is the zero ideal. A 𝐶∗-algebra has the countable chain condition (CCC) if any 

family of nonzero mutually orthogonal ideals is countable. 

   Note that if 𝐼, 𝒥 are ideals in a 𝐶∗-algebra, then 𝐼 ∩ 𝒥 coincides with 𝐼𝒥,̅̅ ̅̅  whence they are 

orthogonal if and only if 𝐼𝒥 =  0. 
   We shall begin with verifying that this definition is a generalization of CCC for topological 

spaces. Recall that a topological space has CCC if any family of 

nonempty mutually disjoint open subsets is countable. 

Proposition(5.2.2)[323]:Let X be a locally compact Hausdorff space. Then 𝐶0(𝑋) has CCC 

as a 𝐶∗-algebra if and only if 𝑋 has CCC as a topological space. 

Proof: Suppose first that 𝑋  has CCC  and let {𝐼𝜆}𝜆∈Λ  be a family of nonzero mutually 

orthogonal ideals in 𝐶0(𝑋). We can take an element 𝑓𝜆 ∈ 𝐼𝜆 of norm 1 for each 𝜆. Set 𝑈𝜆 =
 {𝑥 ∈  𝑋 | | 𝑓𝜆(𝑥)|  >  1/2}. Then {𝑈𝜆}𝜆∈𝛬 is a family of nonempty mutually disjoint open 

subsets of 𝑋, whence #𝛬 ≤ 𝜔. Thus, 𝐶0(𝑋) has CCC by definition. 

If 𝑋 admits an uncountable family {𝑈𝜆}𝜆∈𝛬 of nonempty mutually disjoint open sets, then 

{𝐶0(𝑈𝜆)}𝜆∈𝛬  is an uncountable family of nonzero mutually orthogonal ideals of 𝐶0 (𝑋). 
Therefore, 𝐶0 (𝑋).does not have CCC.  

The following easy proposition characterizes CCC. Note that a von Neumann algebra is 

said to be 𝜎-finite if it admits no uncountable family of mutually orthogonal projections. 

Proposition(5.2.3)[323]: 

(i) Let 𝒜 be a 𝐶∗-algebra. Then 𝒜 has CCC if and only if there exists no family {𝑎𝜆}𝜆∈𝛬 of 

nonzero elements such that 𝑎𝜆𝒜𝑎𝜇 =  0 for 𝜆 ≠ μ. 

(ii) 𝐴 von Neumann algebra has CCC if and only if its center is 𝜎-finite. 

Proof: (i) Suppose that there is an uncountable family {𝑎𝜆}𝜆∈𝛬 of nonzero elements such 

that 𝑎𝜆𝒜𝑎𝜇 =  0 for 𝜆 ≠ μ. For each 𝜆 ∈  𝛬, let 𝒜𝑎𝜆𝒜̅̅ ̅̅ ̅̅ ̅̅ ̅ be the ideal generated by 𝑎𝜆. Then 

{𝐼𝜆}𝜆∈𝛬 is an uncountable family of nonzero mutually orthogonal ideals, so 𝒜 does not have 

CCC. 

   Conversely, assume that 𝒜 does not have 𝐶𝐶𝐶 and let {𝐼𝜆∈𝛬} be an uncountable family of 

nonzero mutually orthogonal ideals. Taking nonzero 𝑎𝜆 ∈ 𝐼λfor each 𝜆, we obtain 𝑎𝜆𝒜𝑎µ =

 0 for 𝜆 ≠  μ because 𝐼𝜆𝐼µ =  0. 

(ii) Let 𝐼1, 𝐼2 be ideals of a von Neumann algebra ℳ. Then it can be easily verified that 

𝐼1𝐼2 =  0 if and only if  𝐼1̅
𝜎𝑤𝐼2̅

𝜎𝑤 = 0, where𝐼𝑖̅
𝜎𝑤 denotes the 𝜎-weak closure of 𝐼i. Now 𝐼𝑖̅

𝜎𝑤  

is of the form ℳ𝒵𝑖 for a central projection 𝒵𝑖 , and the two ideals are orthogonal if and only 

if these projections are orthogonal. 

Therefore, ℳ has CCC if and only if there is no uncountable family of nonzero mutually 

orthogonal projections, that is, 𝜎-finite. 

Proposition(5.2.4)[323]: A separable 𝐶∗-algebra has CCC. 

Proof. Suppose that 𝒜 does not have CCC, and {𝐼𝜆}𝜆∈𝛬 be an uncountable family of nonzero 

mutually orthogonal ideals. If ℎ𝜆 ∈ 𝐼𝜆 is a positive element of norm 1, then it follows by 

functional calculus that ‖ℎ𝜆 − ℎµ‖  =  1. If we denote by U𝜆 the open ball of radius 1/2 
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centered at ℎ𝜆,  then {U𝜆}𝜆∈𝛬  is an uncountable family of mutually disjoint open subsets. 

Hence, 𝒜 is not separable.  

   An ideal of a CCC  C∗-algebra clearly has CCC. Also, it can be easily verified 

that an extension of a CCC  C∗-algebra by a CCC  C∗-algebra has CCC. On the other hand, a 

quotient of a CCC  C∗-algebra does not necessarily have CCC. Indeed, let 𝛽ℕ be the Stone-

Čech compactification of ℕ. It has CCC because it is separable. 

However, the StoneČech remainder 𝛽ℕ \ ℕ does not have CCC because there exists an 

almost disjoint family of 2ω subsets of ω[106]. Therefore, C(𝛽ℕ \ ℕ ) does not have CCC, 

although it is the quotient of the CCC 𝐶∗-algebra 𝐶(𝛽ℕ)  ≃  ℓ∞by  𝐶0(ℕ)  ≃  𝑐0. 

   Since C(𝛽ℕ \ ℕ )can be obtained as the inductive limit of ℓ∞
𝜑
→ ℓ∞

𝜑
→ ···,where 𝜑: ℓ∞ →

ℓ∞ is defined by 𝜑( 𝑓 )(𝑛) = 𝑓 (𝑛 + 1), it also follows that inductive limits of CCC  C∗-
algebras do not necessarily have CCC. On this direction, what we can prove is the following: 

   To prove this proposition, we use the lemma below. A proof can be found in [326]. 

Lemma(5.2.5)[323]:Let 𝒜 be a 𝐶∗-algebra and {𝒜𝑎} be a directed set of subalgebras with 

its union dense in 𝒜. If 𝐼 is an ideal of 𝒜,  then it is obtained as the closure of the union of 

{𝐼 ∩ 𝒜𝛼}. 
Proposition(5.2.6)[323]:Let 𝒜be a 𝐶∗-algebra and 𝜅 be an infinite cardinal number with its 

cofinality not equal to 𝜔1 . If there is an increasing sequence {𝒜𝑎}𝑎<𝑘  of CCC  C∗ -

subalgebras such that ⋃ 𝒜𝑘𝑎<𝑘
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 𝒜,  then 𝒜 has CCC. 

Proof. Assume that there is an uncountable family {𝐼𝜆}𝜆<𝜔1 

Of nonzero mutually orthogonal ideals of 𝒜. For each 𝜆, set 

𝛽𝜆 =  min{𝛼 < 𝜅 | 𝐼𝜆 ∩𝒜𝛼 ≠ 0}, 

which exists by Lemma (5.2.5), and write 𝛽 = sup𝜆𝛽𝜆.  if  𝛽 < 𝜅 holds, then {𝒜𝛽 ∩ 𝐼𝜆}𝜆
 is 

an uncountable family of nonzero mutually orthogonal ideals, which contradicts to the fact 

that 𝒜𝛽 has CCC. On the other hand, if 𝛽 < 𝜅,  then the cofinality of 𝜅 is 𝜔,  whence there 

is an unbounded increasing sequence {𝛾𝑛}𝑛<𝜔 in 𝜅. Now the set 𝑆𝑛 of 𝜆 < 𝜔1 with 𝛽𝜆 < 𝛾𝑛 

is at most countable for each 𝑛,  whence 𝜔1 = #(⋃ 𝑆𝑛𝑛 ) ≤  𝜔,  a contradiction.  

Proposition(5.2.7)[323]:Let ℳ  and 𝒩  be CCC von Neumann algebras. Then the tensor 

product ℳ⨂̅𝒩 of ℳ and 𝒩 as a von Neumann algebra also has CCC. 

Proof: We shall denote by 𝒵(ℳ),𝒵(𝒩) and 𝒵(ℳ⨂̅𝒩) the centers of ℳ,𝒩 and ℳ⨂̅𝒩 

respectively. Recall that 𝒵(ℳ⨂̅𝒩) coincides with 𝒵(ℳ)⨂̅𝒵(𝒩) [329]. Hence it suffices 

to show that the tensor product of two abelian 𝜎-finite von Neumann algebras is also 𝜎-

finite. To see this, note that every abelian von Neumann algebra is of the form 𝐿∞(μ) for 

some Radon measure μ  [329], and it is 𝜎  -finite if and only if μ  is 𝜎  -finite. Since 

𝐿∞(𝜇)⨂̅𝐿∞(ν),being canonically isomorphic to𝐿∞(𝜇⨂𝜈), is 𝜎-finite if 𝐿∞(𝜇) and 𝐿∞(ν) 
are both 𝜎-finite, the conclusion follows.  

   A compact Hausdorff  space is a stonean space if the closure of every open set is open. 

Suppose that 𝑋 is a stonean space and μ is a Borel measure on it. If for any increasing family 

{ 𝑓𝑖}  ∈  𝐶ℝ(𝑋)  with sup 𝑓𝑖 = 𝑓 ∈ 𝐶ℝ(𝑋) the equality μ(𝑓) = sup μ(𝑓𝑖)  holds, then μ  is 

said to be normal. A stonean space is called a hyperstonean space if for any nonzero positive 

𝑓 ∈ 𝐶ℝ(𝑋) there exists a normal Borel measure μ such that μ( 𝑓 ) > 0. It is known that if 𝑋 

is hyperstonean, then 𝐶(𝑋) is a von Neumann algebra, and every abelian von Neumann 

algebra is of this form [329]. Combining this fact with the preceding proposition, we obtain 

the following result. 
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Corollary(5.2.8)[323]:The direct product of two hyperstonean CCC spaces has CCC. 

Proof: Let 𝑋, 𝑌 be hyperstonean CCC spaces. It follows from Proposition(5.2.7) that the von 

Neumann tensor product 𝐶(𝑋)⨂̅𝐶(𝑌) has CCC, and 𝐶(𝑋)⨂𝐶(𝑌), which is isomorphic to 

𝐶(𝑋 ×  𝑌),  is a C∗ -subalgebra of 𝐶(𝑋)⨂̅𝐶(𝑌) . By Proposition(5.2.3), it can be easily 

verified that any 𝐶∗-subalgebra of commutative 𝐶𝐶𝐶  𝐶∗-algebra hasCCC, whence 𝑋 × 𝑌 

has CCC.  

We introduce two statements which are known to be independent from ZFC, see [106] 

or [327]. 

   The first statement is Martin’s axiom. We shall introduce some definitions related to 

partially ordered sets in order to express this axiom in a simple form. 

Definition(5.2.9)[323]:Let 𝑃 be a nonempty partially ordered set. Two elements 𝑝, 𝑞 ∈ 𝑃 

are incompatible if there is no 𝑟 ∈ 𝑃 with 𝑟 ≤ 𝑝 and 𝑟 ≤ 𝑞. If there is no uncountable family 

of mutually incompatible elements in 𝑃, then 𝑃 is said to have the countable chain condition 

(CCC). 
   As is easily verified, a 𝐶∗-algebra has CCC if and only if its nonzero ideals form a CCC 

partially ordered set, where the order is defined by inclusion. Similarly, a nonempty 

topological space has CCC if and only if the set of nonempty open subsets has CCC as a 

partially ordered set. 

Definition(5.2.10)[323]:Let 𝑃 be a partially ordered set. 

(i) A subset 𝐷 ⊂ 𝑃 is dense if for any 𝑝 ∈ 𝑃 there is 𝑞 ∈ 𝐷 with 𝑞 ≤ 𝑝. 

(ii) A nonempty subset 𝐹 ⊂ 𝑃 is called a filter on 𝑃 if it satisfies the following: 

(a) if 𝑝, 𝑞 are in 𝐹,  then there exists 𝑟 ∈ 𝐹 with 𝑟 ≤ 𝑝 and 𝑟 ≤ 𝑞; 

(b) if 𝑝 ∈ 𝐹 and 𝑞 ≥ 𝑝,  then 𝑞 ∈ 𝐹. 

   Suppose that 𝑃 is a nonempty partially ordered set and fix the topology generated by 

subsets of the form {𝑞 ∈ 𝑃 |𝑞 ≤ 𝑝} for  𝑝 ∈ 𝑃. Then 𝑃 has CCC if and only if 𝑃 has CCC as 

a topological space, and 𝐷 ⊂ 𝑃 is dense if and only if it is dense as a topological subspace. 

   Now we shall see the exact statement of Martin’s axiom MA. Let 𝜅 be a cardinal number. 

𝑀𝐴(𝜅): If 𝑃 is a nonempty CCC partially ordered set and {𝐷α} 𝛼∈𝑘  is a family of dense 

subsets in 𝑃,  then there exists a filter 𝐹 on 𝑃 such that  𝐹 ∩ 𝐷α }Is not empty for all 𝛼.  
𝑀𝐴: 𝑀𝐴(𝜅) holds for any 𝜅 with 𝜔 ≤ 𝜅 < 2𝜔. 
   It is known that 𝑀𝐴(𝜔) holds (the Rasiowa-Sikorski lemma) and 𝑀𝐴(2𝜔) does not hold 

in ZFC, whence the Continuum Hypothesis CH trivially implies MA. On the other hand, 

𝑀𝐴 is indeed consistent with 𝑍𝐹𝐶 + ¬𝐶𝐻. In particular,𝑍𝐹𝐶 +𝑀𝐴(𝜔1) is consistent. 

   The other statement we use is Suslin’s Hypothesis SH. This hypothesis is related to 

characterization of the real line as an ordered set. Note that a totally ordered set with the 

following properties is order-isomorphic to the real line: 

(i) unbounded; there does not exist minimum nor maximum element. 

(ii) dense; there is an element between any two elements. 

(iii) complete; every nonempty bounded subset has a supremum and an inffimum. 

(iv) separable; there is a countable subset which is dense with respect to the usual order 

topology. 

Definition(5.2.11)[323]:Let 𝑆 be a totally ordered set which is unbounded, dense and com-

plete. Then 𝑆 is called a Suslin line if it is nonseparable but 𝐶𝐶𝐶 as a topological space, 

where its topology is the usual order topology generated by open intervals. 

SH: There does not exist a Suslin line. 
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In other words, 𝑆𝐻 claims that separability in the characterization of the real line 

above can be replaced by CCC.  It is known that the diamond principle, which is a 

consequence of the axiom of constructibility 𝑉 = 𝐿, implies¬𝑆𝐻[328]. On the other hand, 

𝑀𝐴(𝜔1) implies 𝑆𝐻,  whence 𝑆𝐻 is independent from ZFC. 

Proposition(5.2.12)[323]:A Suslin line is a locally compact space. 

Proof: It suffices to show that every bounded closed interval is compact. This can 

be verified by seeing that a proof for the Heine-Borel theorem can be applied to 

Suslin lines. 

Given an open covering {𝑈𝜆}𝜆∈𝛬 of a bounded closed interval [𝑎, 𝑏], we shall prove 

that [𝑎, 𝑏] can be covered by finitely many 𝑈𝜆’𝑠. Note that we may assume each 𝑈λ is an 

open interval. 

Let 𝑋 be the set of all 𝑥 ∈ [𝑎, 𝑏] such that [𝑎, 𝑥] can be covered by finitely many 𝑈𝜆’𝑠. 
Then 𝑋 is not empty because 𝑎 is in 𝑋 , and so sup 𝑋 exists by completeness. 

It suffices to show that sup 𝑋 belongs to 𝑋 and coincides with 𝑏. For this, take 𝜆0 ∈  𝛬 such 

that sup 𝑋  is in 𝑈𝜆0  . Then 𝑋 ∩ 𝑈𝜆0  contains some element, say c. Now [𝑎, 𝑐]  can be 

covered by finitely many 𝑈𝜆’𝑠, and [𝑐, sup𝑋] is included in 𝑈𝜆0 ,  so sup 𝑋 is in 𝑋. Also, for 

any 𝑥 ∈ 𝑈,  the interval [𝑎, 𝑥] can be covered by finitely many 𝑈𝜆’𝑠,  whence sup 𝑋 must 

coincide with 𝑏.  
The following proposition is from [106]. For the sake of completeness, we include 

the proof. 

Proposition(5.2.13)[323]:If 𝑆 is a Suslin line, then 𝑆 × 𝑆 does not have 𝐶𝐶𝐶. 

Proof: By transfinite induction, we shall take 𝑎𝑎 , 𝑏𝑎, 𝑐𝑎 ∈ 𝑆 for 𝑎 < 𝜔1 so that 

(i) 𝑎𝛼 < 𝑏𝛼 < 𝑐𝛼; 
(ii) 𝑏𝛽 ∉ (𝑐 𝛼, 𝑐 𝛼) for 𝛽 < 𝛼.  

This can be carried over because for each 𝛼 < 𝜔1, the set {𝑏𝛽| 𝛽 < 𝛼 }, being countable,is 

not dense in 𝑆.  Setting 𝑈𝑎: =  (𝑎𝑎, 𝑏𝑎) × (𝑏𝑎, 𝑐𝑎),  we obtain an uncountable family 

{𝑈𝑎}𝑎∈𝛬 of nonempty mutually disjoint open sets in 𝑆 × 𝑆 .  

Corollary(5.2.14)[323]: ¬𝑆𝐻  implies the existence of a unital commutative CCC  C∗  -

algebra 𝒜 such that 𝒜⨂𝒜 does not have CCC. 

Proof: Let 𝑆 be a Suslin line and consider the one point compactification 𝑆+ 

of 𝑆 . Since 𝑆 contains 𝑆 as a dense subspace, it is a CCC space. On the other hand, 𝑆+ × 𝑆+ 

does not have CCC because it contains 𝑆 × 𝑆 . Now 𝒜 = 𝐶(𝑆+) is a unital commutative 

𝐶𝐶𝐶   𝐶∗-algebra, but 𝒜⨂𝒜, being isomorphic to 𝐶(𝑆+ × 𝑆+),  does not have CCC.  

    Here we shall prove Theorems (5.2.16) and (5.2.19). For the first theorem, we need the 

following combinatorial lemma, which is known as the ∆-system lemma. A proof can be 

found in any standard textbook on set theory in which the method of forcing is dealt with. 

Lemma(5.2.15)[323]: (∆-system lemma). Every uncountable family of finite sets includes 

an uncountable subfamily whose pairwise intersection is constant. 

Theorem (5.2.16)[323]: The minimal tensor product of a family of unital CCC C∗-algebras 

has CCC if for every finite subfamily, its minimal tensor product has CCC. 

Proof. Let {𝒜𝑖}𝑖∈𝐼 be a family of unital 𝐶∗-algebras such that for every finite 𝐽 ⊂ 𝐼, the 

minimal tensor product ⨂𝑖∈𝐽𝒜𝑖 has CCC. We shall prove that 𝒜 ∶= ⨂𝑖∈𝐽𝒜𝑖 also has 𝐶𝐶𝐶. 

    Suppose that, contrary to our claim, there exists an uncountable family {𝐼𝜆}𝜆∈𝛬 of nonzero 

mutually orthogonal ideals in 𝒜. By Proposition(5.2.5), we can find a finite subset 𝐽𝜆 ⊂ 𝐼 
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for each 𝜆 ∈ 𝛬 such that 𝐼𝜆 ∩⨂𝑖∈𝐽𝒜𝑖 ≠ 0. By the ∆-system lemma, we may assume that 

there exists a set 𝑅  such that 𝐼𝜆 ∩ 𝐼𝜇 = 𝑅  for any 𝜆 ≠ μ. Since the tensor products are 

minimal, 𝐼𝜆 ∩ ⨀𝑖∈𝐽𝜆𝒜𝑖  is not zero for each 𝜆,   where ⨀𝑖∈𝐽𝜆𝒜𝑖 is the algebraic tensor 

products of 𝒜𝑖  ′𝑠. Take nonzero 𝑓𝜆 ∈ 𝐼𝜆 ∩⨀𝑖∈𝐽𝜆𝒜𝑖 for each 𝜆. If 𝑅 is empty, then 𝑓𝜆𝑓𝜇 ≠ 0 

for 𝜆 ≠ μ, which contradicts with the assumption that 𝐼𝜆 and 𝐼µ are orthogonal to each other. 

Therefore, 𝑓λ  is of the form ∑ 𝘨𝜆
𝑘⊗ℎ𝜆

𝑘
𝑘   , where 𝘨𝜆

𝑘 is in ⨂𝑖∈𝑅𝒜𝑖and {ℎ𝜆
𝑘}
𝑘

 is a linearly 

independent set in ⨂𝑖∈𝐽𝜆∕𝑅𝒜𝑖. If 𝜆 ≠ μ, then the equality 𝐼𝜆 𝐼µ = 0 implies that 𝘨𝜆
𝑘𝑎𝘨𝜇

𝑙 =

0 for all 𝑘, 𝑙 and 𝑎 ∈ ⨂𝑖∈𝑅𝒜𝑖 . Since for each 𝜆 there exists 𝑘 with 𝘨𝜆
𝑘 ≠ 0,, it follows that 

⨂𝑖∈𝑅𝒜𝑖  does not have CCC  by Proposition(5.2.3), which is a contradiction. 

Therefore, ⨂𝑖∈𝐼𝒜𝑖 has CCC. 

Corollary(5.2.17)[323]:Every minimal tensor product of unital separable 𝐶∗-algebras has 

CCC. 

We use the following lemma. 

Lemma (5.2.18)[323]:Suppose that 𝒜 is a 𝐶𝐶𝐶 𝐶∗algebra and {𝐼𝛼}𝛼<𝜔 be a family of its 

ideals. Then 𝑀𝐴(𝜔1) implies that there exists an uncountable subfamily of the ideals which 

has the finite intersection property. 

Proof: Set ℐ𝛼 ∶= ∑ 𝐼𝛾𝛾<𝛼 . Then ℐ𝛼 is a transfinite decreasing sequence of ideals of 𝒜. We 

shall first show that there exists 𝛼0such that ℐ𝛽is an essential ideal of ℐ𝛼0  for all 𝛽 > 𝛼0. 

Suppose the contrary. Then we can find an transfinite increasing sequence {𝛽𝛿}𝛿<𝜔1 ⊂

𝜔1such that the inclusion ℐ𝛽𝛿+1 ⊂ ℐ𝛽𝛿  is not essential. In other words, there exists a nonzero 

ideal 𝒦𝛽𝛿  of ℐ𝛽𝛿 such that 𝒦𝛽𝛿 ∩ ℐ𝛽𝛿+1 = 0.Now {𝒦𝛽𝛿}𝛿<𝜔1  is an uncountable family of 

mutually orthogonal ideals in 𝒜, which is a contradiction. 

   Next, let 𝑃 be the set of nonzero ideals in 𝒥𝛼0. Then 𝑃 has CCC as a partially ordered set, 

because an ideal of a 𝐶𝐶𝐶 𝐶∗-algebra has CCC. For each 𝛽 > 𝛼0,  we Set  

𝐷𝛽 = {𝑝 ∈ 𝑃| 𝑝 ⊂ 𝐼𝛾  for some 𝛾 ≥ 𝛽}  

and claim that this is dense in 𝑃. To prove this, take an arbitrary 𝑞 ∈ 𝑃. Then 𝑞′ ∶=  𝑞 ∩ ℐ𝛽 

is not zero by the definition of 𝛼0. Here, ℐ𝛽 is approximated by ∑ 𝐼𝛾 ,𝛾∈𝑆   where 𝑆 ⊂]𝛽,𝜔1[ 

is finite. By [297], ∑ 𝐼𝛾𝛾∈𝑆  is norm closed for each 𝑆, whence we can use Lemma (5.2.5) to 

conclude that 𝑞′ is the inductive limit of {𝑞 ∩ ∑ 𝐼𝛾𝛾∈𝑆 }𝑆, and so there exists 𝛾 > 𝛽 with 𝑞 ∩

𝐼𝛾 ≠ 0. Since 𝑞 ∩ 𝐼𝛾 is clearly in 𝐷𝛽 ,  it follows that 𝐷𝛽 is dense, as desired. 

   Now let 𝐹 be a filter on 𝑃 such that 𝐹 ∩ 𝐷𝛽  is not empty for all 𝛽, whose existence is 

guaranteed by 𝑀𝐴(𝜔1). Then {𝐼𝛼| ∃𝑝 ∈ 𝐹, 𝑝 ⊂ 𝐼𝛼} has the finite intersection property, and 

this is uncountable because the condition 𝐹 ∩ 𝐷𝛽 ≠ ∅ for each 𝛽 implies that the set of all 

a such that 𝐼𝛼 ⊃ 𝑝 for some 𝑝 ∈ 𝐹 is unbounded in 𝜔1.This completes the proof .  

Theorem (5.2.19)[323] Martin’s Axiom, 𝑀𝐴(𝜔1), implies that any minimal tensor product 

of unital CCC C∗-algebras has CCC. 

Proof. By Theorem (5.2.16), it suffices to show that if 𝒜 and ℬ have CCC, then 𝒜⊗ℬ has 

CCC. Assume that, on the contrary, there exists a family{𝐼𝛼}𝛼<𝜔1  of nonzero mutually 

orthogonal ideals in 𝒜⊗ℬ.  Then there exist nonzero ideals ℐ𝛼 ⊂ 𝒜  and 𝐾𝛼 ⊂ ℬ  with 

ℐ𝛼⊙ 𝐾𝛼 ⊂ 𝐼𝛼 ,  by [324]. Here, by the preceding lemma, we may assume that {ℐ𝛼}𝛼 and 

{𝒦𝛼}𝛼 
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satisfy the finite intersection property. Then, 𝐼𝛼 ∩ 𝐼𝛽  contains (ℐ𝛼 ∩ 𝒥𝛽)  ⊗ (𝒦𝛼 ∩𝒦𝛽) ≠

 0, which is a contradiction. Therefore, 𝒜⊗ℬ has CCC, as expected. 

    Let 𝒜 be a 𝐶∗-algebra. By Prim(𝒜), we shall denote the primitive spectrum of 𝒜. (For 

the definition and elementary properties of primitive spectra, see [83].) It can be easily 

verified that 𝒜 has CCC if and only if Prim(𝒜) has CCC as a topological space, and Lemma 

(5.2.18) is obtained as a corollary of [106]. Here, we may replace Prim(𝒜) by the prime 

spectrum prime(𝒜), because the topologies of these spaces are isomorphic as partially 

ordered sets. 

    In [330], it is proved that Prim (𝒜⨂ℬ) is homeomorphic to Prim (𝒜) × Prim(ℬ) 
provided that either 𝒜 or ℬ is type I. Also, in [324], one can find various conditions for 

prime (𝒜⨂ℬ  to be homeomorphic to prime (𝒜) × Prim(ℬ).  In these cases, Theorem 

(5.2.19) follows from the corresponding fact for topological spaces [106]. 

One problem is whether Theorem (5.2.16) and Theorem (5.2.19) can be generalized to non-

minimal tensor products. Since any tensor product has the minimal tensor product as its 

quotient, it depends on whether the kernel of the quotient map, which is difficult to be 

investigated, has CCC. 

   Another problem lies in the definition of CCC. We have defined CCC in terms of ideals, 

whence this condition is trivial for simple 𝐶∗-algebras. 

In order to avoid this phenomenon, we can use hereditary 𝐶∗-algebras in place of ideals: we 

shall say two hereditary 𝐶∗-subalgebras 𝒜 and ℬ are orthogonal to each other if 𝒜ℬ̅̅ ̅̅ ̅ = 0;  
a 𝐶∗ -algebra has strong CCC if there is no uncountable family of nonzero mutually 

orthogonal hereditary 𝐶∗-subalgebras. Then we can prove the following. 

(a) Strong CCC implies CCC. 

(b) 𝐶∗-subalgebras of a strong 𝐶𝐶𝐶 𝐶∗-algebra have strong CCC. 

(c) An extension of a strong 𝐶𝐶𝐶  𝐶∗-algebra by a strong 𝐶𝐶𝐶 𝐶∗-algebra has strong CCC. 

(d) A von Neumann algebra has strong CCC if and only if it is 𝜎-finite, so tensor products of 

two strong CCC von Neumann algebras have strong CCC. 

Corollary(5.2.20)[370]: 

(i) Let 𝒜2 be a 𝐶∗-algebra. Then 𝒜2 has CCC if and only if there exists no family {𝑎𝜆}𝜆∈𝛬 

of nonzero elements such that ∑  𝑟 𝑎𝜆
𝑟𝒜2𝑎𝜆+𝜖

𝑟 =  0 for 𝜖 ≠ 0. 

(ii) 𝐴 von Neumann algebra has CCC if and only if its center is 𝜎-finite. 

Proof: (i) Suppose that there is an uncountable family {𝑎𝜆
𝑟}𝜆∈𝛬 of nonzero elements such 

that ∑  𝑟 𝑎𝜆
𝑟𝒜2𝑎𝜆+𝜖

𝑟 =  0 for 𝜖 ≠ 0. For each 𝜆 ∈  𝛬, let 𝒜2𝑎𝜆
𝑟𝒜2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  be the ideal generated by 

𝑎𝜆
𝑟. Then {𝐼𝜆}𝜆∈𝛬 is an uncountable family of nonzero mutually orthogonal ideals, so 𝒜2 

does not have CCC. 

   Conversely, assume that 𝒜2 does not have 𝐶𝐶𝐶 and let {𝐼𝜆∈𝛬} be an uncountable family 

of nonzero mutually orthogonal ideals. Taking nonzero 𝑎𝜆
𝑟 ∈ 𝐼λ for each 𝜆,  we obtain 

∑  𝑟 𝑎𝜆
𝑟𝒜2𝑎𝜆+𝜖

𝑟 =  0 for 𝜖 ≠ 0 because 𝐼𝜆𝐼𝜆+𝜖 =  0. 

(ii) Let 𝐼1, 𝐼2 be ideals of a von Neumann algebra ℳ. Then it can be easily verified that 

𝐼1𝐼2 =  0 if and only if  𝐼1̅
𝜎𝑤𝐼2̅

𝜎𝑤 = 0, where𝐼𝑖̅
𝜎𝑤 denotes the 𝜎-weak closure of 𝐼i. Now 𝐼𝑖̅

𝜎𝑤  

is of the form ℳ𝒵𝑖 for a central projection 𝒵𝑖 , and the two ideals are orthogonal if and only 

if these projections are orthogonal. 

 

 



 

162 

Section (5.3): Elementary Equivalence of 𝑪∗-Algebras 

We examine extent to which several classes of operator algebras are saturated in the 

sense of model theory. In fact, few operator algebras are saturated in the full model-theoretic 

sense, but in this setting there are useful weakenings of saturation that are enjoyed by a 

variety of algebras. The main results show that certain classes of 𝐶∗-algebras do have some 

degree of saturation, and as a consequence, have a variety of properties previously 

considered in the operator algebra. For all the definitions involving continuous model theory 

for metric structures (and in particular of 𝐶∗-algebras), see [335] or [119]. Different degrees 

of saturation and relevant concepts will be defined. 

Among the weakest possible kinds of saturation an operator algebra may have, which 

nevertheless has interesting consequences, is being countably degree-1 saturated. This 

property was introduced by Farah and Hart in [114], where it was shown to imply a number 

of important consequences (see Theorem (5.3.11) below). It was also shown in [114] that 

countable degree-1 saturation is enjoyed by a number of familiar algebras, such as coronas 

of 𝜎-unital 𝐶∗-algebras and all non-trivial ultraproducts and ultrapowers of 𝐶∗-algebras. 

Further examples were found by Voiculescu [37]. Countable degree-1 saturation can thus 

serve to unify proofs about these algebras. We extend the results of Farah and Hart by 

showing that a class of algebras which is broader than the class of 𝜎-unital ones have 

countably degree-1 saturated coronas. The following theorem is Theorem(5.3.27) below; 

for the definitions of 𝜎-unital 𝐶∗-algebras and essential ideals, see Definition(5.3.20). 

Theorem (5.3.1). Let 𝑀  be 𝑎  unital 𝐶∗ -algebr 𝑎,  and let 𝐴 ⊆ 𝑀  be an essential ideal. 

Suppose that there is an increasing sequence of positive elements in 𝐴 whose supremum is 

1𝑚, and suppose that any increasing uniformly bounded sequence converges in 𝑀. Then 

𝑀/𝐴 is countably degree-1 saturated. 

One interesting class of examples of a non-𝜎-unital algebra to which our result applies 

is the following. Let 𝑁 be a 𝐼𝐼1 factor, 𝐻 a separable Hilbert space and 𝒦 be the unique 

two-sided closed ideal of the von Neumann tensor product 𝑁⨂̅𝔅(H)(see [337] and [338]). 

Then (𝑁⨂̅𝔅(H))/𝒦 is countably degree-1 saturated. 

We consider generalized Calkin algebras of uncountable weight, as well as 𝔅(𝐻) where 𝐻 

has uncountable density. Considering their complete theories as metric structures. 

Theorem (5.3.2). Let 𝛼 ≠ 𝛽  be ordinals, 𝐻𝛼  the Hilbert space of density 𝜘𝛼 . Let 𝔅 =
𝔅(𝐻𝛼) and 𝐶𝛼 = 𝔅𝛼/𝒦 the Calkin algebra of density. 𝜘𝛼  Then the projections of the 

algebras 𝐶𝛼and 𝐶𝛽as posets with respect to the Murray-von Neumann order are elementary 

equivalent if and only if𝛼 = 𝛽 mod 𝜔𝜔,  where 𝜔𝜔 is computed by ordinal exponentiation, 

as they are the infinite projections of 𝔅𝛼 and 𝔅𝛽 . Consequently, if 𝛼 ≢ 𝛽 then 𝔅𝛼 ≢ 𝔅𝛽 

and 𝐶𝛼 ≢ 𝔅𝛽.  

Elementary equivalence of 𝐶∗-algebras 𝐴 and 𝐵 can be understood, via the Keisler-

Shelah theorem for metric structures, as saying that 𝐴 and 𝐵 have isomorphic ultrapowers. 

For our second group of results we consider (unital) abelian 𝐶∗-algebras, which are 

all of the form 𝐶(𝑋) for some compact Hausdorff space 𝑋. We focus in particular on the 

real rank zero case, which corresponds to 𝑋  being 0-dimensional. We first establish a 

correspondence between the Boolean algebra of the clopen set of 𝑋 and the theory of 𝐶(𝑋). 
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Theorem (5.3.3). Let 𝑋 and 𝑌 be compact 0-dimensional Hausdorff spaces. Then 𝐶(𝑋) and 

𝐶(𝑌) are elementarily equivalent if and only if the Boolean algebras 𝐶𝐿(𝑋) and 𝐶𝐿(𝑌) are 

elementarily equivalent. 

We obtain several corollaries of the above theorem. For example, we show that many 

familiar spaces have function spaces which are elementarily equivalent, and hence have 

isomorphic ultrapowers. 

We study saturation properties in the abelian setting. We find that if 𝐶(𝑋)is countably 

degree-1 saturated then 𝑋 is a sub-Stonean space without the countable chain condition and 

which is not Rickart. In the 0-dimensional setting we describe the relation between the 

saturation of 𝐶(𝑋)and the saturation of 𝐶𝐿(𝑋).  While some implications hold in general, a 

complete characterization occurs in the case where 𝑋 has no isolated points. The following 

is a special case of Theorems(5.3.41) and(5.3.42). 

Theorem (5.3.4). Let 𝑋  be 𝑎  compact 0-dimensional Hausdorff space without isolated 

points. Then the following are equivalent: 

( a )  𝐶(𝑋) is countably degree-1 saturated, 

( b )  𝐶(𝑋) is countably saturated, 

(c) 𝐶𝐿(𝑋) is countably saturated. 

Before beginning the technical portion, we wish to give further illustrations of the 

importance of the saturation properties we will be considering, particularly the full model-

theoretic notion of saturation (see Definition (5.3.8) below). For countable degree-1 

saturation we refer to Theorem(5.3.14) for a list of consequences. The following fact follows 

directly from the fact that axiomatizable properties are preserved to ultrapowers, which are 

countably saturated (see [335]). 

Fact(5.3.5)[331]: Let 𝑃 be 𝑎 property that may or may not be satisfied by 𝑎 𝐶∗-algebra. 

Suppose that countable saturation implies the negation of 𝑃. Then 𝑃 is not axiomatizable 

(in the sense of [335] ). 

Other interesting consequences follow when the Continuum Hypothesis is also assumed. In 

this case, all ultrapowers of a separable algebra by a non-principal ultrafilter on ℕ are 

isomorphic. In fact, all that is needed is that the ultrapowers are countably saturated and 

elementarily equivalent: 

Fact(5.3.6)[331]: (See [119].) Assume the Continuum Hypothesis. Let 𝐴 and 𝐵  be two 

elementary equivalent countably saturated 𝐶∗-algebras of density 𝜘1. Then 𝐴 ≅ 𝐵. 

Applying Parovicenko's Theorem (see [33]), the above fact immediately yields that under 

the Continuum Hypothesis if 𝑋 and 𝑌 are locally compact Polish 0-dimensional spaces then 

𝐶(𝛽𝑋\𝑋) ≅ 𝐶(𝛽𝑌\𝑌). 
Saturation also has consequences for the structure of automorphism groups: 

Fact(5.3.7)[331]: (See [347].) Assume the Continuum Hypothesis. Let 𝐴 be 𝑎 countably 

saturated 𝐶∗-algebra of density 𝜘1. Then 𝐴 has 2𝜘1-many automorphisms. In particular, 𝐴 

has outer automorphisms. 

It is known that for Fact(5.3.7) the assumption of countable saturation can be 

weakened in some particular cases (see [118] and [114]), and the property of having many 

automorphisms under the Continuum Hypothesis is shared by many algebras that are not 
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even quantifier-free saturated (for example the Calkin algebra). In particular it is plausible 

that the assumption of countable saturation in Fact(5.3.7) can be replaced with a lower 

degree of saturation. 

In light of this, and since the consistency of the existence of non-trivial 

homeomorphisms (see [347]) of spaces of the form 𝛽ℝ𝑛 \ ℝ𝑛  is still open (for 𝑛 ≥ 2),  it 
makes sense to ask about the saturation of 𝐶(𝛽ℝ𝑛 \ℝ𝑛 ). In the opposite direction, the 

Proper Forcing Axiom has been used to show the consistency of all automorphisms of 

certain algebras being inner.  

We begin by reviewing the definition and basic properties. Since finite-dimensional 

𝐶∗-algebras have full model-theoretic saturation, and hence have all of the weakenings in 

which we are interested, we assume throughout that all 𝐶∗-algebras under discussion are 

infinite dimensional unless otherwise specified. 

We will be considering 𝐶∗-algebras as structures for the continuous logic formalism 

of [335] (or, for the more specific case of operator algebras, [119]). For many of the results 

it is not necessary to be familiar with that logic. Informally, a formula is an expression 

obtained from a finite set of norms of ∗-polynomials with complex coefficients by applying 

continuous functions and taking suprema and infima over some of the variables. 𝐴 formula 

is quantifier-free if it does not involve suprema or infima. Aformula is a sentence if every 

variable appears in the scope of a supremum or infimum. [119] for the precise definitions. 

Given a 𝐶∗ -algebra 𝐴  we will denote as 𝐴≤1, 𝐴1 and 𝐴+  the closed unit ball of 𝐴,  its 

boundary, and the cone of positive elements respectively. 

Definition(5.3.8)[331]: Let 𝐴 be a 𝐶∗-algebra, and let 𝛷be a collection of formulas in the 

language of 𝐶∗ -algebras. We say that 𝐴 is countably 𝛷-saturated if for every sequence 

(∅𝑛)𝑛∈ℕ of formulas from 𝛷with parameters from 𝐴≤1, and sequence (𝐾𝑛)𝑛∈ℕ of compact 

sets, the following are equivalent: 

(i) There is a sequence (𝑏𝑘)𝑘∈ℕ of elements of 𝐴≤1 such that ∅𝑛
𝐴(𝑏̅) ∈ 𝐾𝑛 for all 𝑛 ∈ ℕ; 

(ii) For every 𝜖 > 0 and every finite ∆ ⊂ ℕ there is (𝑏𝑘)𝑘∈ℕ ⊆ 𝐴≤1, depending on 𝜖 and 

𝐴,  such that ∅𝑛
𝐴(𝑏̅) ∈ (𝐾𝑛)𝜖 for all 𝑛 ∈ ∆. 

The three most important special cases for us will be the following: 

(a) If 𝛷contains all 1-degree ∗-polynomials, we say that 𝐴 is countably 1-degree 

saturated. 

(b) If 𝛷contains all quantifier-free formulas, we say that 𝐴 is quantifier-free saturated. 

(c) If 𝛷is the set of all formulas we say that the algebra 𝐴 is countably saturated. 

Clearly condition (i) in the definition always implies condition (ii), but the converse does 

not always hold. We recall the (standard) terminology for the various parts of the above 

definition. A set of conditions satisfying (ii) in the definition is called a type; we say that 

the conditions are approximately finitely satisfiable or consistent. When condition (i) holds, 

we say that the type is realized (or satisfied) by (𝑏𝑘)𝑘∈ℕ. 

An equivalent definition of quantifier-free saturation is obtained by allowing only ∗ -

polynomials of degree at most 2 [114]. By (model-theoretic) compactness the concepts 

defined by Definition(5.3.8) are unchanged if each compact set 𝐾𝑛  is assumed to be a 

singleton. 
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In the setting of logic for 𝐶∗-algebras, the analogue of a finite discrete structure is a 𝐶∗-
algebra with compact unit ball, that is, a finite-dimensional algebra. The following fact is 

then the 𝐶∗-algebra analogue of a well-known result from discrete logic. 

Fact(5.3.9)[331]: (See [335].) Every ultraproduct of 𝐶∗ -algebras over a countably 

incomplete ultrafilter is countably saturated. In particular, every finite-dimensional 𝐶∗ -

algebra is countably saturated. 

The second part of the fact follows from the first because any ultrapower of a finite-

dimensional 𝐶∗-algebra is isomorphic to the original algebra (see [335]). 

A condition very similar to the countable saturation of ultraproducts was considered 

by Kirchberg and Rørdam under the name "𝜖-test" in [352]. Before returning to the analysis 

of the different degrees of saturation, we give definitions for two well-known concepts that 

we are going to use strongly, but that may not be familiar to a 𝐶∗-algebraist. 

Definition(5.3.10)[331]: The theory of a 𝐶∗-algebra 𝐴 is the set of all sentences in the 

language of 𝐶∗-algebras which have value 0 when evaluated in 𝐴. We say that 𝐶∗-algebras 

𝐴 and 𝐵 are elementary equivalent, written 𝐴 ≡ 𝐵, if their theories are equal. 

Elementary equivalence can be defined without reference to continuous logic by way of the 

following result, which is known as the Keisler-Shelah theorem for metric structures. The 

version we are using is stated in [335], and was originally proved in an equivalent setting in 

[350]. 

Theorem(5.3.11)[331]: Let 𝐴 and 𝐵 be 𝐶∗-algebras. Then 𝐴 ≡ 𝐵 if  and only if there is an 

ultrafilter 𝒰  (over a possibly uncountable set) such that the ultrapowers 𝐴𝒰  and 𝐵𝒰  are 

isomorphic. 

Definition(5.3.12)[331]: Let 𝐴 be a 𝐶∗-algebra. We say that the theory of 𝐴 has quantifier 

elimination if for any formula ∅(𝑥̅)  and any 𝜖 > 0  there is quantifier-free formula 

𝜓(𝑥̅)such that for every 𝐶∗-algebra 𝐵 satisfying 𝐴 ≡ 𝐵, and any 𝑏̅ ⊆ 𝐵 (of the appropriate 

length) we have that in 𝐵, 

|∅(𝑏̅) − 𝜓(𝑏̅)| ≤ 𝜖. 

Countable degree-1 saturation is the weakest form of saturation that we will consider. Even 

this modest degree of saturation for a 𝐶∗-algebra has interesting consequences. In particular 

it implies several properties (see the detailed definition before) that were shown to hold in 

coronas of 𝜎-unital algebras in [34] 

Definition(5.3.13)[331]: (See [34].) Let 𝐴 be a 𝐶∗-algebra. Then 𝐴 is said to be 

(a) 𝑆𝐴𝑊∗  if any two 𝜎-unital subalgebras 𝐶, 𝐵 are orthogonal (i.e., 𝑏𝑐 = 0 for all 𝑏 ∈ 𝐵 

and 𝑐 ∈ 𝐶) if and only if are separated (i.e., there is 𝑥 ∈ 𝐴 such that 𝑥𝑏𝑥 = 𝑏 for all 

𝑏 ∈ 𝐵 and 𝑥𝑐 = 0 for all 𝑥 ∈ 𝐶); 

(b) 𝐴𝐴-CRISP if for any sequences of positive elements (𝑎𝑛), (bn)such that for all 𝑛 we 

have 𝑎𝑛 < 𝑎𝑛+1 ≤ . . . ≤ 𝑏𝑛+1 < 𝑏𝑛 and any separable 𝐷 ⊆ 𝐴 such that for all 𝑑 ∈ 𝐷 

we have lim𝑛‖[𝑑, 𝑎𝑛]‖ = 0, there is 𝑐 ∈ 𝐴+ such that 𝑎𝑛 ≤ 𝑐 ≤ 𝑏𝑛 for any 𝑛 and for 

all 𝑑 ∈ 𝐷 we have [ 𝑐, 𝑑] = 0; 
(c) 𝜎-sub-Stonean if whenever 𝐶 ⊆ 𝐴 is separable and 𝑎, 𝑏 ∈ 𝐴+ are such that 𝑎𝐶𝑏 =
{0} then there are contractions 𝑓, 𝑔 ∈  C ′ ∩ 𝐴 such that  𝑓𝑔 = 0, 𝑓𝑎 = 𝑎  and 𝑔𝑏 =
b, C′ ∩ A denoting the relative commutant of 𝐶 inside 𝐴. 
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Theorem (5.3.14)[331]: (See [114].) Let 𝐴 be 𝑎 countably degree-1 saturated 𝐶∗-algebra. 

Then: 

( a )  𝐴 is 𝑆𝐴𝑊∗, 

( b )  𝐴 is 𝐴𝐴-CRISP, 

( c )𝐴 satisfies the conclusion of Kasparov's technical theorem (see [20]), 

( d )𝐴 is 𝑎-sub-Stonean, 

(e) every derivation of 𝑎 separable subalgebra of 𝐴 is of the form 𝛿𝑏(𝑥) =  𝑏𝑥 − 𝑥𝑏 for 

some 𝑏 ∈ 𝐴, 

( f )𝐴 is not the tensor product of two infinite dimensional 𝐶∗-algebras (this is 𝑎 conse-

quence of being 𝑆𝐴𝑊  ∗). 

It is useful to know that when a degree-1 type can be approximately finitely satisfied by 

elements of a certain kind then the type can be realized by elements of the same kind. 

Lemma(5.3.15)[331]: (See [114].) Let 𝐴 be 𝑎 countably degree-1 saturated 𝐶∗-algebra. If 

𝑎 type can be finitely approximately satisfied by self-adjoint elements then it can be realized 

by self-adjoint elements, and similarly with "self-adjoint" replaced by "positive". 

We will also make use of the converse of the preceding lemma, which says that to check 

countable degree-1 saturation it is sufficient to check that types which are approximately 

finitely satisfiable by positive elements are realized by positive elements. 

Lemma(5.3.16)[331]: Suppose that 𝐴  is 𝑎  𝐶∗ -algebra that is not countably degree-1 

saturated. Then there is 𝑎  countable degree-1 type which is approximately finitely 

satisfiable by positive elements of 𝐴 but is not realized by any positive element of 𝐴. 

Proof: Let (𝑃𝑛(𝑥̅))𝑛∈ℕ be degree-1 polynomials, and (𝐾𝑛)𝑛∈ℕ compact sets, such that the 

type {||𝑃𝑛(𝑥̅)|| ∈ 𝐾𝑛: 𝑛 ∈ ℕ } is approximately finitely satisfiable but not satisfiable in 𝐴. 
For each variable 𝑥𝑘 ,  we introduce new variables 𝑣𝑘, 𝑤𝑘 , 𝑦𝑘 ,  and 𝑧𝑘 . For each 𝑛,  let 

𝑄𝑛(𝑣̅, 𝑤̅, 𝑦̅, 𝑧̅)be  the polynomial obtained by replacing each 𝑥𝑘 in 𝑃𝑛 by 𝑣𝑘 + 𝑖𝑤𝑘 − 𝑦𝑘 −
 𝑖𝑧𝑘 . Since every 𝑥 ∈ 𝐴 can be written as 𝑥 = 𝑣 + 𝑖𝑤 − 𝑦 − 𝑖𝑧 where 𝑣, 𝑤, 𝑦, 𝑧 ∈  A+, it 
follows that {‖𝑄𝑛(𝑣̅, 𝑤̅, 𝑦̅, 𝑧̅)‖ ∈  𝐾𝑛 ∶ 𝑛 ∈ ℕ }  is approximately finitely satisfiable 

(respectively, satisfiable) by positive elements in 𝐴 if and only if {‖𝑃𝑛(𝑥̅)‖ ∈ 𝐾𝑛 ∶ 𝑛 ∈ ℕ} 
is approximately finitely satisfiable (respectively, satisfiable).    

The first example of an algebra which fails to be countably degree-1 saturated is 

𝐵(𝐻),  where 𝐻  is an infinite dimensional separable Hilbert space. In fact, no infinite 

dimensional separable 𝐶∗-algebra can be countably degree-1 saturated; this was observed in 

[114]. We include here a proof of the slightly stronger result, enlarging the class of algebras 

that are not countably degree-1 saturated. 

Definition(5.3.17)[331]: 𝐴  𝐶∗ -algebra 𝐴  has few orthogonal positive elements if every 

family of pairwise orthogonal positive elements of 𝐴 of norm 1is countable. 

We will further examine the property of having few orthogonal positive elements in 

the context of abelian 𝐶∗-algebras. For now, we have the following lemma: 
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Lemma(5.3.18)[331]: If an infinite dimensional 𝐶∗-algebra 𝐴 has few orthogonal positive 

elements, then 𝐴 is not countably degree-1 saturated. 

Proof: Suppose to the contrary that 𝐴 has few orthogonal positive elements and is countably 

degree-1 saturated. Using Zorn's lemma, find a set 𝑍 ⊆ A1
+ which is maximal (under 

inclusion) with respect to the property that if 𝑥, 𝑦 ∈ 𝑍 and 𝑥 ≠  𝑦 , then 𝑥𝑦 = 0 . By 

hypothesis, the set 𝑍 is countable; list it as 𝑍 = {𝑎n}n∈ℕ. 
For each n ∈ ℕ,  define 𝑃𝑛(𝑥) = 𝑎nx, and let 𝐾𝑛 = {0}. Let 𝑃−1(𝑥) =  x, and 𝐾−1 = {1}. 
The type {‖𝑃𝑛(𝑥)‖ ∈  𝐾𝑛: 𝑛 ≥ −1} is finitely satisfiable. Indeed, by definition of 𝑍,  for any 

𝑚 ∈ ℕ and any 0 ≤ 𝑛 ≤ 𝑚we have ‖𝑃𝑛(𝑎𝑚+1 )‖ = ‖𝑎𝑛𝑎𝑚+1‖ = 0,  and ‖𝑎𝑚+1‖ = 1. By 

countable degree-1 saturation and Lemma(5.3.15) there is a positive element 𝑏 ∈  A1
+ such 

that ‖𝑃𝑛(𝑏)‖ = 0 for all 𝑛 ∈ ℕ. This contradicts the maximality of 𝑍.    

Subalgebras of 𝔅(𝐻)  clearly have few positive orthogonal elements, whenever 𝐻 is 

separable. As a result, we obtain the following. 

Corollary(5.3.19)[331]: No infinite dimensional subalgebra of 𝔅(𝐻),  with 𝐻 separable, 

can be countably degree-1 saturated. 

   Corollary(5.3.19) shows that many familiar 𝐶∗ -algebras fail to be countably degree-1 

saturated. In particular, it implies that no infinite dimensional separable 𝐶∗ -algebra is 

countable degree-1 saturated. Corollary (5.3.19) also shows that the class of countably 

degree-1 saturated algebras is not closed under taking inductive limits (consider, for 

example, the CAR algebra ⊗𝑖=1
∞  M2(ℂ),  or any AF algebra) or subalgebras. On the other 

hand, several examples of countably degree-1 saturated algebras are known. It was shown 

in [114] that every corona of 𝑎  𝜎-unital algebra is countably degree-1 saturated. Recently 

Voiculescu in [37] found examples of algebras which are not 𝐶∗-algebras, but which have 

the unexpected property that their coronas are countably degree-1 saturated 𝐶∗-algebras. 

The results of the following expand the list of examples of countably degree-1 saturated 𝐶∗-
algebras. 

We recall some definitions which we will need: 

Definition(5.3.20)[331]: A 𝐶∗-algebra 𝐴 is 𝜎-unital (see [100]) if it has a countable approx-

imate identity, that is, a sequence (𝑒𝑛)𝑛∈ℕ such that for all 𝑥 ∈ 𝐴, 

lim
𝑛→∞

‖𝑒𝑛𝑥 − 𝑥‖  = lim
𝑛→∞

‖𝑥𝑒𝑛 − 𝑥‖ = 0. 

 

A closed ideal 𝐼 ⊆ 𝐴 is essential (see [100]) if it has trivial annihilator, that is, if { 𝑥 ∈ 𝐴 ∶
𝐼𝑥 = {0}} = {0}. 

Notation(5.3.21)[331]: Let ℛ  be the hyperfinite 𝐼𝐼𝐼  factor. Let 𝑀 = ℛ ⨂̅𝔅(H)  be the 

unique hyperfinite 𝐼𝐼∞  factor associated to ℛ , and let 𝒯 be its unique trace. We denote by 

𝐾𝑚 the unique norm closed two-sided ideal generated by the positive elements of finite trace 

in 𝑀. 

Note that 𝑀 is the multiplier algebra of 𝒦𝑀, so the quotient 𝑀/𝒦𝑀  is the corona of 

𝑀. 



 

168 

Any ideal in a von Neumann algebra is generated, as a linear space, by its projections, hence 

𝒦𝑀 is the closure of the linear span in 𝑀 of the set of projections of finite trace. In particular, 

ℛ ⨂𝒦(𝐻) ⊊ 𝒦𝑀. To see that the inclusion is proper, fix an orthonormal basis (𝑒𝑛)𝑛∈ℕ for 

𝐻, and choose (𝑝𝑛)𝑛∈ℕfrom ℛ such that 𝒯(𝑝𝑛)  =  2
−n for all 𝑛 ∈ ℕ. For each 𝑛, let 𝑞𝑛 ∈

𝔅(H) be the projection onto 𝑒𝑛, and let 𝑞 = ∑ 𝑝𝑛⨂ 𝑞𝑛n . Then 𝑞 ∈ 𝑀  is a projection of 

finite trace, but 𝑞 ∉ ℛ ⨂𝒦(𝐻). 
   We recall few well known properties of this object. 

Proposition(5.3.22)[331]: (See [35].) 

(i). ℛ ≅ 𝑀𝑝(ℛ) for every prime number 𝑝. Consequently 𝑀𝑛(ℛ ≅  𝑀𝑚(ℛ) for every 

𝑚,𝑛 ∈ ℕ. 

(ii). 𝐾0(𝒦𝑚) = ℝ = 𝐾1 (𝑀/𝒦𝑚). 

(iii) 𝒦𝑚 is not 𝜎-unital. 

(iv).  𝒦𝑚⨂𝒦(𝐻) is not isomorphic to ℛ⊗𝒦(𝐻). 
Proof: (i). This is because 𝑀𝑝(ℛ)is hyperfinite and ℛ is the unique hyperfinite II1-factor. 

(ii). Note that 𝐾0(𝑀) = 0 = 𝐾1(𝑀)and apply the exactness of the six term   𝐾-sequence. 

(iii). Suppose to the contrary that(𝑥𝑛)𝑛∈ℕ is a countable approximate identity in 𝒦𝑀formed 

by positive elements such that 0 ≤  𝑥𝑛 ≤  1  for all 𝑛. Using spectral theory, we can find 

projections 𝑝𝑛 ∈ 𝒦𝑀  such that ‖𝑝𝑛𝑥𝑛 − 𝑥𝑛‖ ≤  1/𝑛 for each 𝑛. Then (𝑝𝑛)𝑛∈ℕ is again a 

countable approximate identity for 𝒦𝑀. For each 𝑛 ∈ ℕ define 𝑞𝑛 = supk≤n𝑝𝑘 ∈ 𝒦𝑀, and 

by passing to a subsequence we can suppose that (𝑞𝑛)𝑛∈ℕ is strictly increasing. For each 

𝑛 ∈ ℕ find a projection 𝑟𝑛 < qn+1 − 𝑞𝑛 such that 𝒯(𝑟𝑛) ≤
1

2n
 . Then 𝑟 = ∑ 𝑟𝑛 ∈ 𝒦M𝑛∈ℕ  , 

and we have that for all 𝑛 ∈ ℕ, 

‖𝑞𝑛𝑟 − 𝑟‖ = 1. 

This contradicts that (𝑞𝑛)𝑛∈ℕ is an approximate identity. 

(iv). This follows from (iii), since ℛ⨂𝒦(𝐻)has a countable approximate identity and 

𝒦𝑀⨂𝒦(𝐻)does not. To see this, suppose that (𝑥𝑛)𝑛∈ℕ is a countable approximate identity 

for 𝒦𝑀⨂𝒦(𝐻), and let 𝑝 be a rank one projection in 𝐾(𝐻).  

Then ((1 ⨂𝑝)𝑥𝑛(1 ⨂𝑝))𝑛∈ℕ is a countable approximate identity for 𝐾𝑚⨂𝑝, but 𝐾𝑚⨂𝑝 ≅

𝒦M , so this contradicts (iii).    

There are many differences between the Calkin algebra and 𝑀/𝒦𝑀.  Some of them are 

already clear from the 𝐾  -theory considerations above, or from the fact that 𝒦(𝐻 ) is 

separable. Another difference, a little bit more subtle, is given by the following: 

Proposition(5.3.23)[331]: Let 𝐻 be 𝑎 separable Hilbert space, and let 𝑄 be the canonical 

quotient map onto the Calkin algebra. Let (𝑒𝑛)𝑛∈ℕ be an orthonormal basis for 𝐻,  and let 

𝑆 ∈ B(H) be the unilateral shift in 𝔅(𝐻) defined by 𝑆(𝑒𝑛) = en+1 for all 𝑛. Then neither 𝑆 

nor 𝑄(𝑆) has 𝑎 square root, but 1 ⨂ 𝑆 ∈ ℛ⨂̅𝐵(𝐻) does have 𝑎 square root. 

Proof: Suppose that 𝑄(𝑇) ∈ 𝐶(𝐻)is such that 𝑄(𝑇)2 = 𝑄(𝑆). Since 𝑄(𝑆)is invertible in 

the Calkin algebra so is 𝑄(𝑇). The Fredholm index of 𝑆 is −1, so if 𝑛 ∈ ℤ is the Fredholm 

index of 𝑇 then 2𝑛 = −1,  which is impossible. Therefore 𝑄(𝑆)has no square root, and 

hence neither does 𝑆. 

For the second assertion recall that 𝑅 ≅ 𝑀2(𝑅), and so 
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ℛ⨂̅𝔅(𝐻) ≅ 𝑀2(ℛ⨂̅𝔅(𝐻) = ℛ⨂̅ (𝑀2 ⨂𝔅(𝐻)). 

We view 𝔅(𝐻)as embedded in 𝑀2 ⨂𝔅(H) = 𝔅(H
′)for another Hilbert space H′;  find 

(𝑓𝑛)𝑛∈ℕ  such that { 𝑒𝑛, 𝑓𝑛 ∶ 𝑛 ∈ ℕ }  is an orthonormal basis for H′.  Let 𝑆′ ∈ 𝔅(H′)be 

defined such that 𝑆′(𝑒𝑛) = 𝑓𝑛  and 𝑆′(𝑓𝑛) = 𝑒𝑛+1  for all 𝑛. Then 𝑇 = 1 ⨂𝑆′ ∈ R⨂̅S(H′), 
and 𝑇2 =  1 ⨂S.    

A consequence of the previous proof, and of the fact that ℛ ≅ 𝑀𝑝(ℛ)for any integer 𝑝, is 

the following: 

Corollary(5.3.24)[331]: 1⨂ 𝑆 ∈ 𝑀 has 𝑎  𝑞𝑡ℎ-root for every rational 𝑞. 

With the motivating example in mind, we turn to establishing countable degree-1 saturation 

of a class of algebras containing /𝒦𝑀. . 

We recall the following result, which may be found in [34]: 

Lemma(5.3.25)[331]: Let 𝐴 be  𝑎  𝐶∗-algebra, 𝑆 ∈ 𝐴1 and 𝑇 ∈  𝐴1
+. Then  

‖𝑆, 𝑇‖ = 𝜖 ≤
1

4
⇒ ‖𝑆, 𝑇1/2‖ ≤

5

4
√𝜖. 

   The following lemma is the key technical ingredient of Theorem(5.3.27) below. It is a 

strengthening of the construction used in [114], as if 𝐴 is 𝜎-unital and 𝑀 = 𝑀(𝐴)is the 

multiplier algebra of 𝐴, then 𝑀 and 𝐴 satisfy the hypothesis of our lemma. 

Lemma(5.3.26)[331]: Let 𝑀 be 𝑎 unital 𝐶∗-algebra, let 𝐴 ⊆ 𝑀 be an essential ideal, and let 

𝜋:𝑀 ⟶ 𝑀/𝐴 be the quotient map. Suppose that there is an increasing sequence (𝑔𝑛)𝑛∈ℕ ⊂
𝐴 of positive elements whose supremum is 1𝑀,  and suppose that any increasing uniformly 

bounded sequence converges in 𝑀. 

    Let (𝐹𝑛)𝑛∈ℕ be an increasing sequence of finite subsets of the unit ball of 𝑀 and (𝜖𝑛)𝑛∈ℕ 

be 𝑎  decreasing sequence converging to 0 ,  with 𝜖0 <
1

4
. Then there is an increasing 

sequence (𝑒𝑛)𝑛∈ℕ ⊂ 𝐴≤1
+  such that, for all 𝑛 ∈ ℕ  and 𝑎 ∈ 𝐹𝑛,  the following conditions 

hold, where 𝑓𝑛 = (en+1 − 𝑒𝑛)
1/2: 

(i) |‖(1 − 𝑒𝑛−2)𝑎(1 − 𝑒𝑛−2)‖ − ‖𝜋(𝑎)‖|   < 𝜖𝑛𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛
≥ 2 

(ii) ‖[ 𝑓𝑛, 𝑎]‖ < 𝜖𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛,
 

(iii) ‖𝑓𝑛(1 − 𝑒𝑛−2) − 𝑓𝑛‖ < 𝜖𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥  2, 
(iv) ‖𝑓𝑛𝑓𝑚‖ < 𝜖𝑚 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥  𝑛 +  2, 
(v)  ‖[ 𝑓𝑛 , 𝑓𝑛+ 1]‖ < 𝜖𝑛+1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 
(vi)  ‖𝑓𝑛𝑎𝑓𝑛‖ ≥ ‖𝜋(𝑎)‖ − 𝜖𝑛 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛, 

(vii) ∑𝑓𝑛
2

𝑛∈ℕ

= 1; 

 

and further, whenever (𝑒𝑛)𝑛∈ℕ is a bounded sequence from 

 𝑀, the following conditions also hold: 
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(viii) the series ∑𝑛∈ℕ 𝑓𝑛𝑥𝑛𝑓𝑛 converges to an element of 𝑀, 

(ix)  ‖∑ 𝑓𝑛𝑥𝑛𝑓𝑛𝑛∈ℕ ‖ ≤ SUP
𝑛∈ℕ

‖𝑥𝑛‖ 

(x)  whenever limsup𝑛→∞ ‖𝑥𝑛‖ = limsup𝑛→∞‖𝑥𝑛𝑓𝑛
2‖ we have 

lim sup
𝑛→∞

‖𝑥𝑛𝑓𝑛
2‖ ≤ ‖𝜋 (∑𝑥𝑛𝑓𝑛

2

𝑛∈ℕ

)‖. 

Proof: For each 𝑛 ∈ ℕ let 𝛿𝑛 = 10
−100and let (g𝑛)𝑛∈ℕ  be an increasing sequence in 𝐴 

whose weak limit is 1 . We will build a sequence (𝑒𝑛)𝑛∈ℕ  satisfying the following 

conditions: 

(a)|‖(1 − 𝑒𝑛−2)𝑎(1 − 𝑒𝑛−2)‖ − ‖𝜋(𝑎)‖|  < 𝜖𝑛 for all 𝑛 ≥  2and 𝑎 ∈ 𝐹𝑛 , 
(b) 0 ≤  𝑒0 ≤ . . . ≤  𝑒𝑛  ≤  𝑒𝑛+1 ≤ ⋯ ≤  1, and for all 𝑛 we have 𝑒𝑛 ∈ 𝐴, 
(c) ‖𝑒𝑛𝑒𝑘  −  𝑒𝑘‖  < δn+1 for all 𝑛 > 𝑘, 
(d)‖[𝑒𝑛, 𝑎]‖  < 𝛿𝑛 for all 𝑛 ∈ ℕ and 𝑎 ∈  𝐹𝑛+1,  
(e) ‖(𝑒𝑛+1 − 𝑒𝑛)𝑎‖ ≥ ‖𝜋(𝑎)‖ − 𝛿𝑛 for all 𝑛 ∈ ℕ and 𝑎 ∈ 𝐹𝑛, 

(f) ‖(𝑒𝑚+1 − 𝑒𝑚)
1/2𝑒𝑛(𝑒𝑚+1 − 𝑒𝑚)

1/2 − (𝑒𝑚+1 − 𝑒𝑚)‖ < 𝛿𝑛+1 for all 𝑛 > 𝑚 +  1, 

(g) 𝑒𝑛+1 ≥ 𝑔𝑛+1 for all 𝑛 ∈ ℕ. 

We claim that such a sequence will satisfy (i)-(vii), in light of Lemma (5.3.26). Conditions 

(i) and (a) are identical. Condition (d) implies condition (ii). Condition (c) and the 𝐶∗-
identity imply condition (iii), which in turn implies conditions (iv) and (v). We have also 

that conditions (e) and (g) imply respectively conditions (vi) and (vii), so the claim is proved. 

After the construction we will show that (viii)-(x) also hold. 

Take 𝛬 = (⋋∈  𝐴+ : ⋋≤ 1} to be the approximate identity of positive contractions (indexed 

by itself) and let 𝛬′ be a subnet of 𝛬 that is quasicentral for 𝑀 (see [34] or [7]). 

Since 𝐴 is an essential ideal of 𝑀, by [100] there is a faithful representation 𝛽 on a Hilbert 

space 𝐻 such that 

 

1 𝐻 = SOT − lim
⋋∈Λ′

{β(⋋)} . 

 

Consequently, for every finite 𝐹 ⊂ 𝑀, 𝜖 > 0 and ⋋∈ Λ′ there is 𝜇 > 𝐴 such that for all 𝑎 ∈
𝐹, 

𝑣 ≥ 𝜇 ⇒ ‖(𝑣 −⋋)𝑎‖ ≥ ‖𝜋(𝑎)‖ − 𝜖.  

   We will proceed by induction. Let 𝑒−1 = 0 and ⋋0∈ 𝛬
′ be such that for all 𝜇 >⋋0 and 

𝑎 ∈ 𝐹1 we have ‖[𝜇, 𝑎]‖ < 𝛿0.  By cofinality of 𝛬′ in 𝛬 we can find an 𝑒0 ∈ 𝛬
′ such that 

𝑒0 >⋋0,   go. Find now ⋋1> 𝑒0 such that for all 𝜇 >⋋1 and 𝑎 ∈ 𝐹2 we have 

‖[𝜇, 𝑎]‖ < 𝛿1, ‖𝜇 − 𝑒0)𝑎‖ ≥ ‖𝜋(𝑎)‖ − 𝛿1. 

Since we have that 

‖𝜋(𝑎)‖ = lim
⋋∈Λ′

‖(1 − ⋋)𝑎(1 − ⋋)‖ 

we can also ensure that for all 𝑎 ∈ 𝐹3 and all 𝜇 >⋋1,  condition (i) is satisfied.  Picking 

𝑒1 ∈ Λ
′ such that 𝑒1 >⋋1, 𝑔1 we have that the base step is completed. Suppose now that 

𝑒0, . . . , 𝑒𝑛, 𝑓0, . . . , 𝑓𝑛−1 are constructed. 
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   We can choose ⋋𝑛+1 so that for all 𝜇 >⋋𝑛+1,  with 𝜇 ∈ 𝛬′,  we have ‖[𝜇, 𝑎]‖ < 𝛿𝑛+1/4 

and ‖(𝜇 − 𝑒𝑛)𝑎‖ ≥ ‖𝜋(𝑎)‖ − 𝛿𝑛 for 𝑎 ∈  𝐹𝑛+2. Moreover, by the fact that Λ′ is an 

approximate identity for 𝐴 we can have that ‖𝑓𝑚𝜇𝑓𝑚 − 𝑓𝑚
2‖  < 𝛿𝑛+2 for every 𝑚 < 𝑛 

and that ‖𝜇𝑒𝑘 − 𝑒𝑘 ‖ < 𝛿𝑛+2  for all 𝑘 ≤ n. By Eq. (i) we can also ensure that for all 𝑎 ∈
 𝐹𝑛+2 and all 𝜇 >⋋𝑛+1 , condition (1) is satisfied. 

Once this ⋋𝑛+1 is picked we may choose 

𝑒𝑛+1  ∈  Λ
′, 𝑒𝑛+1  >⋋𝑛+1, 𝑔𝑛+1, 

to end the induction. 

   It is immediate from the construction that the sequence (𝑒𝑛)𝑛∈ℕ  chosen in this way 

satisfies conditions (a)-(g). To complete the proof of the lemma we need to show that 

conditions (viii), (ix) and (x) are satisfied by the sequence {𝑓𝑛}. 
To prove (viii), we may assume without loss of generality that each 𝑥𝑛 is a contraction. 

Recall that every contraction in 𝑀 is a linear combination (with complex coefficients of 

norm 1) of four positive elements of norm less than 1, and addition and multiplication by 

scalar are weak operator continuous functions. It is therefore sufficient to consider a 

sequence (𝑥𝑛)of positive contractions. By positivity of 𝑥𝑛,  we have that (∑ 𝑓𝑖𝑥𝑖𝑓𝑖𝑖≤𝑛  )𝑛∈ℕ 

is an increasing uniformly bounded sequence, since for every 𝑛 we have 

∑ 𝑓𝑖𝑥𝑖𝑓𝑖
𝑖≤𝑛

∑ 𝑓𝑖
2      𝑎𝑛𝑑   𝑓𝑛𝑥𝑛𝑓𝑛

𝑖≤𝑛
≥ 0. 

Hence (∑ 𝑓𝑖𝑥𝑖𝑓𝑖𝑖≤𝑛  )𝑛∈ℕ  converges in weak operator topology to an element of 𝑀  of 

bounded norm, namely the supremum of the sequence, which is ∑ 𝑓𝑛𝑥𝑛𝑓𝑛𝑛<ℕ . 

For (ix), consider the algebra ∏  𝑀𝑘∈ℕ  with the sup norm and the map ∅𝑛 : ∏  𝑀𝑘∈ℕ ⟶𝑀 

such that ∅𝑛((𝑥𝑖)) = 𝑓𝑛𝑥𝑛𝑓𝑛. Each ∅𝑛 is completely positive, and since 𝑓𝑛
2 ≤ ∑ 𝑓𝑖

2
𝑖∈ℕ  =

1 ,  also contractive. For the same reason the maps   𝜓𝑛:∏  𝑀𝑘∈ℕ ⟶𝑀  defined as 

𝜓𝑛((𝑥𝑖)) = ∑ 𝑓𝑗𝑥𝑗  𝑓𝑗𝑗≤𝑛   are completely positive and contractive. Take 𝛹  to be the 

supremum of the maps 𝜓𝑛. Then 𝛹((𝑥𝑛)) = ∑ 𝑓𝑖𝑥𝑖  𝑓𝑖𝑗≤ℕ . This map is a completely positive 

map of norm 1, because  ‖𝛹‖ = ‖𝛹(1)‖and from this condition (ix) follows. 

For (x), we can suppose limsup𝑖→∞ ‖𝑥𝑖‖ =  limsup𝑖→∞ ‖𝑥𝑖𝑓𝑖
2‖ = 1. Then for all 

𝜖 > 0 there is a sufficiently large 𝑚 ∈ ℕ and a unit vector 𝜉𝑚 ∈ 𝐻 such that .  

‖𝑥𝑚𝑓𝑚
2(𝜉𝑚)‖ ≥ 1 − 𝜖. 

Since ||𝑥𝑖|| ≤ 1 for all 𝑖, we have that ||𝑓𝑚(𝜉𝑚)|| ≥ 1 − 𝜖,  that is, |(𝑓𝑚
2𝜉𝑚 | 𝜉𝑚)| ≥ 1 − 𝜖.  

In particular we have that‖𝜉𝑚 − 𝑓𝑚
2(𝜉𝑚)‖ ≤ 𝜖. 

Since ∑𝑓𝑖
2 = 1 we have that 𝜉𝑚 and 𝜉𝑛constructed in this way are almost orthogonal for all 

𝑛,𝑚 . In particular, choosing 𝜖  small enough at every step, we are able to construct a 

sequence of unit vectors {𝜉𝑚} such that |(𝜉𝑚 | 𝜉𝑛)| ≤  1/2
𝑚 for 𝑚 > 𝑛. But this means 

that for any finite projection 𝑃 ∈ 𝑀 only finitely many 𝜉𝑚 are in the range of P up to 𝜖 for 

every 𝜖 > 0. In particular, if 𝐼 is the set of all convex combinations of finite projections, we 

have that  

lim
⋋∈𝐼
‖∑𝑥𝑖𝑓𝑖

2 −⋋ (∑𝑥𝑖𝑓𝑖
2

𝑖∈ℕ

)

𝑖∈ℕ

‖ ≥ 1. 
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Since 𝐼 is an approximate identity for 𝐴 we have that 

‖𝜋∑𝑥𝑖𝑓𝑖
2

𝑖∈ℕ

‖ = lim
⋋∈𝐼
‖∑𝑥𝑖𝑓𝑖

2 −⋋ (∑𝑥𝑖𝑓𝑖
2

𝑖∈ℕ

)

𝑖∈ℕ

‖ , 

as desired. 

We can then proceed with the proof of the fellowing theorem. 

Theorem(5.3.27)[331]: Let 𝑀 be 𝑎 unital 𝐶∗-algebra, and let 𝐴 ⊆ 𝑀 be an essential ideal. 

Suppose that there is an increasing sequence (𝑔𝑛)𝑛∈ℕ ⊂ 𝐴  of positive elements whose 

supremum is 1𝑀, and suppose that any increasing uniformly bounded sequence converges 

in 𝑀. Then 𝑀/𝐴 is countably degree-1 saturated. 

Proof: Let 𝜋:𝑀 ⟶ 𝑀/𝐴  be the quotient map. Let (𝑃𝑛(𝑥̅))𝑛∈ℕ be a collection of 

∗‑ polynomial of degree 1with coefficients in 𝑀/𝐴 , and for each 𝑛 ∈ ℕ let 𝑟𝑛 ∈ ℝ
+. 

Without loss of generality, reordering the polynomials and eventually adding redundancy if 

necessary, we can suppose that the only variables occurring in 𝑃𝑛 are 𝑥0, . . . , 𝑥𝑛.  

   Suppose that the set of conditions {‖𝑃𝑛(𝑥𝑜, . . . , 𝑥𝑛)‖ = 𝑟𝑛 ∶ 𝑛 ∈ ℕ}  is approximately 

finitely satisfiable, in the sense of Definition(5.3.8). As we noted immediately after 

Definition(5.3.8), it is sufficient to assume that the partial solutions are all in (𝑀/𝐴)≤1, and 

we must find a total solution also in (𝑀/𝐴)≤1. So we have partial solutions 

{𝜋(𝑥𝑘 ,𝑖)}𝑘≤𝑖 ⊆ (𝑀/𝐴)≤1 

 such that for all 𝑖 ∈ ℕ and 𝑛 ≤  𝑖 we have 

‖𝑃𝑛{𝜋(𝑥0,𝑖), . . . , 𝜋(𝑥𝑛,𝑖))‖ ∈ (𝑟𝑛)1/𝑖 . 

For each 𝑛 ∈ ℕ , let 𝑄𝑛(𝑥0, … , 𝑥0). be polynomial whose coefficients are lifting s   of the 

coefficients of 𝑃𝑛 to 𝑀, and let 𝐹𝑛 be a finite set that contains 

(d) all the coefficients of 𝑄𝑘, for 𝑘 ≤ 𝑛; 
(e) 𝑥𝑘,𝑖 , 𝑥𝑘,𝑖

∗  for 𝑘 ≤ 𝑖 ≤  𝑛; 

(f) 𝑄𝑘(x0, i, … , 𝑥𝑘,𝑖)for k ≤ 𝑖 ≤ 𝑛. 

Let 𝜖𝑛 = 4
−n.  Find sequences (𝑒𝑛)𝑛∈ℕ  and (𝑓𝑛)𝑛∈ℕ satisfying the conclusion of 

Lemma(5.3.26) for these choices of (𝑓𝑛)𝑛∈ℕ and (𝜖𝑛)𝑛∈ℕ. 

Let 𝑥̅𝑛,𝑖 = (xo,i, … , 𝑥𝑛,𝑖), 𝑦𝑘 = ∑ 𝑓𝑖𝑥𝑘,𝑖𝑓𝑖𝑖≥𝑘  , 𝑦̅𝑛 = (𝑦0 , … , 𝑦𝑛)a n d  𝑍̅𝑛 = 𝜋(𝑦̅𝑛) . Fix 𝑛 ∈

ℕ; we will prove that ‖𝑃𝑛(𝑍̅𝑛)‖ = 𝑟𝑛. 

First, since 𝑥𝑘,𝑖 ∈ 𝑀≤1,  as a consequence of condition (ix) of Lemma (5.3.26), we have that 

𝑦𝑖 ∈ 𝑀≤1  for all 𝑖. Moreover, since 𝑄𝑛  is a polynomial whose coefficients are lifting of 

those of 𝑃𝑛 we have 

‖𝑃𝑛(𝑍̅𝑛)‖ = ‖𝜋(𝑄𝑛(𝑦̅𝑛))‖. 

We claim that 

 𝑄𝑛(𝑦̅𝑛) −∑𝑓𝑗  𝑄𝑛(𝑥̅𝑛,𝑗)𝑓𝑗 ∈ 𝐴

𝑗∈ℕ

. 
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It is enough to show that 

∑𝑓𝑗  𝑎𝑥𝑘,𝑗  𝑏𝑓𝑗
𝑗∈ℕ

 −  ∑𝑎𝑓𝑗  𝑥 𝑘,𝑗𝑓𝑗𝑏 ∈ 𝐴

𝑗∈ℕ

, 

where 𝑎, 𝑏 are coefficients of a monomial in 𝑄𝑛, since 𝑄𝑛 is the sum of finitely many of 

these elements (and the proof for monomials of the form 𝑎𝑥𝑘,𝑗
∗ 𝑏 is essentially the same as 

the one for 𝑎𝑥𝑘,𝑗𝑏) .  

   By construction we have 𝑎, 𝑏 ∈ 𝐹𝑛 , and hence by condition (ii) of Lemma(5.3.26), for 𝑗 
sufficiently large, 

∀𝑥 ∈  𝑀≤𝑖  (‖𝑎𝑓𝑗𝑥𝑓𝑗𝑏 − 𝑓𝑗  𝑎𝑥 𝑏𝑓𝑗‖ ≤  2
−𝑗(‖𝑎‖ + ‖ 𝑏‖)). 

Therefore ∑ (𝑓𝑗  𝑎𝑥𝑘,𝑗  𝑏𝑓𝑗𝑗∈ℕ − 𝑎𝑓𝑗  𝑥 𝑘,𝑗𝑓𝑗𝑏) is a series of elements in 𝐴 that is converging 

in norm, which implies that the claim is satisfied. In particular, 

‖𝑃𝑛(𝑍̅𝑛)‖ = ‖𝜋(∑𝑓𝑗𝑄𝑛(𝑥̅𝑛,𝑗)𝑓𝑗
𝑗∈ℕ

)‖ 

For each 𝑗 ≥ 2, let 𝑎𝑗 = (1 − 𝑒𝑗−2)𝑄𝑛(𝑥̅𝑛,𝑗)(1 − ej−2). By condition (i) of Lemma(5.3.26), 

the fact that 𝑄𝑛(𝑥̅𝑛,𝑗) ∈  𝐹𝑛 , and the original choice of the 𝑥𝑛,𝑗′s,  we have that 

limsup ‖𝑎𝑗‖ = 𝑟𝑛 . Similarly to the above, but this time using condition (iii) of Lemma 

(5.3.26), we have 

‖𝜋(∑𝑓𝑗𝑄𝑛(𝑥̅𝑛,𝑗)𝑓𝑗
𝑗∈ℕ

)‖ = ‖∑𝑓𝑗𝑎𝑗𝑓𝑗
𝑗∈ℕ

‖ ≤ ‖∑𝑓𝑗𝑎𝑗𝑓𝑗
𝑗∈ℕ

‖. 

Using condition (ix) of Lemma(5.3.26) and the fact that 𝑄𝑛(𝑥̅𝑛,𝑗) ∈ 𝐹𝑗 we have that  

‖∑𝑓𝑗𝑎𝑗𝑓𝑗
𝑗∈ℕ

‖ ≤ lim Sup
𝑗→∞

‖𝑎𝑗‖ = 𝑟𝑛. 

Combining the calculations so far, we have shown 

‖𝑃𝑛(𝑍̅𝑛)‖ = ‖𝜋(∑𝑓𝑗𝑄𝑛(𝑥̅𝑛,𝑗)𝑓𝑗
𝑗∈ℕ

)‖ = ‖𝜋(∑𝑓𝑗𝑎𝑗𝑓𝑗
𝑗∈ℕ

)‖ ≤ 𝑟𝑛. 

Since 𝑄𝑛(𝑥̅𝑛,𝑗) ∈ 𝐹𝑗  for all 𝑗,  condition (vi) of Lemma (5.3.26) implies 𝑟𝑛  ≤

 lim Sup
𝑗→∞

‖𝑓𝑗𝑄𝑛(𝑥̅𝑛,𝑗)𝑓𝑗  ‖. 

It now remains to prove that 

 lim Sup
𝑗→∞

‖𝑓𝑗𝑎𝑗𝑓𝑗‖ ≤ ‖𝜋(∑𝑓𝑗𝑎𝑗𝑓𝑗
𝑗∈ℕ

)‖ . 

so that we will have 
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𝑟𝑛 ≤ lim Sup
𝑗→∞

‖𝑓𝑗𝑄𝑛(𝑥̅𝑛,𝑗)𝑓𝑗  ‖ = lim Sup
𝑗→∞

‖𝑓𝑗𝑎𝑗𝑓𝑗  ‖ ≤ ‖𝜋(∑𝑓𝑗𝑎𝑗𝑓𝑗
𝑗∈ℕ

)‖ = ‖𝑃𝑛(𝑧𝑛̅̅ ̅)‖. 

We have 𝑄𝑛(𝑥̅𝑛,𝑗) ∈ 𝐹𝑗 , so by condition (ii) of Lemma (5.3.26), we have that 

lim Sup
𝑗→∞

‖𝑓𝑗𝑎𝑗𝑓𝑗  ‖ = lim Sup
𝑗→∞

‖𝑎𝑗𝑓𝑗
2 ‖. 

and hence 

∑𝑓𝑗𝑎𝑗𝑓𝑗
𝑗∈ℕ

−∑𝑎𝑗𝑓𝑗
2

𝑗∈ℕ

∈ 𝐴. 

The final required claim will then follow by condition (x) of Lemma(5.3.26), once we verify 

lim Sup
𝑗→∞

‖𝑎𝑗𝑓𝑗
2 ‖ = lim Sup

𝑗→∞
‖𝑎𝑗  ‖  

We clearly have that for all 𝑗, 

‖𝑎𝑗𝑓𝑗
2 ‖ ≤ ‖𝑎𝑗‖. 

On the other hand, 

 lim Sup
𝑗→∞

‖𝑎𝑗𝑓𝑗
2 ‖ = lim Sup

𝑗→∞
‖𝑓𝑗𝑎𝑗𝑓𝑗  ‖ 

=  lim Sup
𝑗→∞

‖𝑓𝑗𝑄𝑛(𝑥̅𝑛,𝑗)𝑓𝑗  ‖       by condition (iii) 

>  𝑟𝑛  = lim Sup
𝑗→∞

‖𝑎𝑗  ‖ 

The Theorem (5.3.1)bove applies, in particular, to coronas of 𝜎 -unital algebras. The 

following result is due to Farah and Hart, but unfortunately their proof in [114] has a 

technical error. Specifically, our proof of Theorem(5.3.27) uses the same strategy as in 

[114], but avoids their equation (10), which is incorrect. 

Corollary(5.3.28)[331]: (See [114]) If 𝐴 is 𝑎 𝜎-unital 𝑐∗-algebra, then its corona 𝐶(𝐴) is 

countably degree-1 saturated. 

We also obtain countable degree-1 saturation for the motivating example from the 

beginning. 

Corollary(5.3.29)[331]: Let 𝑁  be 𝑎  𝐼𝐼1  factor, 𝐻  𝑎  separable Hilbert space and 𝑀 =
𝑁 ⨂̅𝐵(𝐻) be the associated 𝐼𝐼∞ factor. Let 𝒦𝑀  be the unique two-sided closed ideal of 𝑀, 

that is the closure of the elements of finite trace. Then 𝑀/𝒦𝑀  is countably degree-1 

saturated. In particular, this is the case when 𝑁 = ℛ, the hyperfinite 𝐼𝐼1 factor. 

More generally, recall that a von Neumann algebra 𝑀 is finite if there is not a projection 

that is Murray-von Neumann equivalent to 1M,  and 𝜎-finite if there is a sequence of finite 

projections weakly converging to 1M. 

Corollary(5.3.30)[331]: Let 𝑀 be 𝑎 𝜎-finite but not finite tracial von Neumann algebra, 

and let 𝐴 be the ideal generated by the finite trace projections. Then 𝑀/𝐴 is countably 

degree-1 saturated. 

When 𝐻 is separable, the ideal of compact operators in 𝐵(𝐻)is separable, and in 

particular 𝜎-unital, so it follows from Corollary(5.3.28) that the Calkin algebra is countably 

degree-1 saturated. 
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We are going to give explicit results on the theories of the generalized Calkin algebras. It is 

known (see [114]) that the Calkin algebra is not countably quantifier-free saturated; we show 

that the generalized Calkin algebras also fail to have this degree of saturation. This follows 

immediately from the fact that the Calkin algebra is isomorphic to a corner of the generalized 

Calkin algebra and that if 𝐴 is a 𝐶∗-algebra that is 𝛷-saturated, where 𝛷 include all 𝐶∗-
polynomials of degree 1, then every corner of 𝐴 is 𝛷 -saturated. On the other hand, the proof 

shown below is direct and much easier than the promof in the separable case. It is worth 

noting, however, that the method we will use does not apply  to the Calkin algebra 𝐶0 itself. 

Lemma(5.3.31)[331]: Let 𝛼 ≥ 1 be an ordinal. Then 𝐶𝛼  is not countably quantifier-free 

saturated. 

Proof: Fix {𝐴𝑛}𝑛∈ℕ a countable partition of ℵ𝛼  in disjoint pieces of size ℵ𝛼  and a base 

(𝑒𝛽)𝛽<ℵ𝛼 for 𝐻ℵ𝛼. For each 𝑛 ∈ ℕ let 𝑃𝑛 be the projection onto span(𝑒𝛽: 𝛽 ∈  𝐴𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

Claim (5.3.32)[331]: If 𝑄 is 𝑎 projection in 𝐵𝛼  such that 𝑄𝑃𝑛 ∈ 𝒦𝛼  for all 𝑛 then 𝑄 has 

range of countable density. 

Proof: We have that for any 𝑛 ∈ ℕ and 𝜖 > 0 there is a finite 𝐶𝜖,𝑛 ⊂ ℵαsuch that 

𝛽 ∉ 𝐶𝜖,𝑛 ⇒ ‖𝑄𝑃𝑛𝑒𝛽‖ < 𝜖. 

Let 𝐷 = ⋃ ⋃ 𝐶1/𝑚,n𝑛∈ℕ𝑛∈ℕ . If 𝛽 ∉ 𝐷 then for all 𝑛 ∈ ℕ we have ‖𝑄𝑃𝑛𝑒𝛽‖ = 0 and since 

there is 𝑛  such that 𝑒𝛽 ∈ 𝑃𝑛 ,  we have that ‖𝑄𝑒𝛽‖ = 0 .  Since 𝐷  is countable, 𝑄  is 

identically zero on a subspace of countable codimension. 

Let 𝑄−4 =  𝑥𝑥∗ − 1,𝑄−3 = 𝑥
∗𝑥 − 𝑦, 𝑄−2 =  𝑦 − 𝑦

∗ − 𝑄−1 =  𝑦 − 𝑦
2,  and 𝑄𝑛 =  yPn . 

The type {‖𝑄𝑖‖  = 0}−4≤𝑖 admits a partial solution, but not a total solution.    

We are going to have a further look at the theories of 𝐶𝛼. We want to see if it is 

possible to distinguish between the theories of 𝐶𝛼 and of 𝐶𝛽 , whenever 𝛼 ≠ 𝛽. Of course, 

since there are at most 2ℵ0 many possible theories, we have that there are ordinals 𝛼 ≠ 𝛽 

such that 𝐶𝛼 = 𝐶𝛽 . As we show in the next theorem, this phenomenon cannot occur 

whenever 𝛼 and 𝛽 are sufficiently small, and similarly for 𝐵𝛼 and 𝐵𝛽. 

Theorem(5.3.33)[331]: Let 𝛼 ≠  𝛽 be ordinals, and 𝐻𝛼  the Hilbert space of density ℵ𝛼 .  

Then the rojections of the algebras 𝐶𝛼  and 𝐶𝛽  as posets with respect to the Murray-von 

Neumann order are elementary equivalent if and only if 𝛼 = 𝛽  mod 𝜔𝜔 , where 𝜔𝜔  is 

computed by ordinal exponentiation, as they are the infinite projections of 𝐶𝑎 of 𝐶𝛽 . 

Consequently, if 𝛼 ≢  𝛽 then 𝐵𝛼 ≢ 𝐵𝛽 and 𝐶𝛼 ≢ 𝐶𝛽.  

Proof: The key fact is that 𝛼 ≢  𝛽 (as first-order structures with only the ordering) if and 

only if 𝛼 = 𝛽 mod ; see [342]. Hence the proof will be complete as soon as we notice that 

the ordinal 𝛼  is interpretable in both 𝐶𝛼  (as the set of projections under Murray-von 

Neumann equivalence) and inside 𝐵𝛼 (as the set of infinite projections under Murray-von 

Neumann equivalence). 

There is a formula ∅ such that ∅(𝑝, 𝑞) = 0i f  𝑝~𝑀𝑣𝑁 𝑞 and 𝑝, 𝑞 are projections and 

∅(𝑝, 𝑞) = 1 otherwise, and that being an infinite projection is axiomatizable, since 𝑝 is an 

infinite projection if and only if ∅(𝑝) = 0 if and only if 𝜓(𝑝) <  1/4, where 

𝜓(𝑥) = ‖𝑥 – 𝑥∗‖ + ‖𝑥 – 𝑥2‖ + inf
𝑦
(‖𝑦𝑦∗ −  𝑥‖ + ‖𝑦∗𝑦𝑥 – 𝑦∗𝑦‖ + (1 – ‖𝑦∗𝑦 –  𝑥‖))  
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where 𝑦 ranges over the set of partial isometries. Since we have that to any projection we 

can associate the density of its range (both in 𝐶𝛼 and 𝐵𝛼), and that we have that 𝑝 ≤𝑀𝑣𝑁  𝑞 if 
and only if the density of 𝑝 is less or equal than the range of q. Since every possible value 

for the density is of the form ℵ𝛽 ,     for 𝛽 <  𝑎, the theorem is proved.    

We consider abelian 𝐶∗ -algebras, and particularly the theories of real rank zero 

abelian 𝐶∗-algebras. We give a full classification of the complete theories of abelian real 

rank zero 𝐶∗-algebras in terms of the (discrete first-order) theories of Boolean algebras 

(recall that a theory is complete if whenever 𝑀 |= 𝑇  and 𝑁 |= 𝑇 then 𝑀 ≡ 𝑁 ). As an 

immediate consequence of this classification we find that there are exactly ℵ0  distinct 

complete theories of abelian real rank zero 𝐶∗-algebras. We also give a concrete description 

of two of these complete theories. 

We return to studying saturation. We show how saturation of abelian 𝐶∗-algebras is related 

to the classical notion of saturation for Boolean algebras. We begin by recalling some well-

known definitions and properties. 

A topological space 𝑋 such that every collection of disjoint nonempty open subsets 

of𝑋 is countable is said to carry the countable chain condition. 

 Note that for a compact space being totally disconnected is the same as being 0-

dimensional, and this corresponds to the fact that 𝐶(𝑋)has real rank zero. Moreover any 

compact Rickart space is 0-dimensional and sub-Stonean, while the converse is false (take 

for example 𝛽ℕ \ℕ). The space 𝑋  carries the countable chain condition if and only if 

𝐶(𝑋)has few orthogonal positive elements (see Definition (5.3.20)). 

Moreover, if 𝑓: 𝑋 → 𝑌 is a continuous map of compact 0-dimensional spaces we have that 

∅𝑓: 𝐶𝐿(𝑌) − 𝐶𝐿(𝑋) defined as ∅𝑓(𝐶) = 𝑓
−1[C]i s  a homomorphism of Boolean algebras. 

Conversely, for any homomorphism of Boolean algebras ∅: 𝐶𝐿(𝑌) − 𝐶𝐿(𝑋)we can define a 

continuous map 𝑓∅: 𝑋 → 𝑌. If 𝑓 is injective, ∅𝑓  is surjective. If 𝑓 is onto ∅𝑓 is 1 − to − 1 

and the same relations hold for ∅ and 𝑓∅. 

We recall some basic definitions and facts about Boolean algebras. 

Definition(5.3.34)[331]: Let 𝑘 be an uncountable cardinal. 𝐴 Boolean algebra 𝐵 is said to 

be 𝐾-saturated if every finitely satisfiable type of cardinality < 𝑘 in the first-order language 

of Boolean algebras is satisfiable. 

For atomless Boolean algebras this model-theoretic saturation can be equivalently rephrased 

in terms of increasing and decreasing chains: 

Theorem(5.3.35)[331]: (See [353].) Let 𝐵  be an atomless Boolean algebra, and 𝑘  an 

uncountable cardinal. Then 𝐵 is 𝐾-saturated if and only if for every directed 𝑌 < 𝑍 such 

that |𝑌| + |𝑍| < 𝑘 there is 𝑐 ∈ 𝐵 such that 𝑌 < 𝑐 < 𝑍.  

For the ultracopower construction see [334]. The only use we will make of this tool is 

the following lemma. 

Lemma(5.3.36)[331]: (See [349] and [334].) Let 𝑋 be 𝑎 compact Hausdorff space, and let 

𝒰 be an ultrafilter. Then 𝐶(𝑋)𝒰 ≅  𝐶(∑  𝑋𝒰 ) and 𝐶𝐿(𝑋)𝒰 ≅ CL(∑  𝑋𝒰 ). 

Theorem(5.3.37)[331]: Let 𝐴 and 𝐵 be abelian, unital, real rank zero 𝐶∗-algebras. Write 

𝐴 = 𝐶(𝑋)  and 𝐵 = 𝐶(Y),where 𝑋  and 𝑌  are 0 -dimensional compact Hausdorff spaces. 

Then 𝐴 ≡ 𝐵 as metric structures if and only if 𝐶𝐿(𝑋) ≡ CL(Y) as Boolean algebras. 
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Proof: Suppose that 𝐴 ≡ 𝐵. By the Keisler-Shelah Theorem (5.3.7) there is an ultrafilter 𝒰 

such that 𝐴𝒰 ≅ 𝐵𝒰. By Lemma(5.3.36) 𝐴𝒰 ≅  𝐶(∑  𝑋𝒰 ). Thus we have 𝐶(𝑋𝒰) ≅  𝐶(𝑌𝒰), 
and hence by Gelfand-Naimark 𝑋𝒰  is homeomorphic to 𝑌𝒰 .  Then 𝐶𝐿(∑  𝑋𝒰 ) ≅
 𝐶𝐿(∑  𝑌𝒰  ).  Applying Lemma(5.3.36) again, we have 𝐶𝐿(∑  𝑋𝒰 ) =  CL(X)𝒰 ,  so we 

obtain𝐶𝐿(𝑋)𝒰 ≅ 𝐶𝐿(𝑦)𝒰 , and in particular, 𝐶𝐿( 𝑋) ≡ 𝐶𝐿( 𝑌) .The converse direction is 

similar, starting from the Keisler-Shelah theorem for first-order logic (see [36]).    

 It is interesting to note that the above result fails when 𝐶(𝑋)is considered only as a ring in 

first-order discrete logic (see [333]). 

Corollary(5.3.38)[331]: There are exactly ℵ0 distinct complete theories of abelian, unital, 

real rank zero 𝐶∗-algebras. 

Proof: There are exactly ℵ0 distinct complete theories of Boolean algebras; see [340] for a 

description of these theories. 

Corollary(5.3.39)[331]: If 𝑋 and 𝑌 are infinite, compact, 0-dimensional spaces both with 

the same finite number of isolated points or both having 𝑎 dense set of isolated points, then 

𝐶( 𝑋) ≡ 𝐶( 𝑌).  

In particular, let 𝛼 be any infinite ordinal. Then 𝐶(𝛼 +  1) ≡ 𝐶(𝛽𝜔).  Moreover, if 𝛼 is 𝑎 

countable limit, 𝐶(2ω) ≡ 𝐶(𝛽𝜔\ ω) ≡ 𝐶(𝛽𝛼\α). 
Proof: Given 𝑋, 𝑌 as in the hypothesis, again by theorem [340], we have that 𝐶𝐿(𝑋) ≡
𝐶𝐿(𝑌).    
In fact, both implications fail. For one direction, recall that ℂ𝛤̅̅̅̅ = 𝐶(𝛤̃) where 𝛤̃ is the dual 

group of 𝐺. If 𝑝 is prime then the dual of ⨁ℕ ℤ/𝑝ℤ is 𝑝ℕ, hence 

ℂ ℤℕ
⊕ /𝑝ℤ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ≅  ℂ ℤℕ

⊕ /𝑞ℤ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 𝐶(2ℕ) 

for all primes 𝑝 and 𝑞; clearly the groups are not elementary equivalent. 

For the forward implication, we given an example pointed out to us by Tomasz Kania. It is 

known that any two torsion-free divisible abelian groups are elementarily equivalent (see 

[340]), so in particular,ℚ ≅ ℚ ⨁ ℚ. The dual group of ℚ with the discrete topology is a 1-

dimensional indecomposable continuum (see [351]), but the dual group of ℚ ⨁ ℚ is 2-

dimensional. Hence ℂℚ ≢ ℂ(ℚ ⨁ ℚ)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. 

We dedicated to the analysis of the relations between topology and countable 

saturation of abelian 𝐶∗-algebras. In particular, we want to study which kind of topological 

properties the compact Hausdorff space 𝑋 has to carry in order to have some degree of 

saturation of the metric structure 𝐶(𝑋) and, conversely, to establish properties that are 

incompatible with the weakest degree of saturation of the corresponding algebra. From now 

on 𝑋 will denote an infinite compact Hausdorff space (note that if 𝑋 is finite then 𝐶(𝑋)≤1 is 

compact, and so 𝐶(𝑋) is fully saturated). 

The first limiting condition for the weakest degree of saturation is given by the following 

lemma: 

Lemma(5.3.40)[331]:Let 𝑋 be an infinite compact Hausdorff space, and suppose that 𝑋 

satisfies one of the following conditions: 

(i) 𝑋 has the countable chain condition; 

(ii) 𝑋 is separable; 

(iii) 𝑋 is metrizable; 

(iv) 𝑋 is homeomorphic to a product of two infinite compact Hausdorff spaces; 
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(v) 𝑋 is not sub-Stonean; 

(vi) 𝑋 is Rickart. 

Then 𝐶(𝑋) is not countably degree-1 saturated. 

Proof: First, note that (iii) ⇒ (ii) ⇒ (i). The fact that (i) implies that 𝐶(𝑋)i s  not countably 

degree-1 saturated is an instance of Lemma(5.3.41). Failure of countable degree-1 saturation 

for spaces satisfying (iv) follows from Theorem(5.3.14), while for those satisfying (v) it 

follows from [34] and [114]. It remains to consider (vi). 

   Let 𝑋 be Rickart. The Rickart condition can be rephrased as saying that any bounded 

increasing monotone sequence of self-adjoint functions in 𝐶(𝑋)has a least upper bound in 

𝐶(𝑋)(see [348]). 

Consider a sequence (𝑎𝑛)𝑛∈ℕ ⊆ 𝐶(𝑋)1
+ of positive pairwise orthogonal elements, and let 

𝑏𝑛 = ∑ 𝑎𝑖i<𝑛  . Then (𝑏𝑛)𝑛∈ℕ is a bounded increasing sequence of positive operators, so it 

has a least upper bound 𝑏.  Since ‖𝑏𝑛‖ = 1  for all 𝑛,  we also have ‖𝑏‖ = 1.  The type 

consisting of 𝑃−3(𝑥) =  𝑥, with 𝐾−3 = {1}, 𝑃−2(𝑥) =  𝑏 − 𝑥 with 𝐾−2  =  [1,2], 𝑃−1(𝑥)  =
 𝑏 − 𝑥 − 1with 𝐾−1  =  {1} and 𝑃𝑛(𝑥)  =  𝑥 − 𝑏𝑛 − 1with 𝐾𝑛 = [0, 1] is consistent with 

partial solution 𝑏𝑛+1 (for {𝑃−3, … , 𝑃𝑛}). This type cannot have 𝑎 positive solution 𝑦, since 

in that case we would have that 𝑦 − 𝑏𝑛  ≥  0for all 𝑛 ∈ N, yet 𝑏 − 𝑦 > 0, a contradiction to 

𝑋 being Rickart. 

Note that the preceding proof shows that the existence of a particular increasing 

bounded sequence that is not norm-convergent but does have a least upper bound (a con-

dition much weaker than being Rickart) is sufficient to prove that 𝐶 (𝑋)does not have 

countable degree-1 saturation. Moreover, the latter argument does not use that the ambient 

algebra is abelian. 

We will compare the saturation of 𝐶(𝑋)( i n  the sense of Definition (5.3.8)) with the 

saturation of 𝐶𝐿(𝑋),  in the sense of the above theorem. 

We are going to obtain the following: 

Theorem(5.3.41)[331]: Let 𝑋 be 𝑎 compact 0-dimensional Hausdorff space. Then 𝐶(𝑋) is 

countably saturated ⇒ 𝐶𝐿(𝑋) is countably saturated and 

𝐶𝐿(𝑋) is countably saturated ⇒ 𝐶(𝑋) is countably 𝑞. 𝑓. saturated. 

Theorem(5.3.42)[331]: Let 𝑋 be 𝑎 compact 0-dimensional Hausdorff space, and assume 

further that 𝑋  has 𝑎  finite number of isolated points. If 𝐶(𝑋) is countably degree-1 

saturated, then 𝐶𝐿(𝑋) is countably saturated. Moreover, if 𝑋 has no isolated points, then 

countable degree-1 saturation and countable saturation coincide for 𝐶(𝑋). 

   Countable saturation of 𝐶(𝑋)(for all formulas in the language of 𝐶∗-algebras) implies 

saturation of the Boolean algebra, since being a projection is a weakly-stable relation, so 

every formula in 𝐶𝐿(𝑋)can be rephrased in a formula in 𝐶(𝑋); to do so, write sup for ∀, inf 

for ∃, ‖𝑥 − 𝑦‖for 𝑥 ≠ 𝑦 ,  and so forth, restricting quantification to projections. This 

establishes the first implication in Theorem(5.3.41). The second implication will require 

more effort. To start, we will need the following proposition, relating elements of 𝐶(𝑋) to 

certain collections of clopen sets: 

Proposition(5.3.43)[331]:Let𝑋 be 𝑎 compact 0-dimensional space and 𝑓 ∈ 𝐶(𝑋)≤1.  Then 

there exists 𝑎  countable collection of clopen sets 𝑌̃𝑓  = {𝑌𝑛,𝑓: 𝑛 ∈ ℕ}  which completely 

determines 𝑓, in the sense that for each 𝑥 ∈ 𝑋, the value 𝑓(𝑥) is completely determined by 

{𝑛: 𝑥 ∈ 𝑌𝑛,𝑓}. 
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Proof: Let ℂ𝑚,1 = {
𝑗𝑖+√−1𝑗2

𝑚
: 𝑗1, 𝑗2 ∈ ℤ ⋀‖𝑗1 + √− 𝑗2‖ ≤ 𝑚}. 

For every 𝑦 ∈ ℂ𝑚,1 consider 𝑋𝑦,𝑓 = 𝑓
−1 (B 1

m

(y)). We have that each 𝑋𝑦,𝑓  is a 𝜎-compact 

open subset of 𝑋, so is a countable union of clopen sets 𝑋𝑦,𝑓,1, … 𝑋𝑦,𝑓,𝑛, . . . , ∈  CL(X) Note 

that ⋃ ⋃ 𝑋𝑦,𝑓,𝑛 = 𝑋. Let 𝑋̃𝑚,𝑓  =  {𝑋𝑦 ,𝑓,𝑛}(𝑦,𝑛)∈ℂ𝑚 ,1×ℕ   ⊆ 𝐶𝐿(𝑋)𝑛∈ℕ𝑦∈ℂ𝑚 ,1   .  

We claim that 𝑋̃𝑓 = ⋃ 𝑋̃𝑚,𝑓𝑚   describes 𝑓completely. Fix 𝑥 ∈ 𝑋. For every 𝑚 ∈ ℕ we can 

find a (not necessarily unique) pair (𝑦, 𝑛) ∈  ℂ𝑚 ,1 such that 𝑥 ∈ 𝑋𝑦,𝑓,𝑛. Note that, for any 

𝑚,𝑛1, 𝑛2 ∈ ℕ and 𝑦 ≠  𝑧,  we have that 𝑋𝑦,𝑓,𝑛1 ∩ 𝑋𝑧,𝑓,n2  ≠ ø implies |𝑦 − 𝑧| ≤ √2/𝑚. In 

particular, for every 𝑚 ∈ N and 𝑥 ∈ 𝑋 we have 

 

2 ≤ |{𝑦 ∈  ℂ𝑚 ,1 ∶ ∃𝑛(𝑥 ∈ 𝑋𝑦,𝑓,𝑛)}| ≤ 4. 

Let 𝐴𝑥,𝑚  = {y ∈ ℂ𝑚 ,1 ∶ ∃𝑛(𝑥 ∈  𝑋𝑦,𝑓,𝑛)}  and choose 𝑎𝑥,𝑚 ∈ 𝐴𝑥,𝑚  to have minimal 

absolute value. Then 𝑓 (x) = limm 𝑎𝑥,𝑚 so the collection 𝑋̃𝑓 completely describes 𝑓 in the 

desired sense. 

The above proposition will be the key technical ingredient in proving the second implication 

in Theorem(5.3.41). We will proceed by first obtaining the desired result under the 

Continuum Hypothesis, and then showing how to eliminate the set-theoretic assumption. 

Lemma(5.3.44)[331]: Assume the Continuum Hypothesis. Let 𝐵 be 𝑎 countably saturated 

Boolean algebra of cardinality 2ℵ0 = ℵ1.  Then 𝐶(𝑆(B)) is countably saturated. 

Proof: Let 𝐵′ ≼ 𝐵 be countable, and let 𝒰  be a non-principal ultrafilter on ℕ.  By the 

uniqueness of countably saturated models of size ℵ1, and the Continuum Hypothesis, we 

have 𝐵′𝒰 ≅ B.  By Lemma(5.3.36) we therefore have 𝐶(𝑆(𝐵) ≅ 𝐶(𝑆(𝐵′))
𝒰
,  and hence 

𝐶(S(B)) is countably saturated. 

Theorem(5.3.45)[331]: Assume the Continuum Hypothesis. Let 𝑋 be 𝑎 compact Hausdorff 

0-dimensional space. If 𝐶𝐿(𝑋) is countably saturated as 𝑎 Boolean algebra, then 𝐶(𝑋) is 

quantifier-free saturated. 

 

Proof: Let ‖𝑃𝑛‖ = 𝑟𝑛 be a collection of conditions, where each 𝑃𝑛  is a 2-degree ∗-poly-

nomial in 𝑥0, … , 𝑥𝑛 , such that there is a collection 𝐹 = {𝑓𝑛,𝑖}𝑛≤𝑖 ⊆ 𝐶(𝑋)≤1 ,  with the 

property that for all 𝑖 we have ‖𝑃𝑛(𝑓0, 𝑖, … , 𝑓𝑛,𝑖)‖ ∈  (𝑟𝑛)1/𝑖  for all 𝑛 ≤  𝑖. 

For any 𝑛,  we have that 𝑃𝑛  has finitely many coefficients. Consider 𝐺  the set of all 

coefficients of every 𝑃𝑛 and 𝐿 the set of all possible 2-degree ∗-polynomials in 𝐹 U G. Note 

that for any 𝑛 ≤ 𝑖 we have that 𝑃𝑛(𝑓0,𝑖 , … , 𝑓𝑛,𝑖) G 𝐿 and that 𝐿 is countable. For any element 

𝑓 ∈  𝐿  consider a countable collection 𝑋̃𝑓  of clopen sets describing 𝑓,  as in 

Proposition(5.3.43). 

Since 𝐶𝐿(𝑋)  i s  countably saturated and 2ℵ0 = ℵ1  we can find a countably saturated 

Boolean algebra 𝐵 ⊆ 𝐶𝐿(𝑋)such that ∅, 𝑋 ∈ 𝐵, for all 𝑓 ∈ 𝐿 we have 𝑋̃𝑓 ⊆  B,  and |𝐵| =

ℵ1. 

Let 𝜄: 𝐵 − 𝐶𝐿(𝑋) b e  the inclusion map. Then 𝜄  is an injective Boolean algebra 

homomorphism and hence admits a dual continuous surjection 𝑔𝜄: 𝑋 ⟶ 𝑆(B). 
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Claim (5.3.46)[331]: For every 𝑓 ∈ 𝐿 we have that ⋃ 𝑋̃𝑓 = 𝑆(𝐵).  

 

Proof: Recall that 

 

⋃𝑋̃𝑓 = 𝑋. 

 

By compactness of 𝑋,  there is a finite 𝐶𝑓 ⊆ 𝑋̃𝑓  such that ⋃𝐶𝑓 = 𝑋.  In particular every 

ultrafilter on 𝐵 (i.e., a point of 𝑆(B)) corresponds via 𝑔𝜄 to an ultrafilter on 𝐶𝐿(𝑋) (i.e., a 

point of 𝑋), and it has to contain an element of 𝐶𝑓 . So⋃𝑋̃𝑓 = 𝑆(𝐵).   

From 𝑔𝜄 as above, we can define the injective map 𝜙: 𝐶(𝑆(𝐵) → 𝐶(𝑋)  defined as 

𝜙(𝑓)(𝑥) = 𝑓 (𝑔𝜄
−1(𝑥)). Note that 𝜙 is norm preserving: Since 𝜙 is a unital ∗-homomor-

phism of 𝐶∗-algebra we have that ‖𝜙(𝑓)‖ ≤ ‖𝑓‖. For the converse, suppose that 𝑥 ∈ S(B) 
is such that |𝑓 (𝑥)| = 𝑟, and by surjectivity take 𝑦 ∈ 𝑋 such that 𝑔𝜄(𝑦) = 𝑥. Then 

|𝜙(𝑓 )(𝑦)| = |𝑓 (𝑔𝜄(𝑔𝜄
−1(𝑥)))| = |𝑓 (𝑥)|  

For every 𝑓 ∈ 𝐿 consider the function 𝑓′ defined by 𝑋̃𝑓 and construct the corresponding ∗-

polynomials 𝑃𝑛
′ 

Claim (5.3.47)[331]: 

(i) 𝑓 = 𝜙(𝑓′) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐿.  

(ii)  𝑝𝑛
′ (𝑓0,𝑖

′  , . . . , 𝑓𝑛,𝑖
′ )𝑖 ∈ (𝑟𝑛)1/𝑖𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑎𝑛𝑑 𝑛 ≤ 𝑖. 

Proof: Note that, since  𝑓𝑛,𝑖 = 𝐿  and every coefficient of 𝑃𝑛  is in 𝐿,  we have that 

𝑃𝑛(𝑓0,𝑖 , … , 𝑓𝑛,𝑖) ∈ L.  It follows that condition 1,  combined with the fact that 𝜙  is norm 

preserving, implies condition 2. 

Recall that 𝑔 = 𝑔𝜄 is defined by Stone duality, and is a continuous surjective map 𝑔: 𝑋 →
𝑌. In particular 𝑔 is a quotient map. Moreover by definition, since 𝑋𝑞,𝑓,𝑛 ∈  𝐶𝐿(𝑌) = 𝐵 ⊆

𝐶𝐿(𝑋), we have that if 𝑥 ∈ 𝑌 is such that 𝑥 ∈ 𝑋𝑞,𝑓,𝑛 for some (𝑔, 𝑓, 𝑛) ∈ ℚ ×  𝐿 ×  ℕ,  then 

for all 𝑧  such that 𝑔(𝑧) = 𝑥  we have 𝑧 ∈ 𝑋𝑞,𝑓,𝑛.  Take 𝑓 and 𝑥 ∈ 𝑋  such that 𝑓(𝑥) ≠

𝜙(𝑓′)(𝑥). Consider 𝑚 such that |𝑓(𝑥) − 𝜙(𝑓′)(𝑥)| > 2/𝑚. Pick 𝑦 ∈ ℂm,1  such that there 

is 𝑘 for which 𝑥 ∈  Xy,f,𝑘 and find 𝑧 ∈ 𝑌 such that 𝑔(𝑧) = 𝑥. Then 𝑧 ∈ 𝑋𝑦,𝑓,𝑘,  that implies 

𝑓′(𝑧) ∈  𝐵1/𝑚(𝑦) and so 𝜙(𝑓′)(𝑥) = 𝑓′(𝑧) ∈  𝐵1/𝑚(𝑦) contradicting |𝑓 (𝑥) −

𝜙(𝑓′)(𝑥)| ≥ 2/𝑚.    

   Consider now {‖𝑃𝑛
′(𝑥𝑜, . . . , 𝑥𝑛)‖ =  𝑟𝑛} . This type is consistent type in 𝐶(S(B))  by 

condition 2, and 𝐶(S(B))  is countably saturated by Lemma(5.3.44), so there is a total 

solution 𝑔̅. Then ℎ𝑗 = 𝜙(𝑔j) will be such that ‖𝑃𝑛(ℎ̅) ‖ = 𝑟𝑛, since 𝜙 is norm preserving, 

proving quantifier-free saturation for 𝐶(𝑋).    

To remove the Continuum Hypothesis from Theorem (5.3.45) we will show that the 

result is preserved by 𝜎-closed forcing. We first prove a more general absoluteness result 

about truth values of formulas, see [106]. For more examples of absoluteness of model-

theoretic notions, see [332]. 

Our result will be phrased in terms of truth values of formulas of infinitary logic for 

metric structures. Such a logic, in addition to the formula construction rules of the finitary 
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logic we have been considering, also allows the construction of sup𝑛 𝜙𝑛  and in𝑓𝑛 𝜙𝑛  as 

formulas when the 𝜙𝑛 are formulas with a total of finitely many free variables. Two such 

infinitary logics have been considered. The first, introduced by Ben Yaacov and Iovino in 

[336], allows the infinitary operations only when the functions defined by the formulas 𝜙𝑛 

all have a common modulus of uniform continuity; this ensures that the resulting infinitary 

formula is again uniformly continuous. The second, introduced in [343], does not impose 

any continuity restriction on the formulas 𝜙𝑛 when forming countable infima or suprema; 

as a consequence, the infinitary formulas of this logic may define discontinuous functions. 

The following result is valid in both of these logics; the only complication is that we must 

allow metric structures to be based on incomplete metric space, since a complete metric 

space may become incomplete after forcing. 

Lemma(5.3.48)[331]: Let 𝑀 be 𝑎 metric structure, 𝜙(𝑥̅) be 𝑎 formula of infinitary logic 

for metric structures, and 𝑎̅  be 𝑎  tuple from 𝑀  of the appropriate length. Let ℙ be any 

notion of forcing. Then the value ∅𝑀(𝑎̅) is the same whether computed in 𝑉  or in the 

forcing extension 𝑉 [𝐺]. 
Proof: The proof is by induction on the complexity of formulas; the key point is that we 

consider the structure 𝑀 in 𝑉[𝐺]a s  the same set as it is in 𝑉. The base case of the induction 

is the atomic formulas, which are of the form 𝑃(𝑥)for some distinguished predicate 𝑃. In 

this case since the structure 𝑀  is the same in 𝑉  and in 𝑉[ 𝐺],   the value of 𝑃𝑀(𝑎̅) is 

independent of whether it is computed in 𝑉 or 𝑉[𝐺]. 
   The next case is to handle the case where 𝜙 is 𝑓(𝜓1, … , 𝜓𝑛), where each𝜓𝑖 is a formula 

and 𝑓: [0, 1]𝑛 → [0, 1] is continuous. Since the formula 𝜙 is in 𝑉, so is the function 𝑓. By 

induction hypothesis each 𝜓𝑖
𝑀(𝑎̅) can be computed either in 𝑉 or 𝑉[𝐺], and so the same is 

true of ∅𝑀 (𝑎̅) = 𝑓 𝜓1
𝑀(α̅),… , 𝑓𝜓𝑛

𝑀(α̅)). A similar argument applies to the case when ∅ is 

sup𝑛 𝜓𝑛 or in  𝑓𝑛𝜓𝑛. 

Finally, we consider the case where 0(𝑥̅) =  in𝑓𝑦 𝜓(𝑥̅, 𝑦) (the case with sup instead of inf is 

similar). Here we have that for every 𝑏 ∈ 𝑀,𝜓𝑀(𝑎̅, 𝑏)i s  independent of whether computed 

in 𝑉 or 𝑉[𝐺] by induction. In both 𝑉 and 𝑉[𝐺]the infimum ranges over the same set 𝑀, and 

hence 𝜓𝑀 (𝑎̅)is also the same whether computed in 𝑉 or 𝑉[𝐺].    
We now use this absoluteness result to prove absoluteness of countable saturation under a-

closed forcing. 

Proposition(5.3.49)[331]: Let ℙ  be 𝑎 𝜎 -closed notion of forcing. Let 𝑀  be 𝑎  metric 

structure, and let 𝛷 be 𝑎 set of (finitary) formulas. Then 𝑀 is countably 𝛷-saturated in 𝑉 if 

and only if 𝑀 is countably 𝛷-saturated in the forcing extension 𝑉[𝐺]. 
Proof: First, observe that since ℙ is 𝜎-closed, forcing with ℙ does not introduce any new 

countable set. In particular, the set of types which must be realized for 𝑀 to be countably 

𝛷-saturated are the same in 𝑉 and in 𝑉 [𝐺]. 
   Let t(𝑥̅)be a set of instances of formulas from 𝛷with parameters from a countable set 𝐴 ⊆
𝑀. Add new constants to the language for each 𝑎 ∈ 𝐴, so that we may view t as a type 

without parameters. Define 

𝜙(𝑥̅) = inf{𝜓(𝑥̅):𝜓𝐺 𝑡}. 
 

Note that ∅𝑀(𝑎̅) = 0 if and only if 𝑎̅ satisfies 𝑡 in 𝑀. This ∅ is a formula in the infinitary 

logic of [343]. By Lemma(5.3.48) for any 𝑎̅ from 𝑀 we have that ∅𝑀(𝑎̅) = 0 in 𝑉 if and 
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only if ∅𝑀(𝑎̅) = 0 in 𝑉[𝐺]. As the same finite tuples 𝑎̅ from 𝑀 exist in 𝑉 and in 𝑉[𝐺], this 

completes the proof. 

Finally, we return to the proof of Theorem(5.3.41). All that remains is to show: 

Lemma(5.3.50)[331]: The Continuum Hypothesis can be removed from the hypothesis of 

Theorem(5.3.45). 

Proof: Let 𝑋 be a 0-dimensional compact space such that 𝐶𝐿(𝑋) is countably saturated, 

and suppose that the 

Continuum Hypothesis fails. Let ℙ be 𝑎 𝜎-closed forcing which collapses 2ℵ0  to ℵ1 (see 

[106]). Let 𝐴 = 𝐶(X)and 𝐵 = CL(X). Observe that since ℙ  is 𝜎 -closed we have that 𝐴 

remains a complete metric space in 𝑉 [𝐺], and by Lemma(5.3.48) 𝐴 still satisfies the axioms 

for commutative unital 𝐶∗-algebras of real rank zero. Also by Lemma(5.3.48) we have that 

𝐵 remains a Boolean algebra, and the set of projections in 𝐴 in both 𝑉 and 𝑉[𝐺]is 𝐵. We 

note that it may not be true in 𝑉[𝐺]that 𝑋 = 𝑆(𝐵), or even that 𝑋 is compact (see [341]), but 

this causes no problems because it follows from the above that 𝐴 = 𝐶(𝑆(𝐵)) in 𝑉[𝐺]. By 

Proposition(5.3.49) 𝐵  remains countably saturated in 𝑉 [𝐺] . Since 𝑉 [𝐺] satisfies the 

Continuum Hypothesis we can apply Theorem(5.3.45) to conclude that 𝐴  is countably 

quantifier-free saturated in 𝑉[𝐺], and hence also in 𝑉 by Proposition(5.3.49). 

With the Continuum Hypothesis removed from Theorem(5.3.45), we have completed the 

proof of Theorem(5.3.41). It would be desirable to improve this result to say that if 𝐶𝐿(𝑋) 
is countably saturated then 𝐶(𝑋) i s  countably saturated. We note that if the map 𝜙  in 

Theorem(5.3.45) could be taken to be an elementary map then the same proof would give 

the improved conclusion. 

We now turn to the proof of Theorem(5.3.42). We start from the easy direction: 

Proposition(5.3.51)[331]: If 𝑋  is 𝑎 0 -dimensional compact space with finitely many 

isolated points such that 𝐶(𝑋) is countably degree-1 saturated, then the Boolean algebra 

𝐶𝐿(𝑋) is countably saturated. 

Proof: Assume first that 𝑋 has no isolated points. In this case we get that 𝐶𝐿(𝑋)i s  atomless, 

so it is enough to see that𝐶𝐿(𝑋)satisfies the equivalent condition of Theorem (5.3.35). 

Let 𝑌 < 𝑍 be directed such that|𝑌| + |𝑍| < ℵ1. Assume for the moment that both 𝑌 and 𝑍 

are infinite. Passing to a cofinal increasing sequence in 𝑍 and a cofinal decreasing sequence 

in 𝑌, we can suppose that 𝑍 = {𝑈𝑛}𝑛∈ℕ and 𝑌 = {𝑉𝑛}𝑛∈ℕ, where 

𝑈1 ⊊ . . . ⊊ 𝑈𝑛 ⊊ 𝑈𝑛+𝑖 ⊊ . . . ⊊ 𝑉𝑛+𝑖 ⊊ 𝑉𝑛 ⊊ . . . ⊊ 𝑉1. 

If ⋃ 𝑈𝑛n∈ℕ = ⋂n∈ℕ𝑉𝑛   then⋃ 𝑈𝑛n∈ℕ  is a clopen set, so by the remark following the proof of 

Lemma(5.3.40), we have a contradiction to the countable degree-1 saturation of 

𝐶(𝑋).  

For each 𝑛 ∈ ℕ, let 𝑝𝑛 = 𝑥𝑢𝑛 and 𝑞𝑛 = 𝑥𝑣𝑛 , where 𝜒𝐴 denotes the characteristic function of 

the set 𝐴. Then 

𝑝1 < ⋯ < 𝑝𝑛  < 𝑝𝑛+1  < ⋯ < qn+1  < 𝑞𝑛  < ⋯  <  𝑞1 

and by countable degree-1 saturation there is a positive 𝑟 such that 𝑝𝑛 < 𝑟 < 𝑞𝑛 for every 

𝑛 . In particular 𝐴 = { 𝑥 ∈ 𝑋: 𝑟(𝑥) = 0}  and 𝐶 = { 𝑥 ∈ 𝑋: 𝑟( 𝑥) = 1}  are two disjoint 

closed sets such that ⋃ 𝑈𝑛n∈ℕ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊆ 𝐶 and 𝑋 \ ⋂ 𝑉𝑛n∈ℕ

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  ⊆  A. We want to find a clopen set 𝐷 

such that 𝐴 ⊆ 𝐷 ⊆ 𝑋\𝐶. For each 𝑥 ∈ A pick 𝑊𝑥 a clopen neighborhood contained in 𝑋\C. 
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Then 𝐴 ⊆ ⋃𝑥≤𝐴𝑊𝑥. By compactness we can cover 𝐴 with finitely many of these sets, say 

𝐴 ⊆ ⋃𝑖≤𝑛 𝑊𝑥𝑖 ⊆  𝑋\𝐶, so 𝐷 = ⋃𝑖≤𝑛𝑊𝑥𝑖 is the desired clopen set. 

Essentially the same argument works when either 𝑌 or 𝑍 is finite. We need only change 

some of the inequalities from <  with≤ ,  noting that a finite directed set has always a 

maximum and a minimum. 

If 𝑋 has a finite number of isolated points, write 𝑋 = 𝑌⋃𝑍,  where 𝑌 has no isolated points 

and 𝑍 is finite. Then 𝐶(𝑋) = 𝐶(𝑌) ⨁ 𝐶(𝑍)and CL(𝑋) = 𝐶𝐿(𝑌)⨁𝐶𝐿(𝑍). The above proof 

shows that 𝐶𝐿( 𝑌)i s  countably saturated, and 𝐶𝐿( 𝑍)i s  saturated because it is finite, so 

𝐶𝐿(𝑋 )i s  again saturated.    

To finish the proof of Theorem(5.3.42) it is enough to show that when 𝑋 has no isolated 

points the theory of 𝑋 admits elimination of quantifiers. By Corollary(5.3.39) we have that 

𝐶(𝑋) ≡ 𝐶(βℕ\ ℕ)for such 𝑋,  so it suffices to show that the theory of 𝐶(βℕ\ℕ) eliminates 

quantifiers.  

Definition(5.3.52)[331]: Let 𝑎1, … , 𝑎𝑛 ∈ 𝐶(𝑋)(more generally, one can consider 

commuting operators on some Hilbert space 𝐻). We say that 𝑎̅ = (𝑎1, … , 𝑎𝑛)i s  non-

singular if the polynomial ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 =  𝐼 has a solution 𝑥1, … , 𝑥𝑛 in 𝐶(𝑋). We define the 

joint spectrum of 𝑎1, … , 𝑎𝑛 to be 

𝑗𝜎(𝑎̅)  =  {⋋̅ ∈ ℂn: (⋋1− 𝑎1, … ,⋋𝑛− 𝑎𝑛) is singular} 

Proposition(5.3.53)[331]:  Fix 𝑎1, … , 𝑎𝑛 ∈ 𝐶(𝑋).  Then ⋋̅ ∈ 𝑗𝜎(𝑎̅)  if and only if 
∑ |⋋𝑖− 𝑎𝑖|𝑖≤𝑛  | is not invertible. 

Proof: We have that ⋋̅ ∈ 𝑗𝜎(𝑎̅)i f  and only if there is 𝑥 ∈ 𝑋 such that 𝑎𝑖(𝑥) =⋋𝑖 for all  𝑖 ≤
n . In particular, ⋋̅ ∈ 𝑗𝜎(𝑎̅)i f  and only if 0 ∈ 𝜎(∑|⋋𝑖− 𝑎𝑖|)i f  and only if there is 𝑥 such 

that∑ |⋋𝑖− 𝑎𝑖|𝑖≤𝑛 (𝑥) = 0. Since each|⋋𝑖− 𝑎𝑖| is positive we have that this is possible if and 

only if there is x such that for all 𝑖 ≤  𝑛, |⋋𝑖− 𝑎𝑖|(𝑥) = 0.    

Proposition(5.3.54)[331]:The joint spectrum of an abelian 𝐶∗-algebra 𝐴 is quantifier-free 

definable. 

Proof: First of all recall that, when 𝑎̅ = 𝑎 , then 𝑗𝜎(𝑎̅) = σ(𝑎),  hence the two definitions 

coincide for elements. We want to define a quantifier-free definable function 𝐹: 𝐴 × ℂ →
[0, 1] such that 𝐹(𝑎,⋋) = 0 if and only if ⋋∈ σ(𝑎). Since we showed that ⋋̅∈ 𝜎 (𝑎̅)i f  and 

only if 0 ∈ 𝜎(∑ |⋋𝑖− 𝑎𝑖|𝑖≤𝑛 ), so, in light of this, we can define a function 

𝐹𝑛: 𝐴
𝑛  × ℂn → [0, 1] 

as 𝐹𝑛(𝑎̅,⋋̅) =  𝐹(|⋋𝑖− αi|, 0), hence we have that 𝐹𝑛(𝑎̅,⋋̅) = 0 if and only if ⋋̅∈  𝑗𝜎(𝑎̅),  

that implies that the joint spectrum of 𝑎̅ ∈ 𝐴𝑛 is quantifier-free definable. 

To define 𝜎(𝑎), recall that, for 𝑓 ∈ 𝐴 , the absolute value of 𝑓 is quantifier-free definable as 

|𝑓| = √ 𝑓𝑓∗ , and for a self-adjoint 𝑓 ∈ 𝐴 , its positive part is quantifier-free definable as 

the function 𝑓+ = max (0, 𝑓). The 𝐹(𝑎,⋋) = | 1 − ‖(1 − |a −⋋ .1|)+‖| is the function we 

were seeking. 

Theorem(5.3.55)[331]:The theory of 𝐶(βℕ\ℕ) has quantifier elimination. Consequently 

the theory of real rank zero abelian 𝐶∗-algebras without minimal projections has quantifier 

elimination. 
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Proof: It is enough to prove that for any 𝑛 ∈ ℕand 𝑎̅, 𝑏̅ ∈ 𝐶(βℕ\ℕ)𝑛 that have the same 

quantifier-free type over ∅ there is an automorphism of 𝐶(𝛽ℕ\ℕ) sending 𝑎𝑖 to 𝑏𝑖, for all 

𝑖 ≤  𝑛. 

Since 𝑎̅  and 𝑏̅  have the same quantifier-free type, we have that 𝐾 =  𝑗𝜎(𝑎̅) = 𝑗𝜎(𝑏̅). 
Consider 𝐷  be a countable dense subset of 𝐾  and pick 𝑓i, … , 𝑓𝑛, 𝑔1, … , 𝑔𝑛 ∈ 𝐶(𝛽ℕ ) =
ℓ∞(ℕ) such that ∀(𝑑1, … , 𝑑𝑛) ∈ 𝐷 we  have that 𝐹𝑑 = {𝑚 ∈ ℕ: ∀𝑖 ≤ 𝑛(𝑓𝑖(𝑚) = 𝑑𝑖)} and 

𝐺𝑑 = {𝑚 ∈ ℕ: ∀𝑖 ≤ 𝑛(𝑔𝑖(𝑚) = 𝑑𝑖)}  are infinite, 𝜋(𝑓𝑖) = 𝑎𝑖 , 𝜋(𝑔𝑖) = 𝑏𝑖  and, for 𝑚 ∈ ℕ 

we  have that (𝑓𝑖(𝑚), . . . , 𝑓𝑛(𝑚)), (𝑔1(𝑚), . . . , 𝑔𝑛(𝑚)) ∈ 𝐷. 
In particular we have that ℕ = ⋃ 𝐹𝑑𝑑∈𝐷 = ⋃ 𝐺𝑑𝑑∈𝐷  and that for all 𝑑 ≠ 𝑑′ we have 𝐹𝑑 ∩
 𝐹𝑑′ = ∅ =  𝐺𝑑  ∩  𝐺𝑑′ , then there is a permutation 𝜎 on ℕ (that induces an automorphism 

of 𝐶(𝛽ℕ \ ℕ)) such that 𝑓𝑖  o 𝜎 = 𝑔𝑖for all 𝑖 ≤ n.    
The proof of Theorem(5.3.42) is now complete by combining Theorem(5.3.41), Proposition 

(5.3.51), and Theorem(5.3.55). 

Corollary(5.3.56)[370]: Let 𝐻 be 𝑎 separable Hilbert space, and let 𝑄𝑟  be the canonical 

quotient map onto the Calkin algebra. Let (𝑒𝑛
𝑟)𝑛∈ℕ be an orthonormal basis for 𝐻,  and let 

𝑆𝑟 ∈ B(H) be the unilateral shift in 𝔅(𝐻) defined by 𝑆𝑟(𝑒𝑛
𝑟) = 𝑒𝑛+1

𝑟  for all 𝑛. Then neither 

𝑆𝑟 nor 𝑄𝑟(𝑆𝑟) has 𝑎 square root, but 1 ⨂ 𝑆𝑟  ∈ ℛ𝑟⨂̅𝐵(𝐻) does have 𝑎 square root. 

Proof: Suppose that 𝑄𝑟(𝑇𝑟) ∈ 𝐶(𝐻) is such that 𝑄𝑟(𝑇𝑟)
2 = 𝑄𝑟(𝑆𝑟) . Since 𝑄𝑟(𝑆𝑟) is 

invertible in the Calkin algebra so is 𝑄𝑟(𝑇𝑟). The Fredholm index of 𝑆 is −1, so if 𝑛 ∈ ℤ is 

the Fredholm index of 𝑇𝑟  then 2𝑛 = −1,  which is impossible. Therefore 𝑄𝑟(𝑆𝑟)has no 

square root, and hence neither does 𝑆𝑟 . 

For the second assertion recall that 𝑅𝑟 ≅ 𝑀2(𝑅𝑟), and so 

ℛ𝑟⨂̅𝔅(𝐻) ≅ 𝑀2(ℛ𝑟⨂̅𝔅(𝐻) = ℛ𝑟⨂̅ (𝑀2 ⨂𝔅(𝐻)). 

We view 𝔅(𝐻)as embedded in 𝑀2 ⨂𝔅(H) = 𝔅(H
′)for another Hilbert space H′;  find 

(𝑓𝑛
𝑟)𝑛∈ℕ  such that { 𝑒𝑛

𝑟, 𝑓𝑛
𝑟 ∶ 𝑛 ∈ ℕ }  is an orthonormal basis for H′.  Let 𝑆𝑟

′ ∈ 𝔅(H′)be 

defined such that 𝑆𝑟
′(𝑒𝑛

𝑟) = 𝑓𝑛
𝑟  and 𝑆𝑟

′(𝑓𝑛
𝑟) = 𝑒𝑛+1

𝑟  for all 𝑛.  Then 𝑇𝑟 = 1 ⨂𝑆𝑟
′ ∈

𝑅𝑟⨂̅𝑆𝑟(H
′),  and 𝑇r

2 =  1 ⨂𝑆𝑟.    

Corollary(5.3.57)[370]: Let 𝐴  and 𝐴 + 𝜖  be abelian, unital, real rank zero 𝐶∗ -algebras. 

Write 𝐴 = 𝐶(𝑋)  and 𝐴 + 𝜖 = 𝐶(𝑋 + 𝜖),where 𝑋  and 𝑋 + 𝜖  are 0 -dimensional compact 

Hausdorff spaces. Then 𝐴 ≡ 𝐴 + 𝜖 as metric structures if and only if 𝐶𝐿(𝑋) ≡ CL(𝑋 + 𝜖) 
as Boolean algebras. 

Proof: Suppose that 𝐴 ≡ 𝐴 + 𝜖. By the Keisler-Shelah theorem Theorem (5.3.7) there is an 

ultrafilter 𝒰2  such that 𝐴𝒰
2
≅ 𝐴𝒰

2
+ 𝜖 . By Lemma(5.3.36) 𝐴𝒰

2
≅  𝐶(∑  𝑋𝒰2 ). Thus we 

have 𝐶(𝑋𝒰2) ≅  𝐶(𝑋𝒰2 + 𝜖),  and hence by Gelfand-Naimark 𝑋𝒰2  is homeomorphic to 

𝑋𝒰2 + 𝜖. Then 𝐶𝐿(∑  𝑋𝒰2 ) ≅  𝐶𝐿(∑  𝒰2 𝑋 + 𝜖). Applying Lemma(5.3.36) again, we have 

𝐶𝐿(∑  𝑋𝒰2 ) =  CL(X)𝒰
2
 ,  so we obtain 𝐶𝐿(𝑋)𝒰

2
≅ 𝐶𝐿(𝑋 + 𝜖)𝒰

2
,  and in particular, 

𝐶𝐿(𝑋) ≡ 𝐶𝐿(𝑋 + 𝜖).The converse direction is similar, starting from the Keisler-Shelah 

theorem for first-order logic (see [36]).    

Corollary(5.3.58)[370]:Let 𝑋  be 𝑎  compact 0 -dimensional space and ∑ 𝑓𝑟𝑟 ∈ 𝐶(𝑋)≤1 .  

Then there exists 𝑎  countable collection of clopen sets 𝑌̃∑ 𝑓𝑟𝑟
 = {𝑌𝑛,∑ 𝑓𝑟𝑟

: 𝑛 ∈ ℕ}  which 

completely determines ∑ 𝑓𝑟𝑟 ,  in the sense that for each 𝑥2 ∈ 𝑋, the value ∑ 𝑓𝑟𝑟 (𝑥2) is 

completely determined by {𝑛: 𝑥2 ∈ 𝑌𝑛,∑ 𝑓𝑟𝑟
}. 



 

185 

Proof: Let ℂ𝑚,1 = {
𝑗𝑖+√−1𝑗2

𝑚
: 𝑗1, 𝑗2 ∈ ℤ ⋀‖𝑗1 + √− 𝑗2‖ ≤ 𝑚}. 

For every 𝑦2 ∈ ℂ𝑚,1 consider ∑ 𝑋𝑦2,𝑓𝑟𝑟 = ∑ 𝑓−𝑟𝑟 (B 1
m

(y)). We have that each 𝑋𝑦2,∑ 𝑓𝑟𝑟
  is 

a 𝜎 -compact open subset of 𝑋,  so is a countable union of clopen sets 

𝑋𝑦2,∑ 𝑓𝑟𝑟 ,1, … 𝑋𝑦2,∑ 𝑓𝑟𝑟 ,𝑛, . . . , ∈  CL(X)  Note that ⋃ ⋃ 𝑋𝑦2,∑ 𝑓𝑟𝑟 ,𝑛 =𝑛∈ℕ𝑦2∈ℂ𝑚 ,1

𝑋. Let 𝑋̃𝑚,∑ 𝑓𝑟𝑟
 =  {𝑋𝑦2 ,∑ 𝑓𝑟𝑟 ,𝑛}(𝑦2,𝑛)∈ℂ𝑚 ,1×ℕ   ⊆ 𝐶𝐿(𝑋)  .

 

We claim that 𝑋̃∑ 𝑓𝑟𝑟
= ⋃ 𝑋̃𝑚,∑ 𝑓𝑟𝑟𝑚   describes ∑ 𝑓𝑟𝑟  completely. Fix 𝑥2 ∈ 𝑋.  For every 

𝑚 ∈ ℕ we can find a (not necessarily unique) pair (𝑦2, 𝑛) ∈  ℂ𝑚 ,1 such that 𝑥2 ∈ 𝑋𝑦2,∑ 𝑓𝑟𝑟 ,𝑛. 

Note that, for any 𝑚,𝑛1, 𝑛2 ∈ ℕ and 𝑦2 ≠ 𝑧2,  we have that 𝑋𝑦2,∑ 𝑓𝑟𝑟 ,𝑛1
∩ 𝑋𝑧2,∑ 𝑓𝑟𝑟 ,n2

 ≠ ø 

implies |𝑦2 − 𝑧2| ≤ √2/𝑚. In particular, for every 𝑚 ∈ N and 𝑥2 ∈ 𝑋 we have 

2 ≤ |{𝑦2  ∈  ℂ𝑚 ,1 ∶ ∃𝑛(𝑥
2 ∈ 𝑋𝑦2,∑ 𝑓𝑟𝑟 ,𝑛)}| ≤ 4. 

Let 𝐴𝑥2,𝑚  = {y ∈ ℂ𝑚 ,1 ∶ ∃𝑛(𝑥
2 ∈  𝑋𝑦2,∑ 𝑓𝑟𝑟 ,𝑛)}  and choose 𝑎𝑥2,𝑚 ∈ 𝐴𝑥2,𝑚  to have 

minimal absolute value. Then ∑ 𝑓𝑟𝑟  (x) = limm 𝑎𝑥2,𝑚 so the collection 𝑋̃∑ 𝑓𝑟𝑟
 completely 

describes ∑ 𝑓𝑟𝑟  in the desired sense. 

Corollary(5.3.59)[370]: Let ℙ  be 𝑎 𝜎 -closed notion of forcing. Let 𝑀  be 𝑎  metric 

structure, and let ∑ 𝛷𝑗𝑗  be 𝑎 set of (finitary) formulas. Then 𝑀 is countably 𝛷𝑗-saturated in 

𝑉 if and only if 𝑀 is countably ∑ 𝛷𝑗𝑗 -saturated in the forcing extension 𝑉[𝐺]. 

Proof: First, observe that since ℙ is 𝜎-closed, forcing with ℙ does not introduce any new 

countable set. In particular, the set of types which must be realized for 𝑀 to be countably 

∑ 𝛷𝑗𝑗 -saturated are the same in 𝑉 and in 𝑉 [𝐺]. 

   Let t(𝑥̅)be a set of instances of formulas from ∑ 𝛷𝑗𝑗  with parameters from a countable set 

𝐴 ⊆ 𝑀. Add new constants to the language for each 𝑎 ∈ 𝐴, so that we may view t as a type 

without parameters. Define 

∑ 

𝑗

𝜙𝑗(𝑥̅) =∑ 

𝑗

inf{𝜓𝑗(𝑥̅): 𝜓𝑗𝐺 𝑡}. 

 

Note that ∑ ∅𝑗
𝑀

𝑗 ∅𝑗
𝑀(𝑎̅) = 0 if and only if 𝑎̅ satisfies 𝑡 in 𝑀. This ∑ ∅𝑗𝑗  is a formula in the 

infinitary logic of [343]. By Lemma(5.3.48) for any 𝑎̅ from 𝑀 we have that ∑ ∅𝑗
𝑀

𝑗 (𝑎̅) = 0 

in 𝑉 if and only if ∑ ∅𝑗
𝑀

𝑗 (𝑎̅) = 0 in 𝑉[𝐺]. As the same finite tuples 𝑎̅ from 𝑀 exist in 𝑉 

and in 𝑉[𝐺], this completes the proof. 

Corollary(5.3.60)[370]:  Fix 𝑎1
𝑟 , … , 𝑎𝑛

𝑟 ∈ 𝐶(𝑋).  Then 𝜆𝑟̅  ∈ 𝑗𝜎(𝑎𝑟̅̅ ̅)  if and only if 

∑ |𝜆𝑖
𝑟 − 𝑎𝑖

𝑟|𝑖≤𝑛  | is not invertible. 

Proof: We have that 𝜆𝑟̅  ∈ 𝑗𝜎(𝑎𝑟̅̅ ̅)i f  and only if there is 𝑥 ∈ 𝑋 such that 𝑎𝑖
𝑟(𝑥) = 𝜆𝑖

𝑟 for all  

𝑖 ≤ n . In particular, 𝜆𝑟̅  ∈ 𝑗𝜎(𝑎𝑟̅̅ ̅)i f  and only if 0 ∈ 𝜎(∑∑  𝑟 |𝜆𝑖
𝑟 − 𝑎𝑖

𝑟|)i f  and only if there 

is 𝑥 such that∑ ∑  𝑟 |𝜆𝑖
𝑟 − 𝑎𝑖

𝑟|𝑖≤𝑛 (𝑥) = 0. Since each ∑  𝑟 |𝜆𝑖
𝑟 − 𝑎𝑖

𝑟| is positive we have that 

this is possible if and only if there is x such that for all 𝑖 ≤  𝑛, ∑  𝑟 |𝜆𝑖
𝑟 − 𝑎𝑖

𝑟|(𝑥) = 0.    

Corollary(5.3.61)[370]:The joint spectrum of an abelian 𝐶∗-algebra 𝐴𝑟 is quantifier-free 

definable. 
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Proof: First of all recall that, when  𝑎𝑟̅̅ ̅ = 𝑎𝑟  ,  then 𝑗𝜎(𝑎𝑟̅̅ ̅) = σ(𝑎𝑟),   hence the two 

definitions coincide for elements. We want to define a quantifier-free definable function 

𝐹𝑟: 𝐴
𝑟  × ℂ → [0, 1] such that 𝐹𝑟(𝑎

𝑟 , 𝜆𝑟) = 0 if and only if 𝜆𝑟 ∈ σ(𝑎
𝑟). Since we showed 

that 𝜆𝑟̅̅ ̅ ∈ 𝜎 (𝑎
𝑟̅̅ ̅)i f  and only if 0 ∈ 𝜎(∑ |𝜆𝑟,𝑖 − 𝑎𝑖

𝑟|𝑖≤𝑛 ), so, in light of this, we can define a 

function 

𝐹𝑟,𝑛: 𝐴
𝑟𝑛  × ℂn → [0, 1] 

as 𝐹𝑟,𝑛(𝑎
𝑟̅̅ ̅, 𝜆𝑟̅̅ ̅) =  𝐹𝑟(|𝜆𝑟,𝑖 − αi|, 0), hence we have that 𝐹𝑟,𝑛(𝑎

𝑟̅̅ ̅, 𝜆𝑟̅̅ ̅) = 0 if and only if 𝜆𝑟̅̅ ̅ ∈

 𝑗𝜎(𝑎𝑟̅̅ ̅),  that implies that the joint spectrum of 𝑎𝑟̅̅ ̅ ∈ 𝐴𝑟𝑛 is quantifier-free definable. 

To define 𝜎(𝑎𝑟), recall that, for 𝑓𝑟 ∈ 𝐴
𝑟  , the absolute value of 𝑓𝑟 is quantifier-free definable 

as |𝑓𝑟| = √ 𝑓𝑟𝑓𝑟
∗ , and for a self-adjoint 𝑓𝑟 ∈ 𝐴

𝑟  , its positive part is quantifier-free definable 

as the function (𝑓𝑟)+ = max (0, 𝑓𝑟). The 𝐹𝑟(𝑎
𝑟 , 𝜆𝑟) = | 1 − ‖(1 − |𝑎

𝑟 − 𝜆𝑟 . 1|)+‖| is the 

function we were seeking.  
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Chapter 6 

Rohlin Property and Borel Complexity 
For the Jiang–Su algebra we show the uniqueness up to outer conjugacy of the 

automorphism with this Rohlin property. We prove that if A is either (i) a separable C*-

algebra which is stable under tensoring with 𝒵 or 𝒦, or (ii) a separable II1 factor which is 

McDuff or a free product of II1 factors, then the approximately inner automorphisms of A 

are not classifiable by countable structures. 

Section (6.1): Automorphisms of the Jiang–Su Algebra 

In the classification program established by Elliott, the Jiang–Su algebra Z is one of 

the most important C∗-algebras, see [145], and which has been investigated by many people 

[230], [231], [173], [247], [206]. Toms and Winter proved that all approximately divisible 

C∗ -algebras absorb the Jiang–Sualgebra tensorially, i.e., A ≅ A⊗  Z  [206]. Rørdam 

showed that the Cuntz semigroup of a Z- absorbing C∗-algebra is almost unperforated [247]. 

Recently, Winter has shown some criteria for the absorption of the Jiang–Su algebra [253]. 

For abstract characterizations of the Jiang–Su algebra in a streamlined way, we refer to the 

recent by Dadarlat, Rørdam, Toms, and Winter [231], [248], [252]. H. Lin has shown the 

classification theorem for a large class of C∗-algebras consisting of limits of generalized 

dimension drop algebras when they absorb the Jiang–Su algebra tensorially [241]. 

In the case of von Neumann algebras Connes defined the Rohlin property for 

automorphisms, using a partition of unities consisting of projections, and classified 

automorphisms of the injective type II1 factor up to outer conjugacy [229]. Kishimoto gave 

a method to prove the Rohlin property for automorphisms of AF-algebras for classifying 

automorphisms up to outer conjugacy, based on Elliott’s classification program [232], [235], 

[239], [240]. For Kirchberg algebras, Nakamura completely classified automorphisms with 

the Rohlin property by their KK-classes up to outer conjugacy [244]. Recently, Matui has 

classified automorphisms of AH-algebras with real rank zero and slow dimension growth 

up to outer conjugacy [243]. For finite actions, Izumi defined the Rohlin property and has 

shown the classification theory [236], [237]. Recently, Izumi, Katsura, and Matui showed 

classification results for ℤ2-actions with the Rohlin property [177], [238], [242]. 

The aim is to introduce a kind of the Rohlin property for automorphisms of projectionless 

C∗-algebras and to give the two main theorems as follows. 

Definition (6.1.1)[227]: Let A be a unital C∗-algebra which has a unique tracial state 𝑡 and 

absorbs the Jiang–Su algebra 𝑍 tensorially, and a be an automorphism of 𝐴. We say that a 

has the weak Rohlin property, if for any 𝑘 ∈ ℕ there exist positive elements 𝑓2 ∈ 𝐴+
1 , 𝑛 ∈

 ℕ such that(𝑓𝑛)𝑛 ∈  𝐴∞, 

(𝑎𝑗(𝑓𝑛))
𝑛
. (𝑓𝑛)𝑛 = 0, 𝑗 = 1,2,… , 𝑘 − 1 

𝜏 (1 −∑𝑎𝑗(𝑓𝑛)

𝑘−1

𝑗=0

) → 0 

 Here, we denote by 𝐴∞the quotient ℓ∞(ℕ, 𝐴) ∕ 𝑐0(𝐴), and 𝐴 ∞the central sequence algebra 

𝐴∞ ∩ 𝐴′ . 

We extend a technical condition called property (SI)to 𝐶∗-algebras which do not 

necessarily have projections in Definition(6.1.6) Roughly speaking, property (SI) means 

that if two central sequence of positive elements are given such that one of them is 
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infinitesimally small compared to the other in the sequence algebra, then in fact so in the 

central sequence algebra. 

For a separable, nuclear 𝐶∗ - algebra 𝐴  absorbing the Jiang–Su algebra, Rørdam 

proved that 𝐴 is purely infinite if and only if 𝐴 is traceless in [247], and Nakamura proved 

that the aperiodicity for automorphisms of purely infinite 𝐶∗-algebras coincides with the 

Rohlin property in [244]. 

If A is a projectionless 𝐶∗-algebra with a unique tracial state constructed in [250], the 

weak Rohlin property is equivalent to the aperiodicity of the automorphism in the GNS-
representation associated with the tracial state. 𝐴 similar definition for finite actions, which 

is called projection free tracial Rohlin property, has been defined in [1,22]. The first main 

theorem is an adaptation of the result showed by Hirshberg and Winter in [234] to 

projectionless 𝐶∗-algebras. The second main theorem is an adaptation of the result for UHF 

algebras showed by Kishimoto in [239] to the Jiang–Su algebra. The proofs of Theorem 

(6.1.12) and Theorem (6.1.21) will appear mainly in Lemma (6.1.13) and Corollary (6.1.20) 

We take the two-sided shift automorphism s on the infinite tensor product ⨂𝑛∈ℤ𝑍 ≅ 𝑍 of 

the Jiang–Su algebra. In Proposition (6.1.14) and Example (6.1.8), we will prove that s has 

the weak Rohlin property and 𝑍 has the property (SI). So, as an application of Theorem 

(6.1.12), we obtain that: 

Corollary (6.1.2)[227]: 

(   𝑧𝑛∈ℕ
⊗ ) ×𝜎= ℤ ⊗ 𝑍 ≅ (   𝑧𝑛∈ℕ

⊗ ) ×𝜎 ℤ. 
We recall the generators of the prime dimension drop algebras discovered by Rørdam and 

Winter in [248]. For projectionless cases we extend the technical property, which was called 

property (SI) in [249], to projectionless 𝐶∗-algebras. By this property, we can obtain the 

generators defined. We prove Theorem (6.1.12). Using the weak Rohlin property we show 

the stability for the automorphisms of the Jiang–Su algebra. 

When 𝐴 is a 𝐶∗-algebra, we denote by 𝐴sa the set of self-adjoint elements of,  𝐴, 𝐴1 
the unit ball of 𝐴, 𝐴+ the positive cone of 𝐴,𝑈(𝐴) the unitary group of 𝐴, 𝑃(𝐴)the set of 

projections of 𝐴, 𝑇(𝐴)the tracial state space of 𝐴. 

We define an inner automorphism of 𝐴 by 𝐴𝑑𝑢(𝑎) = 𝑢𝑎𝑢∗for 𝑢 ∈ 𝑈(𝐴) and 𝑎 ∈  𝐴. We 

denote by 𝑀n  the 𝐶∗  -algebra of 𝑛 × 𝑛  matrices with complex entries and 𝑒𝑖,𝑗
(𝑛)
  the 

canonical matrix units of 𝑀n, and we set 𝑒𝑖
(𝑛)
= 𝑒𝑖,𝑖

(𝑛)
. We denote by (𝑚, 𝑛) the greatest 

common divisor of 𝑚 and 𝑛 ∈ ℕ. 

The following argument was given by Rørdam and Winter in [247] and [248]. We 

would like to begin with some definitions about the generators of prime dimension drop 

algebras and show Proposition (6.1.4). We denote by 𝐼(𝑘, 𝑘 + 1), 𝑘 ∈ ℕ   the prime 

dimension drop algebra 

{𝑓 ∈ 𝐶([0, 1])  ⊗𝑀𝑘⊗𝑀𝑘+1;  𝑓(0)  ∈  𝑀𝑘1𝑘+1, 𝑓(1)  ∈  1𝑘⊗𝑀𝑘+1} 
and set the self-adjoint unitary 

𝑢1 =∑𝑒𝑗,𝑖
(𝑘)
⨂𝑒𝑗,𝑖

(𝑘)
∈ 𝑈(𝑀𝑘⨂𝑀𝑘)

𝑖,𝑗

 

Define non-unital *-homomorphisms 𝜌0: 𝑀𝑘⊗ 𝑀𝑘 ↪ 𝑀𝑘⊗ 𝑀𝑘+1 by 𝜌0 (𝑒𝑖,𝑗
(𝑘)
⨂𝑒𝑙,𝑚

(𝑘)
) =

𝑒𝑖,𝑗
(𝑘)
⨂𝑒𝑙,𝑚

(𝑘)
, and 𝜌 ∶  𝐶([0, 1])  ⊗𝑀𝑘⊗𝑀𝑘 ↪ 𝐶([0, 1])  ⊗𝑀𝑘⊗𝑀𝑘+1𝑏𝑦 by 𝜌(𝑓 )(𝑡 )  =
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 𝜌0(𝑓 (𝑡 )), 𝑡 ∈ [0, 1] .Let 𝑢 ∈  𝑈(𝐶([0, 1])  ⊗𝑀𝑘⊗𝑀𝑘)  be such that 𝑢(0)  =  1  and 

𝑢(1)  =  𝑢1and set. 

𝑣 =∑𝑒1,𝑗
(𝑘)
⨂𝑒𝑗,𝑘+1

(𝑘+1)

𝑘

𝑗=1

 

𝑤(𝑡) = 𝜌(𝑢)(𝑡)⨂𝑐𝑜𝑠1 2⁄ (𝜋𝑡 2⁄ )1𝑘⨂𝑒𝑘+1
(𝑘+1)

, 

𝑐𝑗(𝑡 ) =  𝑤(𝑡) (𝑒1,𝑗
(𝑘)
⊗1𝑘+1)𝑤

∗(𝑡), 𝑗 = 1,2,… , 𝑘 

𝑠(𝑡) = 𝑠𝑖𝑛(𝜋𝑡 2⁄ )𝑤(𝑡)𝑣, 𝑡 ∈ [0,1]. 

Since  𝑐𝑗(0) = 𝑒1,𝑗
(𝑘)
⊗1𝑘+1, 𝑐𝑗(1) =  1𝑘⊗𝑒1,𝑗

( 𝑘+1)
, 𝑠(0)  =  0, and 𝑠(1)  =  1𝑘⊗𝑒1,𝑘+1

(𝑘+1)
, 

it follows that 𝑐𝑗 , 𝑠 ∈  𝐼(𝑘, 𝑘 + 1). And we have that 

𝑤∗𝑤(𝑡)  =  𝑤𝑤∗(𝑡 )  = 1𝑘⊗(1𝑘+ 1 − 𝑒𝑘+1
(𝑘+1)

)⊕ 𝑐𝑜𝑠(𝜋𝑡 /2)1𝑘⨂𝑒𝑘+1
(𝑘+1)

, 

𝑐𝑖𝑐𝑗
∗ =  𝑤𝑤∗𝑤 (𝑒1

(𝑘)
𝑒𝑗,1
(𝑘)
⨂1𝑘+ 1)𝑤

∗ = 𝛿𝑖,𝑗𝑐1
2, 

∑𝑐𝑗
∗𝑐𝑖 = (𝑤

∗𝑤)2
𝑘

𝑗=1

, 

𝑠∗𝑠(𝑡)𝑠𝑖𝑛2(𝜋𝑡 /2)1𝑘⨂𝑒𝑘+1
(𝑘+1)

, 

𝑐1𝑠(𝑡) =  𝑠𝑖𝑛(𝜋𝑡 ∕ 2)𝑤 (𝑒1
(𝑘)
⨂1𝑘+ 1)𝑤

∗𝑤(𝑡)∑𝑒1,𝑖
(𝑘)
⨂𝑒𝑖,𝑘+1

(𝑘+1)

𝑘

𝑖=1

= 𝑠(𝑡) 

From these computations, it follows that {𝑐𝑗}𝑗=1
𝑘
⋃{𝑠}satiafies 

𝑐1 ≧ 0, 𝑐𝑖𝑐𝑗
∗ = 𝛿𝑖,𝑗𝑐1

2,   

∑𝑐𝑗
∗𝑐𝑖 + 𝑠

∗𝑠 = 1, 𝑐1𝑠 = 𝑠.

𝑘

𝑗=1

 

To be convenient, we denote by ℛ𝑘  the above relations on generators of a unital 𝐶∗ -

algebra.Fix a separable infinite-dimensional Hilbert space ℋ, and set 

Λ = {{𝑐𝑗
′}
𝑗=1

𝑘
∪ {𝑠′} ⊂ 𝐵(ℋ)1; satisfiesℛk} ⊂ 2

𝐵(ℋ)1 . 

For λ ∈  Λ,  let cj,𝜆 ∈ λ , λ, j =  1, 2, . . . , k and 𝑠𝜆 ∈ 𝜆 be generators corresponding to 𝑐𝑗 , 𝑗 =

1, 2, . . . , 𝑘,  and 𝑠  on the relations ℛ𝒦 , and define 𝑐̃𝑗 =⊕𝜆∈𝛬 𝑐𝑗,𝜆, 𝑠 ̃ =⊕𝜆∈𝛬 𝑆𝜆 ∈

𝐵(⊕𝜆∈𝛬 ℋ).The set {𝑐̃𝑗}𝑗 =1
𝑘 ∪ {𝑠̃} satisfies the relations ℛ𝒦. Let 𝐶∗({𝑐̃𝑗}𝑗 =1

𝑘 ∪ {𝑠̃} ) be the 

𝐶∗-subalgebraof 𝐵(⊕𝜆∈𝛬 ℋ)generated by {𝑐̃𝑗} ∪ {𝑠̃}. Then, we can identify 𝐶∗({𝑐̃𝑗}𝑗 =1
𝑘 ∪

{𝑠̃} ) with the universal 𝐶∗-algebra on a set of generators satisfying the relations ℛ𝒦. 

Proposition(6.1.3)[227]: (See Proposition 5.1 in [248].) The universal𝐶∗ -algebra 𝐶∗ -

algebra is isomorphic to 𝐼(𝑘, 𝑘 +  1) with 𝑐̃𝑗 ↦ 𝑐𝑗and𝑠̃ ↦ 𝑠  

Proof: First we show that 𝐶∗ ({𝑐𝑗}𝑗 ∪
{𝑠}) = 𝐼(𝑘, 𝑘 +  1) since 

∑𝑐𝑗
∗𝑠𝑠∗𝑐𝑗 + 𝑠

∗𝑠(𝑡) = 𝑠𝑖𝑛(𝜋𝑡 ∕ 2)(1𝑘⨂1𝑘+1),

𝑘

𝑗=1
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 and 1𝑘⨂1𝑘+1 ∈  𝐶
∗ ({𝑐𝑗}𝑗 ∪

{𝑠})  we have that 𝐶([0, 1])  ⊗ 1𝑘⨂1𝑘+1 ⊂ 𝐶
∗ ({𝑐𝑗}𝑗 ∪

{𝑠}) .Bya partition of unity argument on [0, 1],  it suffices to show that 𝐶∗ ({𝑐𝑗}𝑗 ∪

{𝑠}) (𝑖) ≅ 𝑀𝑘+𝑖 , 𝑖 =  0, 1 ,and 𝐶∗ ({𝑐𝑗}𝑗 ∪
{𝑠}) (𝑡 ) ≅ 𝑀𝑘⊗𝑀𝑘+1, 𝑡 ∈  (0, 1) . Since 

𝑐𝑗(0) =  𝑒1,𝑗
(𝑘)
⊗1𝑘+1, 𝑐𝑗  (1) =  1𝑘⨂𝑒1,𝑗

(𝑘)
, 𝑗 = 1, 2, . . . , 𝑘,  and 𝑠(1)  =  1𝑘⨂𝑒1,𝑘+1

(𝑘+1)
, it 

follows that 𝐶∗ ({𝑐𝑗}𝑗 ∪
{𝑠}) (𝑖) ≅ 𝑀𝑘+𝑖𝑖 = 0,1. since 

𝑠𝑐𝑗𝑠
∗(𝑡 )  =  𝑠𝑖𝑛2(𝜋𝑡 /2) 𝑐𝑜𝑠(𝜋𝑡 /2)𝜌(𝑢) (𝑒1,1

(𝑘)
⊗𝑒1,𝑗

(𝑘+1)
 ) 𝜌(𝑢)∗, 𝑗 =  1, 2, … , 𝑘, 

𝑠𝑐𝑗𝑠
∗𝑐𝑖(𝑡 ) =  𝑠𝑖𝑛

2(𝜋𝑡 /2) 𝑐𝑜𝑠(𝜋𝑡 /2)𝜌(𝑢) (𝑒1,𝑖
(𝑘)
⊗𝑒1,𝑗

(𝑘+1)
 ) 𝜌(𝑢)∗(𝑡)𝑖, 𝑗 =  1, 2, … , 𝑘, 

𝑠𝑐𝑗(𝑡 )  =  𝑠𝑖𝑛(𝜋𝑡 /2) 𝑐𝑜𝑠(𝜋𝑡 /2)𝜌(𝑢)(𝑡) (𝑒1,𝑗
(𝑘)
⊗𝑒1,𝑘+1

(𝑘+1)
 ) =  1, 2, … , 𝑘, 

for 𝑡 ∈  (0, 1),we have that 𝐶∗({𝑐𝑗}𝑗 ∪ {𝑠})(𝑡 )  = 𝑀𝑘  ⊗𝑀𝑘+1 for 𝑡 ∈ (0, 1). 

Set 𝐴 =  𝐶∗({𝑐̃𝑗}𝑗 =1
𝑘 ∪ {𝑠̃}). 

Let Φ ∶  𝐴 → 𝐼(𝑘, 𝑘 +  1) be the *-homomorphism defined by Φ(𝑐̃𝑗)  =  𝑐𝑗  and Φ(𝑠̃)  =

 𝑠. It remains to show that Φ is injective. Let (𝜋,ℋ) be an irreducible representation of 𝐴. 

Because for any 𝑎 ∈  𝐴 there exists an irreducible representation of 𝐴 which preserves the 

norm of a (see [83]), it suffices to show that there exists a representation 𝜑 of 𝐼(𝑘, 𝑘 + 1) 
on ℋ such that 𝜑(𝑐𝑗) = 𝜋(𝑐̃𝑗) and 𝜑(𝑠) = 𝜋(𝑠̃). 

Set 

𝑏̃  = ∑ 𝑐̃𝑗
∗𝑠̃ 𝑠̃∗𝑐̃𝑗 + 𝑠̃

∗𝑠̃

𝑘

𝑗 =1

. 

By the following computations, we see that 𝑏̃ is in the center of 𝐴. Since {𝑐̃𝑗}𝑗 ∪ {𝑠̃} satisfies 

therelations ℛ𝑘, in particular 𝑐̃1
2 = 𝑐̃𝑗𝑐̃𝑗

∗ ,we have that 

𝑏̃𝑐̃𝑗 = 𝑠̃ 𝑠̃
∗𝑐̃𝑗 + 𝑠̃

∗𝑠̃𝑐̃𝑗 , 

𝑐̃𝑗𝑏̃  = 𝑠̃𝑠̃
∗𝑐̃𝑗 + 𝑐̃𝑗𝑠̃

∗𝑠̃, 

𝑠̃∗𝑠̃ 𝑐̃𝑗 = 𝑐̃𝑗 − 𝑐̃1
2𝑐̃𝑗 = 𝑐̃𝑗𝑠̃

∗𝑠̃, 

𝑏̃𝑠̃  = 𝑏̃ 𝑐̃1𝑠̃  = 𝑠̃𝑠̃
∗𝑠̃  + 𝑠̃𝑠̃∗𝑠̃, 

𝑠̃𝑏̃∑ 𝑠̃𝑐̃𝑗
∗𝑠̃ 𝑠̃∗𝑐̃𝑗 + 𝑠̃𝑠̃

∗𝑠̃ 

𝑠̃∗𝑠̃2 = 𝑐̃1𝑠̃  − 𝑐̃1
3𝑠̃  = 𝑠̃  − 𝑠̃ = 0 

𝑠̃∗𝑠̃𝑐̃𝑗
∗𝑠̃𝑠̃∗𝑐̃𝑗 = 𝑐̃𝑗

∗𝑠̃𝑠̃∗𝑐̃𝑗 − 𝑐̃𝑗
∗𝑐̃𝑗𝑐̃𝑗

∗𝑠̃𝑠̃∗𝑐̃𝑗 = 0. 

Hence [ 𝑏̃, 𝑐̃𝑗] = 0 and [𝑏̃, 𝑠̃] = 0. 

    Set c̅j =  π(c̃j), s̃  = π(s̃), and b̃  =  π(b̃). Since 0 ≤ b̃ ≤  1, we have thatsp(b̃) = [0,1] 

and obtain  𝛽 ∈ [0,1]such that 𝛽1 = 𝑏̅. When 𝛽 = 0 we have 𝑠̅ = 0. Thus {𝑐𝑗̅}𝑗 satisfies the 

relations for matrix units {𝑒1,𝑗
(𝑘)
} of 𝑀k, and then ℋ = ℂ𝑘. Set 𝑉0: 𝐼(𝑘, 𝑘 +  1)  → 𝑀𝑘as the 

irreducible representationat 0. Since 𝑉0(𝑐𝑗) = 𝑒1,𝑗
(𝑘)

 

we obtain a unitary u. and define 𝜑 =  𝐴𝑑𝑢0Ο𝑉0 . 

When 𝛽 =  1, by the following computations, we see that 𝑐𝑗̅
∗𝑐𝑗̅ , 𝑗 =  1, 2, . . . , 𝑛, and 𝑠̅∗𝑠̅ are 

orthogonal projections. Since 𝑏̅  =  1, we have that ∑𝑐𝑗̅
∗(1 − 𝑠̅ 𝑠̅∗) 𝑐𝑗̅ =  0. Then it follows 
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that 𝑐1̅
2 = 𝑠̅𝑠̅∗, 𝑐1̅

4 = 𝑐1̅
2, (𝑐𝑗̅

∗𝑐𝑗̅)
2 = 𝑐𝑗̅

∗𝑐1̅
2𝑐𝑗̅ = 𝑐𝑗̅

∗𝑐𝑗̅  and (𝑠̅∗𝑠̅)2 = 𝑐𝑗̅
∗𝑐1̅
2𝑠̅  = 𝑠̅∗𝑠̅.From∑𝑐𝑗̅

∗𝑐𝑗̅ +

𝑠̅∗𝑠̅  =  1 it follows that 𝑐𝑗̅
∗𝑐𝑗̅ , 𝑗 =  1, 2, . . . , 𝑘 and 𝑠̅∗𝑠̅ are mutually orthogonal projections. 

Hence {𝑐𝑗̅}𝑗 ∪ {𝑠̅} 

satisfies the relations for matrix units {𝑒1,𝑗
(𝑘+1)

}𝑗 =1
𝑘+1𝑜𝑓 𝑀𝑘+1 . Then we see that ℋ =

 ℂ(𝑘+1) andcan define 𝜑 ∶  𝐼(𝑘, 𝑘 +  1)  → 𝐵(ℋ)  as the irreducible representation of 

𝐼(𝑘, 𝑘 + 1) at 𝑡 =  1upto unitary equivalence. 

When 0 < 𝛽 < 1, by the following computations, we see that 

 𝐸𝑖,𝑗 = (𝛽(1 − 𝛽))
−1𝑐𝑖̅

∗𝑠̅𝑐𝑗̅
∗𝑐𝑗̅𝑠̅

∗𝑐𝑖̅ , 

𝐸𝑗,𝑘+1 = (𝛽(1 − 𝛽))
−1𝑐𝑗̅

∗𝑐𝑗̅𝑠̅
∗𝑠,̅ 

 𝑖, 𝑗 =  1, 2, . . . , 𝑘,  are mutually orthogonal projections. Since 𝑏𝑠̅  = 𝑠̅𝑠̅∗𝑠̅ and (1 −
 𝑏̅)𝑠̅∗𝑠̅  = (1 − 𝑠̅∗𝑠̅)𝑠̅∗𝑠̅, we have that 

𝐸𝑖,𝑗
2 = (𝛽(1 −  𝛽))−2 = 𝑐𝑖̅

∗𝑠̅𝑐𝑗̅
∗𝑐𝑗̅𝑠̅

∗𝑐𝑗̅
2𝑠̅𝑐𝑗̅

∗𝑐𝑗̅𝑠̅
∗𝑐𝑖̅ 

=  (𝛽(1 −  𝛽))−2𝑐𝑖̅
∗𝑠̅𝑠̅∗𝑠̅𝑐𝑗̅

∗𝑐𝑗̅𝑐𝑗̅
∗𝑐𝑗̅𝑠̅

∗𝑐𝑖̅  

= 𝛽−1(1 −  𝛽)−2𝑐𝑖̅
∗𝑠̅(1 − 𝑠̅∗𝑠̅)𝑐𝑗̅

∗𝑐𝑗̅𝑠̅
∗𝑐𝑖̅ = 𝐸𝑖,𝑗 ,  

𝐸𝑗,𝑘+1
2 = 

 

(𝛽(1 −  𝛽))−2(𝑐𝑗̅
∗𝑐𝑗̅)

2
(𝑠̅∗𝑠̅)2 

= 𝛽−1(1 −  𝛽)−1𝑐𝑗̅
∗𝑐𝑗̅(1 − 𝑠̅

∗𝑠̅)𝑠̅∗𝑠̅𝐸𝑗,𝑘+1, 

∑𝐸𝑖,𝑗
𝑖,𝑗

+∑𝐸𝑗,𝑘+1 = (𝛽(1 −  𝛽))
−1

𝑗

(∑𝑐𝑖̅
∗𝑠̅(1 − 𝑠̅∗𝑠̅)𝑠̅∗𝑐𝑖̅ + (1 − 𝑠̅

∗𝑠̅)𝑠̅∗𝑠̅

𝑘

𝑖=1

) 

= 𝛽−1 (∑𝑐𝑖̅
∗𝑠̅

𝑘

𝑖=1

𝑠̅∗𝑐𝑖̅ + 𝑠̅
∗𝑠̅) = 1. 

Set 

𝐹𝑖,𝑗 = 𝛽
−1(1 − 𝛽)−1/2𝑠̅𝑐𝑗̅𝑠̅

∗𝑐𝑖̅ 

𝐹𝑗,𝑘+1 = (𝛽(1 − 𝛽))
−1/2𝑠̅𝑐𝑗̅ , 𝑖, 𝑗 = 1,2,… . , 𝑘. 

Then it follows that 𝐹𝑖,𝑗
∗ 𝐹𝑖,𝑗 = 𝐸𝑖,𝑗 , 𝐹𝑗,𝑘+1

∗ 𝐹𝑗,𝑘+1 = 𝐸𝑗,𝑘+1, 𝐹𝑖,𝑗𝐹𝑖,𝑗
∗ = 𝐸1.1  and 𝐹𝑗,𝑘+1𝐹𝑗,𝑘+1

∗ =

𝐸1.1 . Thus {𝐹𝑖,𝑗}𝑖,𝑗 ∪ {𝐹𝑗,𝑘+1}𝑗  satisfies the same relations as matrix units {𝑒1,𝑗
(𝑘)
⊗

 𝑒1,𝑗
(𝑘+1)

}𝑖,𝑗 ∪ {𝑒1,𝑗
(𝑘)
⊗ 𝑒1,𝑘+1

(𝑘+1)
}
𝑗

 of 𝑀𝑘⊗ 𝑀𝑘+1 . It is not so hard to see that 

𝛽1/2∑ 𝐹𝑗,𝑘
∗ 𝐹𝑗,𝑘+1

𝑘
𝑗 =1  = 𝑠̅, 𝛽 ∑ 𝐹1,𝑗

∗ 𝐹𝑖,𝑗
𝑘
𝑗=1 =  𝑠̅𝑠̅∗𝑐𝑖̅ ,  and 𝛽𝑐𝑖̅ =  𝑠̅𝑠̅

∗𝑐𝑖̅ + 𝑠̅
∗ 𝑠̅𝑐𝑖̅ .Then we 

have that 𝐶∗({𝐹𝑖,𝑗} ∪ {𝐹𝑗,𝑘+1}) = 𝐶
∗({ 𝑐𝑗̅}𝑗 ∪ { 𝑠̅})  And ℋ = ℂ𝑘(𝑘+1). 𝐿𝑒𝑡𝑉𝛽  be the 

irreducible representation of 𝐼(𝑘, 𝑘 + 1) at 𝑡 ∈ (0,1)  with sin2(𝜋 𝑡/2) = 𝛽 . Then 

𝑉𝛽𝜊𝛷(𝑏̅) = 𝛽 and there exists a unitary 𝑢𝛽 such that  

𝐹𝑖,𝑗 = 𝛽
−1 (1 − 𝛽)−1/2𝐴𝑑𝑢𝛽  𝜊𝑉𝛽(𝑠𝑐𝑗  𝑠

∗𝑐𝑖), 

𝐹𝑗,𝑘+1 = (𝛽(1 − 𝛽))
−1/2𝐴𝑑𝑢𝛽𝜊𝑉𝛽(𝑠𝑐𝑗). 

Hence, we have that 𝐴𝑑𝑢𝛽  𝜊𝑉𝛽(𝑐𝑗) = 𝑐𝑗̅  and 𝐴𝑑𝑢𝛽𝜊𝑉𝛽(𝑠) = 𝑠̅ and obtain 𝜑 = 𝐴𝑑𝑢𝛽𝜊𝑉𝛽 . 

This completes the proof. 

Definition (6.1.4)[227]: Let 𝐴  be a unital 𝐶∗ -algebra and 𝜏 ∈ 𝑇(𝐴) . We recall the 

dimension function 𝑑𝜏 and define 𝑑̅𝜏: 𝐴+
1 → ℝ+by 
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 𝑑𝜏(𝑓 ) = lim
𝑛→∞

𝜏((1/𝑛 + 𝑓)−1𝑓) , 

 𝑑̅𝜏(𝑓 ) = lim
𝑛→∞

𝜏(𝑓𝑛) , 𝑓 ∈ 𝐴+
1 . 

Lemma (6.1.5)[227]: For  𝑓𝑛 ∈ 𝐴+
1 , 𝑛 ∈ ℕ with (𝑓𝑛)𝑛 ∈ 𝐴∞ and an increasing sequence 

𝑚𝑛 ∈ ℕ, 𝑛 ∈ ℕ  with 𝑚𝑛 ↗ ∞,it follows that: 

 (i)  If lim𝑛→∞max𝜏∈𝑇(𝐴)𝜏(𝑓𝑛) = 0  then there exist  𝑓𝑛 ∈ 𝐴+
1 , 𝑛 ∈ ℕ  such that (𝑓𝑛)𝑛 =

(𝑓𝑛)𝑛 And lim𝑛→∞max𝜏∈𝑇(𝐴)𝑑𝜏(𝑓𝑛) = 0. 

(ii) There exist  𝑓𝑛 ∈ 𝐴+
1 , 𝑛 ∈ ℕ  such that (𝑓𝑛)𝑛 = (𝑓𝑛)𝑛 and 

lim 𝑖𝑛𝑓𝑛→∞ min𝜏∈𝑇 (𝐴)𝑑̃𝜏(𝑓𝑛) lim 𝑖𝑛𝑓𝑛 min𝜏 𝜏(𝑓𝑛
𝑚𝑛). 

 (iii) If 𝐴  absorbs 𝑍  tensorially, then there exist 𝑓𝑛
(𝑖)
∈ 𝐴+

1 , 𝑖 = 0,1, 𝑛 ∈ ℕ  such that 

(𝑓𝑛
(𝑖)
)𝑛 ∈ 𝐴∞, 𝑓𝑛

(0)
 𝑓𝑛
(1)
= 0, (𝑓𝑛

(𝑖)
)𝑛(𝑓𝑛)𝑛, 𝑖 = 0,1, and 

lim 𝑖𝑛𝑓𝑛→∞min𝜏∈𝑇(𝐴) 𝑑̅𝜏 (𝑓𝑛
(𝑖)
) ≥ lim 𝑖𝑛𝑓𝑛min 𝜏𝜏(𝑓𝑛

𝑚𝑛)/2. 

Proof: (i) Let 𝜀𝑛 > 0 be such that 𝜀𝑛 ↘ 0 and max𝜏∈𝑇(𝐴) 𝜏(𝑓𝑛)𝜀𝑛
2. Set 

𝑔𝜀(𝑡) = {
(1 − 𝜀)−1(𝑡 − 𝜀), 𝜀 ≤ 𝑡 ≤ 1,
0,                          0 ≤ 𝑡 ≤ 𝜀,

 

 and 𝑓𝑛 = 𝑔𝜀𝑛(𝑓𝑛) . Then we have that ‖𝑓𝑛 − 𝑓𝑛‖ ≤ 𝜀𝑛 and 𝜀𝑛lim𝑚→∞ (1/𝑚 + 𝑓𝑛)
−1𝑓𝑛 ≤

𝑓𝑛, which implies that 𝑑𝜏(𝑓𝑛) ≤ 𝜀𝑛, for any 𝜏 ∈ 𝑇(𝐴). 
(ii) Let 𝜀𝑛 > 0 be such that 𝜀𝑛 ↘ 0, and(1 − 𝜀𝑛)

𝑚𝑛 → 0. Set 

𝑔𝜀(𝑡) = {
(1 − 𝜀)−1𝑡, 0 ≤ 𝑡 ≤ 1 − 𝜀,
1,                1 − 𝜀 ≤ 𝑡 ≤ 1,

 

And 𝑓𝑛 = 𝑔𝜀𝑛(𝑓𝑛) . Then we have that ‖𝑓𝑛 − 𝑓𝑛‖ ≤ 𝜀𝑛  and 𝑓𝑛
𝑚𝑛 = 𝑓𝑛

𝑚𝑛(𝑙𝑖𝑚𝑙→∞𝑓𝑛
𝑙 +

𝜒([0,1 − 𝜀𝑛)) (𝑓𝑛)) ≤ 𝑙𝑖𝑚𝑙→∞𝑓𝑛
𝑙 + (1 − 𝜀𝑛)

𝑚𝑛  (where 𝜒(𝑆)  means the characteristic 

function of 𝑆),  which implies that 𝜏(𝑓𝑛
𝑚𝑛)𝑑𝜏(𝑓𝑛) + (1 − 𝜀𝑛)

𝑚𝑛 , for any 𝜏 ∈ 𝑇(𝐴). 

(iii) Set 𝑐 = lim 𝑖𝑛𝑓𝑛→∞ min𝜏∈𝑇(𝐴)𝜏(𝑓𝑛
𝑚𝑛). Since𝐴 ≅ 𝐴⊗𝑛∈ℕ 𝑍  , we obtain 𝑙𝑛 ∈ ℕ  and 

𝑓𝑛̅ ∈ (𝐴⊗𝑗=1
𝑙𝑛 𝑍)+

1 such that 𝑙𝑛 ↗ ∞ and 𝑚𝑛‖𝑓𝑛̅ − 𝑓𝑛‖ → 0, which implies that (𝑓𝑛̅)𝑛 ∈ 𝐴∞ 

and lim 𝑖𝑛𝑓𝑛→∞min𝜏∈𝑇(𝐴)𝜏(𝑓𝑛̅
𝑚𝑛) = 𝑐. By an argument as in the proof of (ii), we obtain 

𝑓𝑛̅ ∈ (𝐴⊗𝑙=1
𝑙𝑛 𝑍)+

1 , 𝑛 ∈ ℕ such that (𝑓𝑛̅)𝑛 = (𝑓𝑛̅) = (𝑓𝑛)  and 

lim 𝑖𝑛𝑓𝑛→∞min𝜏∈𝑇(𝐴 )𝑑̅𝜏 (𝑓𝑛) ≥ 𝑐 . Let 𝑔𝑛
(𝑖)
∈ 𝑍+

1 , 𝑖 = 0,1, 𝑛 ∈ ℕ  be such that 𝑔𝑛
(0)
𝑔𝑛
(1)
=

0, lim 𝑖𝑛𝑓𝑛𝑑̅𝜏𝑍(𝑔𝑛
(𝑖)
)  = 1/2, 𝑖 = 0, 1, where 𝜏𝑍  means the unique tracial state of 𝑍 . Set 

𝑓𝑛
(𝑖)
= 𝑓𝑛⊗𝑔𝑛

(𝑖)
∈ 𝐴⊗𝑙=1

𝑙𝑛+1  𝑍 . Since 𝑙𝑛 ↗ ∞ ,it follows that (𝑓𝑛
(𝑖)
)𝑛 ∈ 𝐴∞,  and since 

𝜏 ((𝑓𝑛𝑎
(𝑖)
)𝑃) = 𝜏(𝑓𝑛

𝑃⊗1)𝜏𝑍((𝑔𝑛
(𝑖)
)𝑃), 𝑃 ∈ ℕ, 𝜏 ∈ 𝑇(𝐴), it follows that  

lim in𝑓𝑛min𝜏𝑑̅𝜏(𝑓𝑛
(𝑖)
) = lim in𝑓𝑛min𝜏𝑑̅𝜏(𝑓𝑛) 𝑑̅𝜏𝑍(𝑔𝑛

(𝑖)
) 𝑐/2, 𝑖 = 0,1. 

In [249],we have defined a technical condition, called property (SI), for𝐶∗-algebra  with 

non-trivial projections. For 𝐶∗ -algebras which do not necessarily have projections, we 

generalize this technical condition in the following. 

Definition (6.1.6)[227]: We say that 𝐴 has the property (SI), when for any en and 𝑓𝑛 ∈
𝐴+
1 , 𝑛 ∈ 𝑁satisfying the following conditions:(𝑒𝑛)𝑛, (𝑓𝑛)𝑛 ∈ 𝐴∞, 

lim
𝑛→∞

max
𝜏 ∈𝑇(𝐴)

𝜏(𝑒𝑛) = 0 , 

lim
𝑛→∞

max
𝜏 ∈𝑇(𝐴)

𝜏(𝑓𝑛
𝑛) > 0 , 

there exist 𝑠𝑛 ∈ 𝐴
1, 𝑛 ∈ ℕ , such that(𝑠𝑛)𝑛 ∈ 𝐴∞ and  
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𝑠𝑛
∗𝑠𝑛 = (𝑒𝑛), (𝑓𝑛𝑠𝑛) = (𝑠𝑛). 

Example (6.1.7)[227]: any UHF algebra has the property (SI). 
Proof: Let 𝐵 be 𝑎 UHF algebra, and let en and 𝑓𝑛 ∈ 𝐵+

1 , 𝑛 ∈ ℕsatisfy the conditions in the 

property (SI). Let 𝐵𝑛, 𝑛 ∈ ℕ be an increasing sequence of matrix subalgebras of  𝐵 such that 

(⋃ 𝐵𝑛𝑛∈ℕ ) = 𝐵 and 1𝐵𝑛 = 1𝐵. For any 𝐵𝑛, we denote by 𝛷𝑛: 𝐵 → 𝐵𝑛
′ ∩ 𝐵 the conditional 

expectations [249]. By (𝑒𝑛)𝑛, (𝑓𝑛)𝑛 ∈ 𝐵∞,  we obtain a slow increasing sequence 𝑚𝑛 ∈
ℕ, 𝑛 ∈ ℕ such that 𝑚𝑛 ↗ ∞,𝑚𝑛 ≤ 𝑛, (𝛷𝑚𝑛(𝑒𝑛))𝑛 = (𝑒𝑛)𝑛, and 

lim
𝑛→∞

𝑚𝑛‖𝛷𝑚𝑛(𝑓𝑛) − 𝑓𝑛‖ = 0 , 

and we obtain a fast increasing sequence 𝑙𝑛, 𝑛 ∈ ℕ, and 𝑒̅𝑛 , 𝑓𝑛 ∈ (𝐵𝑚𝑛
′ ∩ 𝐵𝑙𝑛)+

1  such that 

𝑚𝑛 < 𝑙𝑛, (𝑒̅𝑛)𝑛 = (𝛷𝑚𝑛(𝑒𝑛))𝑛, and lim𝑛→∞𝑚𝑛‖ 𝑓𝑛̅ −𝛷𝑚𝑛(𝑓𝑛)‖ = 0. Then we have that 

lim 𝜏(𝑒̅𝑛) = 0  and lim‖𝑓𝑛
𝑚𝑛 − 𝑓𝑛

𝑚𝑛‖ = 0 , which implies                                                                                         

that lim in𝑓𝜏(𝑓𝑛̅
𝑚𝑛) =  lim in𝑓 𝜏(𝑓𝑛

𝑚𝑛) > 0. 

By Lemma (6.1.5)(i), we obtain 𝑒̃𝑛 ∈ (𝐵𝑚𝑛
′ ∩ 𝐵𝑙𝑛)+

1  such that (𝑒̃𝑛)𝑛 = (𝑒𝑛)𝑛  and 

lim 𝑑𝜏(𝑒̃𝑛) = 0 . By Lemma (6.1.5)(ii), we obtain 𝑓𝑛 ∈ (𝐵𝑚𝑛
′ ∩ 𝐵𝑙𝑛)+

1 such that (𝑓𝑛)𝑛 =

(𝑓𝑛)𝑛  and 

lim
𝑛→∞

 in𝑓𝑑̅𝜏(𝑓𝑛) ≥ lim in𝑓𝜏(𝑓𝑛̅
𝑚𝑛) > 0. 

Taking a large 𝑁 ∈ ℕ ,we have that 

𝑑𝑇𝑟𝑛(𝑒̃𝑛) = 𝑑𝜏(𝑒̃𝑛) < 𝑑̅𝜏 (𝑓𝑛) = 𝑑̃𝑇𝑟𝑛  (𝑓𝑛), 𝑛 ≥ 𝑁, 

where 𝑇𝑟𝑛 is the normalized trace of 𝐵𝑚𝑛
′ ∩ 𝐵𝑙𝑛. Then, we obtain 𝑠𝑛(𝐵𝑚𝑛

′ ∩ 𝐵𝑙𝑛)
1 such that 

𝑠𝑛
∗𝑠𝑛 = 𝑒̃𝑛, 𝑓𝑛𝑠𝑛 = 𝑠𝑛,  hence we have that (𝑠𝑛)𝑛 ∈ 𝐵∞, (𝑠𝑛

∗𝑠𝑛)𝑛 = (𝑒𝑛)𝑛  , and(𝑓𝑛𝑠𝑛)𝑛 =
(𝑠𝑛)𝑛. 

The following proposition is motivated by Lemma (6.1.6) in [243]. Combining this 

proposition and the above example we conclude Example (6.1.8). 

Example (6.1.8)[227]: The Jiang–Su algebra has the property (SI). 
In order to prove the above proposition, we define the projectionless 𝐶∗-algebra 𝑍𝑘 for 𝑘 ∈
ℕ\{1}by  

𝑍𝑘  = 𝑓 ∈ 𝐶[0,1] ⊗𝑀𝑘∞⊗𝑀(𝑘+1)∞; 

𝑓(0) ∈ 𝑀𝑘∞⊗𝑀(𝑘+1)∞ , 𝑓(1)  ∈ 1𝑘∞⊗𝑀(𝑘+1)∞ . 

This projectionless 𝐶∗-algebra 𝑍  𝑘 was introduced by Rørdam and Winter in [26,30] as a 

mediator between 𝐶∗ -algebras absorbing UHF  algebras and 𝐶∗ -algebras absorbing the 

Jiang–Sualgebra. 

Proposition (6.1.9)[227]: Let 𝐴 be 𝑎 unital 𝐶∗-algebra absorbing the Jiang–Su algebra 𝑍 

tensorially. If 𝐴⊗ 𝐵  has the property (SI) for any UHF algebra 𝐵 , then 𝐴 also has the 

property (SI). 
Proof. Suppose that 𝑒n and 𝑓𝑛 ∈ 𝐴+

1 , 𝑛 ∈ ℕ satisfy the conditions in the property (SI). Let k 

be a natural number with 𝑘 ≥ 2, 𝐵(𝑖)  the UHF algebra of rank  (𝑘 + 𝑖)∞ , and 𝛷(𝑖)  the 

canonical unital embeddings of 𝐴⊗𝐵(𝑖) into 𝐴⊗𝐵(0)⊗𝐵(1), 𝑖 = 0,1. 

By Lemma (6.1.5) there exist 𝑓𝑛
(𝑖)
∈ 𝐴+

1 , 𝑖 = 0,1, 𝑛 ∈ ℕ , such that (𝑓𝑛
(𝑖)
)𝑛 ∈

𝐴∞, (𝑓𝑛
(0)
 )𝑛 (𝑓𝑛

(1)
 )𝑛 = 0, (𝑓𝑛

(𝑖)
)𝑛 (𝑓𝑛)𝑛 , and 𝑙𝑖𝑚 𝑖𝑛𝑓𝑛→∞𝑚𝑖𝑛𝜏∈𝑇(𝐴)𝜏 (𝑓𝑛

(𝑖)𝑛
) ≥

 𝑙𝑖𝑚 𝑖𝑛𝑓𝑛𝑚𝑖𝑛𝜏𝑑̅𝜏(𝑓𝑛
(𝑖)
) ≥ 𝑙𝑖𝑚 𝑖𝑛𝑓𝑛𝑚𝑖𝑛𝜏  𝜏(𝑓𝑛

𝑛)/2 > 0, 𝑖 = 0,1. 
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Applying the property (SI) of 𝐴⊗𝐵(𝑖)  to 𝑒𝑛  ⊗ 1𝐵(𝑖)  and 𝑓𝑛
(𝑖)
⊗1𝐵(𝑖)  ∈ 𝐴 ⊗ 𝐵+

(𝑖)1
  we 

obtain 𝑠𝑛
(𝑖)
 ∈ 𝐴 ⊗  𝐵(𝑖)1, 𝑖 = 0,1, 𝑛 ∈ ℕ such that(𝑠𝑛

(𝑖)
)𝑛 ∈ (𝐴⊗ 𝐵(𝑖))∞, 

(𝑠𝑛
(𝑖)∗
 𝑠𝑛
(𝑖)
)
𝑛
= (𝑒𝑛⊗1𝐵(𝑖)), (𝑓𝑛

(𝑖)
⊗1𝐵(𝑖) ·  𝑠𝑛

(𝑖)
)
𝑛
= (𝑠𝑛

(𝑖)
). 

Note that(𝛷(𝑖)(𝑠𝑛
(𝑖)∗
𝑠𝑛
(𝑖)
))𝑛 = (𝑒𝑛⊗1𝐵(0)⊗𝐵(1))𝑛, (𝑓𝑛⊗1𝐵(0)⊗𝐵(1))𝑛 · 

(𝛷(𝑖)(𝑠𝑛
(𝑖)
))𝑛 = (𝛷

(𝑖)(𝑠𝑛
(𝑖)
))𝑛, and(𝛷

(0)(𝑠𝑛
(0)
))𝑛
∗ (𝛷(1)(𝑠𝑛

(1)
))𝑛 = 0. 

Define 𝑠𝑛 ∈ 𝐴⊗ 𝑍𝑘
1, 𝑛 ∈ ℕby 

𝑠𝑛(𝑡) = 𝑐𝑜𝑠(𝜋 𝑡/2)𝛷
(0) (𝑠𝑛

(0)
) +  𝑠𝑖𝑛(𝜋 𝑡/2)𝛷(1) (𝑠𝑛

(1)
) , 𝑡 ∈ [0,1]. 

Since 

(𝑠𝑛
∗𝑠𝑛(𝑡))𝑛 = (𝑐𝑜𝑠

2(𝜋 𝑡/2)𝛷(0)) (𝑠𝑛
(0)∗
𝑠𝑛
(0)
) + 𝑠𝑖𝑛2(𝜋 𝑡/2)𝛷(1) (𝑠𝑛

(1)∗
𝑠𝑛
(1)
) + 𝑐𝑜𝑠

· 𝑠𝑖𝑛 (𝜋 𝑡/2) (𝛷(0)𝑠𝑛
(0)
)
∗
𝛷(1) (𝑠𝑛

(1)
) + 𝛷(1) (𝑠𝑛

(1)
)
∗
𝛷(0)𝑠𝑛

(0)
)))𝑛  

= (𝑒𝑛⊗1𝐵(0) ⊗𝐵(1))𝑛, 𝑡 ∈ [0,1], 

(𝑓𝑛⊗1𝐵(0)⊗𝐵(1))𝑛(𝑠𝑛(𝑡)) = (𝑠𝑛(𝑡)), 𝑡 ∈ [0,1], and 𝐿𝑖𝑝(𝑠𝑛) = 𝜋, 𝑛 ∈ ℕ, it follows that 

(𝑠𝑛
∗𝑠𝑛)𝑛 = (𝑒𝑛⊗1𝑍𝑘)𝑛, (𝑓𝑛⊗1𝑍𝑘)𝑛(𝑠𝑛)𝑛 = (𝑠𝑛)𝑛. 

Set𝜄: 𝐴∞ ↪ (𝐴⊗ 𝑍𝑘)∞by 𝜄((𝑎𝑛)𝑛) = (𝑎𝑛⊗1𝑍𝑘)𝑛. Since 𝐴 ≅ 𝐴⊗𝑛∈ℕ 𝑍 and 

𝑍𝑘 ⊂ 𝑢𝑛𝑖𝑡𝑎𝑙 𝑍, for any finite subset 𝐹 ⊂ 𝐴∞, we obtain a unital embedding 
𝛷𝐹: (𝐴⊗ 𝑍𝑘)∞ ↪ 𝐴∞ such that 𝛷𝐹𝜊𝜄(𝑥) = 𝑥, 𝑥 ∈ 𝐹. 

Define 𝑠 = 𝛷{(𝑒𝑛),(𝑓𝑛)}((𝑠𝑛)𝑛) ∈ 𝐴∞, then we conclude that 𝑠∗𝑠 = (𝑒𝑛) 

and(𝑓𝑛)𝑛𝑠 = 𝑠. 
We show Theorem (6.1.12). We denote by 𝐴α the fixed point algebra of 𝛼 ∈ 𝐴𝑢𝑡(𝐴) 

and by 𝛼∞  the automorphism of 𝐴∞  induced by 𝛼 . In the following Lemma (6.1.10), 

mimicking in [234], we use the weak Rohlin property to obtain a set of elements in(𝐴∞)𝛼∞ 

which satisfies the same relations as {𝑐𝑗}𝑗=1
𝑘  𝑖𝑛 ℛ𝑘 . After that, applying the property (SI) 

and the weak Rohlin property, we obtain the generators of prime dimension drop algebras 

in(𝐴∞)𝛼∞. 

Lemma (6.1.10)[227]: Let 𝐴 be 𝑎 unital separable 𝐶∗-algebra which has 𝑎 unique tracial 

state 𝜏  and absorbs the Jiang–Su algebra tensorially. Suppose that 𝛼 ∈  𝐴𝑢𝑡(𝐴) has the 

weak Rohlin property. 

Then for any 𝑘 ∈ ℕ there exist 𝑐𝑗,𝑛 ∈ 𝐴, 𝑗 = 1,2, . . . , 𝑘, 𝑛 ∈ ℕ such that 

(𝑐𝑗,𝑛)𝑛 ∈ (𝐴∞)𝛼∞
1 , 

(𝑐1,𝑛) ≧ 0, (𝑐𝑖,𝑛)𝑛(𝑐𝑗,𝑛)
∗ = 𝛿𝑖,𝑗  (𝑐1,𝑛)



‖(𝑐1,𝑛)𝑛‖ = 1, ‖1 −∑(𝑐𝑗,𝑛)𝑛
∗ (𝑐𝑗,𝑛)

𝑘

𝑗=1

‖ = 1, lim
𝑛→∞

𝜏(𝑐1,𝑛
𝑛 ) = 1/𝑘 

which implies lim
𝑛→∞

𝜏(1𝐴 − ∑ 𝑐𝑗,𝑛
∗ 𝑐𝑗,𝑛

𝑘
𝑗=1 ) = 0). 

Proof: Let 𝛷𝑚, 𝑚 ∈ ℕ be the unital embeddings of 𝑍 into 𝐴⊗𝑚∈ℕ 𝑍 ≅ 𝐴 defined by 

𝛷𝑚(𝑥) = 1𝐴⊗1⊗𝑖=1
𝑚 𝑍⊗ 𝑥 ⊗ 1⊗𝑖=𝑚+2

∞ 𝑍, 𝑥 ∈ 𝑍, 

And 𝛷 be the unital embedding of 𝑍 into 𝐴∞ defined by 𝛷(𝑥) = (𝛷𝑚(𝑥))𝑚, 𝑥 ∈ 𝑍. Note 

that 𝜏(𝛷𝑚(𝑥)) = 𝜏𝑍(𝑥),𝑚 ∈ ℕ, 𝑥 ∈ 𝑍. 
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In the definition of 𝑐𝑗 ∈ 𝐼(𝑘, 𝑘 + 1), replacing cos with 𝑐𝑜𝑠1/𝑛
2
  we obtain 𝑐𝑛

(𝑗 )
∈ 𝐼(𝑘, 𝑘 +

1) ⊂ 𝑍, 𝑗 = 1,2, . . . , 𝑘 such that 

𝑐𝑛
(1)
≧ 0, 𝑐𝑛

(𝑖)
𝑐𝑛
(𝑗 )∗

= 𝛿𝑖,𝑗𝑐𝑛
(1)2
, 

‖(𝑐𝑛
(1)
)
𝑛
‖ = 1, ‖1 −∑𝑐𝑛

(𝑗 )∗
𝑐𝑛
(𝑗)

𝑘

𝑗=1

‖ = 1, 𝜏𝑍 (𝑐𝑛
(1)𝑛
) ↗ 1/𝑘. 

Let 𝜀𝑛 > 0, 𝑛 ∈ ℕ be such that 𝜀𝑛  ↘ 0 and 𝜏𝑍 (𝑐𝑛
(1)𝑛
) ↗ 1/𝑘 − 𝜀𝑛, 𝑛 ∈ ℕ. 

Let 𝑘𝑛 and 𝑙𝑛 ∈ ℕ, 𝑛 ∈ ℕ be such that 𝑙𝑛 ↗ ∞and 𝑙𝑛
2 < 𝑘𝑛.Since 𝛼 ∈ 𝐴𝑢𝑡(𝐴)   has the weak 

Rohlin property and 𝐴 and 𝑍 are separable 𝐶∗-algebras, we obtain 𝑓(𝑛) = (𝑓𝑚
(𝑛)
)𝑚 ∈ (𝐴 ∪

⋃ 𝛼∞
𝑗

𝑗∈ℤ (𝛷(𝑍)))′ ∩ 𝐴∞ such that ‖𝑓(𝑛)‖ = 1, 

𝛼∞
𝑝
(𝑓(𝑛))𝑓(𝑛) = 0, 𝑎𝑛𝑑 𝜏(𝑓(𝑛)

𝑛
) > 1/(2(𝑘𝑛 + 𝑙𝑛) + 1) − 𝜀𝑚, 

 for all 𝑝  with 0 < |𝑝| ≤ 2(𝑘𝑛 + 𝑙𝑛)  and for all 𝑟 ≥ 𝑚 . Note that any subsequence of 

(𝑓𝑚
(𝑛)
)𝑚 satisfies the above conditions. Then, taking a subsequence of (𝑓𝑚

(𝑛)
)𝑚 , we may 

suppose that 

|𝜏 (𝛷𝑚 (𝑐𝑛
(1)
)
𝑛
· 𝑓𝑚

(𝑛)𝑛
) − 𝜏𝑍 (𝑐𝑛

(1)𝑛
) 𝜏 (𝑓𝑚

(𝑛)𝑛
)| < 𝜀𝑚. 

For 𝑝 ∈ ℤ, define 𝑎𝑝,𝑛  ≥ 0 by  

𝑎𝑝,𝑛 = {

1 − (|𝑝| − 𝑘𝑛)/ 𝑙𝑛, 𝑘𝑛 < |𝑝| ≤ 𝑘𝑛 + 𝑙𝑛,
1,                                                    |𝑝| ≤ 𝑘𝑛 ,
0,                                           𝑘𝑛 + 𝑙𝑛 < |𝑝|,

  

 and define completely positive maps 𝜑𝑛: 𝑍 → 𝐴∞,by 

𝜑𝑛(𝑥) = ∑ 𝑎𝑝,𝑛𝛼∞
𝑝 (𝛷(𝑥))𝛼∞

𝑝
(𝑓(𝑛))|𝑝|≤𝑘𝑛+𝑙𝑛 . 

Then we have that  

‖𝛼∞(𝜑𝑛(𝑥)) − 𝜑𝑛(𝑥)‖ = ‖ ∑ (𝑎𝑝,𝑛 − 𝑎𝑝−1,𝑛) · 𝛼∞
𝑝 (𝛷(𝑥))𝛼∞

𝑝
(𝑓(𝑛))

|𝑝|≤𝑘𝑛+𝑙𝑛

‖ = ‖𝑥‖/𝑙𝑛,

𝑥 ∈ 𝑍, 

𝜑𝑛 (𝑐𝑛
(𝑖)
) 𝜑𝑛 (𝑐𝑛

(𝑗 )
)
∗
= ∑ 𝑎𝑝,𝑛

2 𝛼∞
𝑝
(𝛷 (𝑐𝑛

(𝑖)
 𝑐𝑛
(𝑗 )∗
)) 𝛼∞

𝑝
(𝑓(𝑛))

2

|𝑝|≤𝑘𝑛+𝑙𝑛

= 𝛿𝑖,𝑗𝜑𝑛 (𝑐𝑛
(1)
)
2
,

𝑛 ∈ ℕ, 

‖𝜑𝑛 (𝑐𝑛
(1)
)‖ = 1, and‖1 − ∑ 𝜑𝑛

𝑘
𝑗=1 (𝑐𝑛

(𝑗 )
)∗𝜑𝑛(𝑐𝑛

(𝑗 )
)‖ = 1. 

Let 𝑐𝑛.𝑚
(𝑗)
∈ 𝐴1, 𝑗 = 1,2,… , 𝑘,𝑚 ∈ ℕ  be component of  𝜑𝑛 (𝑐𝑛

(𝑗)
) (𝑖. 𝑒. , (𝑐𝑛,𝑚

(𝑗)
)
𝑚
=

𝜑𝑛 (𝑐𝑛
(𝑗)
) ∈ 𝐴∞) with 𝑐𝑛,𝑚

(𝑗)
≧ 0  then we have that 

limτ
𝑚→∞

(𝑐𝑛,𝑚
(𝑗) 𝑛

) = lim inf
𝑚

∑ 𝑎𝑃,𝑛
𝑛 𝜏 (𝑎𝑃 (Φ𝑚 (𝑐𝑛

(𝑗)
)
𝑛

) 𝑎𝑃 (𝑓𝑚
(𝑛)
)
𝑛

)
|𝑃|≤𝑘𝑛+𝑙𝑛

 

> (2𝑘𝑛 + 1) lim infτ
𝑚

(Φ𝑚 (𝑐𝑛
(𝑗)
)
𝑛
. 𝑓𝑚
(𝑛)𝑛
) 

= (2𝑘𝑛 + 1) lim infτz
𝑚

(𝑐𝑛
(1)
)
𝑛
𝜏 (𝑓𝑚

(𝑛)𝑛
) 



 

196 

>
(2𝑘𝑛 + 1)

(2(𝑘𝑛 + 𝑙𝑛) + 1)
(1/𝑘 − 𝜀𝑛) →𝑛→∞ 1/𝑘. 

 

Let 𝐹𝑛  be an increasing sequence of finite subsets of 𝐴1  with ⋃ 𝐹𝑛𝑛
̅̅ ̅̅ ̅̅ ̅ = 𝐴1. By the above 

conditions, we obtain an increasing sequence 𝑚𝑛 ∈ ℕ, 𝑛 ∈ ℕ such that 

‖[𝑐𝑛,𝑚𝑛
(𝑗 )

, 𝑥]‖ < 𝜀,   𝑥 ∈ 𝐹𝑛, 

‖𝛼 (𝑐𝑛,𝑚𝑛
(𝑗 )

) − 𝑐𝑛,𝑚𝑛
(𝑗 )

‖ < 1/𝑙𝑛 + 𝜀𝑛, 

𝑐𝑛,𝑚𝑛
(𝑖 )

𝑐𝑛,𝑚𝑛
(𝑗 ) ∗

− 𝛿𝑖,𝑗𝑐𝑛,𝑚𝑛
(1 ) 2

< 𝜀𝑛, 𝑖, 𝑗 = 1,2, . . . , 𝑘, 

‖𝑐𝑛,𝑚𝑛
(1)

‖ > 1 − 𝜀𝑛, ‖1 −∑𝑐𝑛,𝑚𝑛
(𝑗 ) ∗

𝑐𝑛,𝑚𝑛
(𝑖 )

𝑘

𝑗=1

‖ > 1 − 𝜀𝑛, 

𝜏 (𝑐𝑛,𝑚𝑛
(1 ) 𝑛

) >
2𝑘𝑛 + 1

2(𝑘𝑛 + 𝑙𝑛) + 1
(1/𝑘 − 𝜀𝑛). 

Define 𝑐𝑗,𝑛 = 𝑐𝑛,𝑚𝑛
(𝑗 )

, 𝑗 = 1,2, . . . , 𝑘, then we have that (𝑐𝑗, 𝑛)𝑛 ∈ (𝐴∞)𝛼∞, 

(𝑐1, 𝑛)𝑛 ≧ 0, (𝑐𝑖,𝑛)𝑛(𝑐𝑗,𝑛)
∗ = 𝛿𝑖,𝑗(𝑐1,𝑛)

2, 

‖(𝑐1, 𝑛)𝑛‖ = 1, ‖1 −∑(𝑐𝑗, 𝑛)𝑛
∗ (𝑐𝑗, 𝑛)

𝑘

𝑗=1

‖ = 1, limτ
𝑛→∞

(𝑐1,𝑛
𝑛 ) = 1/𝑘. 

    By the technique in the proof of Lemma 4.6 in [240] we obtain a generator 

𝑠 in (A∞)α∞ satisfying the relations in ℛ𝑘 together with{(𝑐𝑗, 𝑛)𝑛} above. In the proof of the 

following proposition, 𝑥 ≈𝜀 𝑦 means ‖𝑥 − 𝑦‖ < 𝜀. 
Proposition(6.1.11)[227]: Let 𝐴be a unital separable 𝐶∗-algebra which has a unique tracial 

state 𝜏, absorbs the Jiang–Su algebra 𝑍 tensorially, and has the property(SI). Suppose that 

𝛼 ∈ Aut(𝐴) has the weak Rohlin property. Then for any 𝑘 ∈ ℕ there exists a set of norm-

one elements{𝑐𝑗}𝑗=1
𝑘 ∪ {𝑠} 𝑖𝑛(𝐴∞)𝛼∞ satisfying ℛ𝑘. 

Proof. By Lemma (6.1.10) we obtain 𝑐𝑚
(𝑗 )
∈ 𝐴1, 𝑗 = 1,2, . . . , 𝑘,𝑚 ∈ ℕ such that(𝑐𝑚

(𝑗 )
)𝑚 ∈

(𝐴∞)𝛼∞, (𝑐𝑚
(1)
)𝑚 ≥ 0, (𝑐𝑚

(𝑖)
)𝑚(𝑐𝑚

(𝑗 )
)∗ = 𝛿𝑖,𝑗(𝑐𝑚

(1)
)2, (𝑐𝑚

(𝑗 )
)𝑚 = 1,1 − ∑ (𝑐𝑚

(𝑗 )
)∗(𝑐𝑚

(𝑗 )
) =𝑘

𝑗=1

1 , lim
𝑚→∞

𝜏(𝑐𝑚
(1)𝑚

) = 1/𝑘, and lim
𝑚→∞

𝜏(1 − ∑𝑐𝑚
(𝑗 )∗
𝑐𝑚
(𝑗 )
 ) = 0, where 𝜏 is a unique tracial state 

Of  𝐴. Let 𝜀𝑚 > 0,𝑚 ∈ ℕ be such that εm0 and 𝜏(𝑐𝑚
(1)𝑚

)1/𝑘 − 𝜀𝑚. 

Because of the weak Rohlin property of 𝛼 ∈ Aut(𝐴) we obtain 

𝑓𝑚
(𝑙)
∈ 𝐴+

1 , 𝑙, 𝑚 ∈ ℕ , such that (𝑓𝑚
(𝑙)
)𝑚 ∈ 𝐴∞ and  

𝛼∞
𝑝
 ((𝑓𝑚

(𝑙)
)
𝑚
) (𝑓𝑚

(𝑙)
) = 0, 𝑝 = 1,2, . . . , 𝑙 − 1, 

‖[𝑓𝑟
(𝑙)
, 𝑐𝑚
(1)
]‖ < 𝜀𝑚 , 𝑟 ≥ 𝑚, 

𝜏𝑓𝑟
(𝑙)𝑚

> 1/𝑙 − 𝜀𝑚 , 𝑟 ≥ 𝑚. 

Note that any subsequence of (𝑓𝑚
(𝑙)
)𝑚 satisfies the above conditions. Since 𝜏 is the unique 

tracial state, taking a subsequence of (𝑓𝑚
(𝑙)
)𝑚 we may suppose that 𝜏 ((𝑐𝑚

(1)
𝑓𝑚
(𝑙)
)𝑚) ≈

𝜀𝑚𝜏(𝑐𝑚
(1)𝑚

𝑓𝑚
(𝑙)𝑚
) ≈𝜀𝑚 𝜏(𝑐𝑚

(1)𝑚
)𝜏 (𝑓𝑚

(𝑙)𝑚
)1/(𝑘𝑙)  − 2𝜀𝑚 . Set then we have that (𝑔𝑚

(𝑙)
)𝑚 ∈

𝐴∞+
1 , 𝑙 ∈ ℕ  and lim in𝑓𝑚→∞ 𝜏(𝑔𝑚

(𝑙)𝑚
)1/(𝑘𝑙). 



 

197 

By the property (𝑆𝐼)  of A, we obtain 𝑠𝑚
′(𝑙)
∈ 𝐴1, 𝑚 ∈ ℕ , such that (𝑠𝑚

′(𝑙)
)𝑚 ∈

𝐴∞, (𝑠𝑚
′(𝑙)∗
𝑠𝑚
′(𝑙)
) = (1 − ∑ 𝑠𝑚

(𝑙)∗𝑘
𝑗=1 𝑐𝑚

(𝑗 )
), and(𝑔𝑚

(𝑙)
𝑠𝑚
′(𝑙)
) = (𝑠𝑚

′(𝑙)
). Remark that 

(𝑔𝑚
(𝑙)
) = (𝑓𝑚

(𝑙)
)(𝑐𝑚

(1)
) ≤ (𝑓𝑚

(𝑙)
), (𝑔𝑚

(𝑙)
)(𝑐𝑚

(1)
), (𝑓𝑚

(𝑙)
)(𝑠𝑚

′(𝑙)
) = (𝑠𝑚

′(𝑙)
) , and ( 𝑐𝑚

(1)
)𝑚(𝑠𝑚

′(𝑙)
) =

(𝑠𝑚
′(𝑙)
).Let 𝐿𝑛 ∈ ℕ be such that 2 𝐿𝑛

−1/2
< 𝜀𝑛(𝐿𝑛 ↗ ∞) and define  

𝑠𝑚
(𝐿𝑛) = 𝐿𝑛

−1/2
∑ 𝛼𝑃 (𝑠𝑚

′(𝐿𝑛))

𝐿𝑛−1

𝑝=0

. 

Then we have that 

‖𝛼𝑠𝑚
(𝐿𝑛) − 𝑠𝑚

(𝐿𝑛)‖ ≤ 2𝐿𝑛
−1/2

< 𝜀𝑛, 𝑚 ∈ ℕ. 

Let 𝑚𝑛 ∈ ℕ, 𝑛 ∈ ℕ  be an increasing sequence with 𝑚𝑛 ↗ ∞  such that (𝑠𝑚𝑛
(𝐿𝑛))𝑛 ∈

𝐴∞, ‖𝑠𝑚𝑛
(𝐿𝑛)‖ ≤ 1 + 𝜀𝑛, ‖𝑓𝑚𝑛

(𝐿𝑛)𝑠𝑚𝑛
′(𝐿𝑛) − 𝑠𝑚𝑛

′(𝐿𝑛)‖ < 𝜀𝑛/𝐿𝑛, ‖𝛼
𝑃 (𝑓𝑚𝑛

(𝐿𝑛)𝑓𝑚𝑛
(𝐿𝑛)‖ < 𝜀𝑛/

𝐿𝑛, ‖𝑠𝑚𝑛
′(𝐿𝑛)

∗

𝑠𝑚𝑛
′(𝐿𝑛) − ∑ 𝑐𝑚𝑛

(𝑗 )∗
𝑐𝑚𝑛
(𝑗 )𝑘

𝑗=1 )‖ ≤ 𝜀𝑛, ‖𝛼
𝑃(𝑐𝑚𝑛

(𝑗 )
) − 𝑐𝑚𝑛

(𝑗 )
‖ < 𝜀𝑛/(2𝑘), 𝑗 =

1,2, . . . , 𝑘, 𝑝 = 1,2, . . . , 𝐿𝑛 − 1, and ‖𝑐𝑚𝑛
(1)
𝑠𝑚𝑛
(𝐿𝑛) − 𝑠𝑚𝑛

(𝐿𝑛)‖ < 𝜀𝑛/𝐿𝑛, and set 𝑠𝑛 = 𝑠𝑚𝑛
(𝐿𝑛). 

Then we have that 𝛼∞((𝑠𝑛)𝑛) = (𝑠𝑛) ∈ 𝐴∞,   

𝑠𝑛
∗𝑠𝑛 ≈2𝜀𝑛 𝐿𝑛

−1 (∑ 𝛼𝑃𝑠𝑚𝑛
′(𝐿𝑛)

∗

𝑓𝑚𝑛
(𝐿𝑛)

𝐿𝑛−1

𝑝=0

)(∑ 𝛼𝑞𝑓𝑚𝑛
(𝐿𝑛)𝑠𝑚𝑛

′(𝐿𝑛)

𝐿𝑛−1

𝑞=0

) 

 ≈𝜀𝑛 𝐿𝑛
−1 ∑ 𝛼𝑃𝑠𝑚𝑛

′(𝐿𝑛)
∗

𝑓𝑚𝑛
(𝐿𝑛)

2

𝑠𝑚𝑛
′(𝐿𝑛)

∗

𝐿𝑛−1

𝑝=0

 

 ≈𝜀𝑛 𝐿𝑛
−1 ∑ 𝛼𝑃 (𝑠𝑚𝑛

′(𝐿𝑛)
∗

𝑠𝑚𝑛
′(𝐿𝑛))

𝐿𝑛−1

𝑝=0

 

 ≈𝜀𝑛 𝐿𝑛
−1∑𝛼𝑃 (1 −∑𝑐𝑚𝑛

(𝑗)∗
𝑐𝑚𝑛
(𝑗)

𝑘

𝑗=1

) 

≈𝜀𝑛 1 −∑𝑐𝑚𝑛
(𝑗)∗
𝑐𝑚𝑛
(𝑗)

𝑘

𝑗=1

, 

(𝑠𝑛)𝑛 = 1 and (𝑐𝑚𝑛
(1)
)(𝑠𝑛) = (𝑠𝑛) . Hence we conclude that {(𝑐𝑚𝑛

(𝑗 )
)𝑛}𝑗 =1

𝑘  ∪ {(𝑠𝑛)𝑛}  ⊂

(𝐴∞)𝛼∞
1  and they satisfy the relations ℛ𝑘. 

Theorem(6.1.12)[227]: Let 𝐴 be a unital separable 𝐶∗-algebra which does not necessarily 

have projections, has 𝑎 unique tracial state, and absorbs the Jiang–Su algebra tensorially. 

Suppose that 𝐴  has property (SI)and a is an automorphism of 𝐴 with the weak Rohlin 

property. Then 𝐴 ×𝑎 ℤ also absorbs the Jiang–Su algebra tensorially. 

Proof. Applying Proposition 2.2 in [206] to(𝐴 ⋊𝛼 ℤ)
∞ it suffices to show the following 

lemma. 

Lemma(6.1.13)[227]: Let 𝐴 be 𝑎 unital separable 𝐶∗-algebra which does not necessarily 

have projections, has a unique tracial state, and absorbs the Jiang–Su algebra tensorially. 
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Suppose that a has the Property (SI) And 𝛼 ∈ Aut(𝐴) has the weak Rohlin property. Then 

for any 𝑘 ∈ ℕ there exists a unital∗-homomorphism 𝛷𝑘   from 𝐼(𝑘, 𝑘 + 1)to(𝐴∞)𝛼∞. 

Proof. By Proposition (6.1.11) we obtain a set of norm-one generators{𝑐𝑗}𝑗=1
𝑘 ∪ {𝑠} in 

(𝐴∞)𝛼∞  satisfying ℛk . Then, by Proposition (6.1.3), we conclude the above lemma. 

We see the following proposition as an example of automorphisms with the weak 

Rohlin property, hence we conclude Corollary (6.1.2). 

Proposition (6.1.14)[227]: The two-sided shift automorphism 𝜎 on ⨂𝑛∈ℤ𝑍 has the weak 

Rohlin property. 

Proof: Identify ⨂𝑛∈ℤ𝑍 with 𝑍.Let(𝜋,ℋ) be the GNS-representation of 𝑍 associated with 

the unique tracial state 𝜏𝑍 and 𝛼̅ the weak extension of 𝛼 ∈ 𝐴𝑢𝑡 (𝑍) on (𝑍)′′ . Because of 

Theorem 1.2 in [250], we have shown that the weak Rohlin property is equivalent to the 

aperiodicity in the GNS-representation associated with the unique tracial state. Then it 

suffices to show that 𝜎̅𝑘 ≠ 𝐴𝑑 𝑉 for any 𝑉 ∈ 𝑈(𝜋(𝑍))′′ and any ∈ ℕ . In particular, since 

⨂𝑖=1
𝑘 𝑍 ≅ 𝑍, it suffices to show that 𝜎̅ ≠ 𝐴𝑑𝑉 for any 𝑉 ∈ 𝑈(𝜋(𝑍)′′). 

Assume that there exists 𝑉𝜎 ∈ 𝑈(𝜋(𝑍)
′′)such that 𝐴𝑑 𝑉𝜎 = 𝜎̅. Note that 𝜎̅𝑘(𝑉𝜎) = 𝑉𝜎  for 

any 𝑘 ∈ ℕ. However we see that 𝜋(𝑍)𝜎̅
′′ = ℂ1, this is acontradiction. 

Indeed, for any 𝑉 ∈ 𝑈(𝜋(𝑍)′′) With 𝜎̅(𝑉) = 𝑉 and any 𝜀 > 0, we obtain 𝑁 ∈ ℕ and 𝑣 ∈
⨂−𝑁
𝑁 𝑍 ⊂ ⨂𝑛∈ℤ𝑍(= 𝑍) such that ‖𝑉 − 𝜋(𝑣)‖2 < 𝜀,  where ‖𝑥‖ 2:= 𝜏𝑍(𝑥∗𝑥)1/2 , then 

‖𝜎̅𝑘 (𝑉 ) − 𝜋𝜊𝜎𝑘(𝑣)‖2 < 𝜀  for all 𝑘 ∈ ℕ . Hence, for any 𝑎 ∈ 𝑍1 , it follows that  

‖[𝑉, 𝜋(𝑎)]‖2 < 2𝜀. Since𝜀 is arbitrary, we conclude that 𝑉 ∈ 𝜋(𝑍) ∩ 𝜋(𝑍)′′ = ℂ1. 

Using the weak Rohlin property, we show the stability for automorphisms of the 

Jiang–Su algebra Theorem (6.1.15) and prove Theorem (6.1.21). 

First, we recall the generalized determinant introduced by P. de la Harpe and 𝐺 . 

Skandalis (see [233], [238], [246]). Let A be a unital 𝐶∗-algebra with a unique tracial stateτ. 
For any piecewise differentiable path 𝜉: [0,1] → 𝑈(𝐴), we define 

∆̃𝜏(𝜉 ) =
1

2𝜋√−1
∫𝜏 (𝜉(𝑡)𝜉∗(𝑡))𝑑𝑡 ∈ ℝ

1

0

 

When 𝜉(0) = 𝜉(1) = 1wehavethat∆̃𝜏(𝜉 ) ∈ 𝜏(𝐾0(𝐴)). For any 𝑢 ∈ 𝑈0(𝐴), there exists a 

piecewise differentiable path 𝜉𝑢: [0,1] → 𝑈(𝐴)  such that 𝜉𝑢(0) = 1, 𝜉𝑢(1) = 𝑢 . The 

generalized determinant ∆τ  associated with the tracial state τ is the map from 

𝑈0(𝐴)𝑡𝑜ℝ/𝜏 (𝐾0(𝐴))  defined by∆τ(𝑢) = ∆̃(𝜉𝑢) + 𝜏(𝐾0(𝐴)) . Note that ∆τ  is a group 

homomorphism. 

Mimicking the proof of Lemma 6.2 in [238] we prove the following proposition. 

Hereinafter, we let log be the standard branch defined on the complement of the negative 

real axis. 

Lemma (6.1.15)[227]: Let𝐴 be 𝑎 unital 𝐶∗-algebra with a unique tracial state 𝜏. 
(i) For 𝑢1, 𝑢2 ∈ 𝑈(𝐴)with, ‖𝑢𝑖 − 1‖ < 1/2, 𝑖 = 1,2 it follows that 

𝜏𝜊𝑙𝑜𝑔(𝑢1𝑢2) = 𝜏𝜊𝑙𝑜𝑔(𝑢1) + 𝜏𝜊𝑙𝑜𝑔(𝑢2). 
(ii)For 𝑢1, 𝑢2, and v ∈ U(A)with ‖u1 − u2‖ < 1/2and ‖v − 1‖ < 1/4, it follows that 

τοlog(u1vu2
∗v∗) = τοlog(u1u2

∗). 

Proof: (i) Let hi ∈ Asa be such that exp (2π√−1hi) = ui, i = 1,2, and h3 ∈ Asa be such 

that exp (2π√−1h3) = u1u2 . Set u(t) = exp(2π√−1th1) ·  exp(2π√−1th2),w(t) =

exp(2π √−1th3), t ∈ [0,1] . Since‖1 − u(t)‖ < 1, ‖1 − w(t)‖ < 1 , and‖1 − w∗u(t)‖ <
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2, 𝑡 ∈ [0,1],  we can define h ∈ C([0,1])⊗ Asaby h(t) = log(w∗u(t)), t ∈ [0,1] , then u 

and ware homotopic, by H(s, t) = w(t)exp((1 − s)h(t))with fixed endpoints H(s, 0) = 1 

and H(s, 1) = w(1). Hence, we have that 

τοlog(u1u2) = 2π√−1τ(h3) = ∫τ (ẇw
∗(t))dt

1

0

= ∫τ (u̇𝑢∗(t))dt

1

0

 

= 2𝜋√−1𝜏(ℎ1 + ℎ2) = 𝜏𝜊𝑙𝑜𝑔(𝑢1) + 𝜏𝜊𝑙𝑜𝑔(𝑢2). 
(ii) Set 𝑈1 = 𝑣

∗𝑢1𝑣𝑢1
∗ , 𝑈2𝑢1𝑢2

∗ , then it follows that ‖𝑈𝑖 − 1‖ < 1/2, 𝑖 = 1,2. Applying (i), 

since 𝜏𝜊 𝑙𝑜𝑔(𝑈1) = 𝜏𝜊𝑙𝑜𝑔(𝑣
∗) + 𝜏𝜊𝑙𝑜𝑔(𝑢1𝑣𝑢1

∗) =  0 we have that 𝜏𝜊𝑙𝑜𝑔(𝑈1𝑈2) =
𝜏𝜊𝑙𝑜𝑔(𝑈1) + 𝜏𝜊𝑙𝑜𝑔(𝑈2) = 𝜏𝜊𝑙𝑜𝑔(𝑈2). 
Proposition(6.1.16)[227]: Let 𝐵 be the UHF algebra of rank 𝑘∞, where 𝑘 ∈ ℕ\{1}, 𝜏 the 

unique tracial state of 𝐵, 𝛽 ∈ 𝐴𝑢𝑡(𝐵), and 𝑢𝑛 ∈ 𝑈(𝐵), 𝑛 ∈ ℕ with (𝑢𝑛)𝑛 ∈ 𝐵∞. Suppose 

that 𝛽 ∈ 𝐴𝑢𝑡(𝐵)has the Rohlin property and  

∆τ(𝑢𝑛) = 0,          for any 𝑛 ∈ ℕ. 
Then there exist 𝑣𝑛 ∈ 𝑈(𝐵), 𝑛 ∈ ℕ such that(𝑣𝑛)𝑛 ∈ 𝐵∞, 

(𝑣𝑛𝛽(𝑣𝑛)
∗)𝑛 = (𝑢𝑛)𝑛, 𝜏°𝑙𝑜𝑔(𝑣𝑛𝛽(𝑣𝑛)

∗𝑢𝑛
∗ ) = 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ∈ ℕ. 

The following lemma was essentially proved in [233]. 

Proof. Because 𝛽 ∈ 𝐴𝑢𝑡(𝐵) has the Rohlin property in [239], there exist 𝑣𝑛
′ ∈ 𝑈(𝐵), 𝑛 ∈

𝑁such that (𝑣𝑛
′ )𝑛 ∈ 𝐵∞, and 

(𝑣𝑛
′𝛽(𝑣𝑛

′ )∗)𝑛 = (𝑢𝑛). 
By the assumption and 

1

2𝜋√−1
𝜏𝜊log(𝑣𝑛

′𝛽(𝑣𝑛
′ )∗𝑢𝑛

∗ ) + 𝜏(𝐾0(𝐵)) 

= Δ𝜏(𝑣𝑛
′𝛽(𝑣𝑛

′ )∗𝑢𝑛
∗ ) = Δ𝜏(𝑣𝑛

′𝛽(𝑣𝑛
′ )∗) − Δ𝜏(𝑢𝑛) = −Δ𝜏(𝑢𝑛), 

we have that 
1

2𝜋√−1
𝜏𝜊𝑙𝑜𝑔(𝑣𝑛

′𝛽(𝑣𝑛
′ )∗𝑢𝑛

∗ ) + 𝜏(𝐾0(𝐵)), 𝑛 ∈ ℕ. 

Since 𝐵 is the UHF algebra of rank 𝑘∞, we obtain 𝑙𝑛 ∈ ℕ and 𝑚𝑛 ∈ ℤ such that 

(𝑚𝑛, 𝑘) = 1and 

𝑘−𝑙𝑛𝑚𝑛 = −
1

2𝜋√−1
𝜏𝜊log(𝑣𝑛

′𝛽(𝑣𝑛
′ )∗𝑢𝑛

∗ ) + 𝜏(𝐾0(𝐵)). 

Set 𝜆𝑛 = 𝑒𝑥𝑝(2𝜋√−1𝑘
−𝑙𝑛𝑚𝑛) , then we have that 𝜆𝑛 → 1, by(𝑣𝑛

′𝛽(𝑣𝑛
′ )∗𝑢𝑛

∗ )𝑛 =  1. By the 

Rohlin property of 𝛽 ∈ 𝐴𝑢𝑡(𝐵) , there exist 𝑝𝑛 ∈ 𝑃(𝐵) and 𝑧𝑛 ∈ 𝑈(𝐵) , 𝑛 ∈ ℕ such that 

(𝑝𝑛)𝑛 ∈ 𝐵∞, (𝑧𝑛)𝑛 = 1𝐵∞ , and 

∑ (Adznοβ)
j(pn) = 1B

kln−1

j=0

. 

Define 

v̅n = ∑ exp(2π√−1jk−lnmn) · (Adznοβ)
j(pn),

kln−1

j=0

vn = vn
′ v̅n ∈ U(B), n ∈ ℕ. 

Taking a subsequence of(𝑝𝑛)𝑛and(𝑧𝑛)𝑛 , we may suppose that (v̅n)𝑛 ∈ 𝐵∞.   

Then it follows that (𝑣𝑛)𝑛 ∈ 𝐵∞.By the definition of v̅n we have that  

v̅n𝐴𝑑𝑧𝑛𝜊𝛽(v̅n)
∗ = 𝜆𝑛 and 
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 (𝑣𝑛𝛽(𝑣𝑣)
∗𝑢𝑛
∗ )𝑛 = (𝑣𝑛𝐴𝑑𝑧𝑛𝜊𝛽𝑣𝑛

∗𝑢𝑛
∗ )𝑛 = (𝜆𝑛𝑣𝑛

′𝛽(𝑣𝑛
′ )∗𝑢𝑛

∗ )𝑛 = 1. 
And, by Lemma (6.1.15), we have that 

𝜏𝜊𝑙𝑜𝑔(𝑣𝑣𝛽(𝑣𝑛)
∗𝑢𝑛
∗ ) = 𝜏𝜊𝑙𝑜𝑔(𝑣𝑛 𝐴𝑑𝑧𝑛𝜊𝛽(𝑣𝑛)

∗𝑢𝑛
∗ ) 

= 𝜏𝜊𝑙𝑜𝑔(𝑣̅𝑛𝐴𝑑𝑧𝑛𝜊𝛽(𝑣̅𝑛)
∗𝐴𝑑𝑧𝑛𝜊𝛽(𝑣𝑛

′ )∗𝑢𝑛
∗𝑣𝑛
′ )  

= 2𝜋√−1𝑘−𝑙𝑛𝑚𝑛 + 𝜏𝜊𝑙𝑜𝑔𝑣𝑛
′𝛽(𝑣𝑛

′ )∗𝑢𝑛
∗ = 0, 𝑛 ∈ ℕ. 

Lemma (6.1.17)[227]: For any 𝑐 > 0 there exists 𝑐′ > 0 such that the following holds. Let 

𝐵  be 𝑎  UHF algebra, 𝜏  the unique tracial state of 𝐵 . Suppose that 𝑢̃𝑛 ∈ 𝑈(𝐶([0,1]) ⊗
𝐵), 𝑛 ∈ ℕ satisfy that 

(𝑢̃𝑛)𝑛 ∈ (𝐶([0,1]) ⊗ 𝐵)∞, (𝑢̃𝑛(𝑖))𝑛 = 1, 𝑖 = 0,1, 
∆̃𝜏(𝑢̃𝑛) = 0, 𝜏𝜊𝑙𝑜𝑔(𝑢̃𝑛(𝑖)) = 0, 𝑖 = 0,1, 𝑛 ∈ ℕ, 

 and Lip (𝑢̃𝑛) < 𝑐, 𝑛 ∈ ℕ  . Then there exist 𝑦𝑛 ∈ 𝑈(𝐶([0,1]
2)⊗ 𝐵), 𝑛 ∈ ℕ  such that 

(𝑦𝑛)𝑛 ∈ (𝐶([01]
2)⊗ 𝐵)∞,  

𝑦𝑛(0, 𝑡) = 1𝐵, 𝑦𝑛(1, 𝑡) = 𝑢̃𝑛(𝑡), 𝑡 ∈ [0,1], 
𝑦𝑛(𝑠, 𝑖) = 𝑒𝑥𝑝(𝑙𝑜𝑔 𝑢̃𝑛(𝑖)𝑠), 𝑖 = 0,1, 𝑠 ∈ [0,1], 

 And Lip(𝑦𝑛) < 𝑐
′, 𝑛 ∈ ℕ. 

Proof. Set 𝜕𝐸 = {(𝑠, 𝑡) ∈ [0,1]2; {𝑠, 𝑡} ∩ {0,1} = ∅}. By Proposition 4.6 in [238], for 𝑐 >
0, we obtain 𝑐′ > 0 satisfying that: for any AF-algebra 𝐴 and for any 𝑧 ∈ 𝑈(𝐶(𝜕𝐸) ⊗ 𝐴) 
with 𝑧(0,0) = 1, 𝐿𝑖𝑝(𝑧)  <  𝑐 , and [𝑧]1 = 0 ∈ 𝐾1(𝐶(𝜕(𝐸))⊗ 𝐴) , there exists 𝑧̃ ∈
𝑈(𝐶([0,1]2)⊗ 𝐴) such that 𝑧̃|𝜕𝐸 = 𝑧 and 𝐿𝑖𝑝(𝑧̃) < 𝑐′. Suppose that 𝑢̃𝑛 ∈ 𝑈(𝐶([0,1])⊗
𝐵) satisfies the conditions in the lemma. Define 𝑈𝑛 ∈ 𝑈(𝐶(𝜕𝐸)⊗ 𝐵) by 

𝑈𝑛(𝑠, 𝑡) = {

1,                                                 𝑠 = 0,
𝑢̃𝑛(𝑡),                                         𝑠 = 1,

𝑒𝑥𝑝(𝑙𝑜𝑔(𝑢̃𝑛(𝑖))𝑠),       𝑡 = 𝑖, 𝑖 = 0,1.
 

Then we have that Lip (𝑈𝑛) < 𝑐  for any 𝑛 ∈ ℕ . By the assumption, regarding 𝑈𝑛 ∈
𝑈(𝐶(𝑇) ⊗ 𝐵) ,we have that [𝑈𝑛]1 = ∆̃𝜏(𝑈𝑛) = 0 𝑖𝑛 𝜏(𝐾0(𝐵)) .Let 𝐵𝑛, 𝑛 ∈ ℕ be an 

increasing sequence of matrix subalgebras of 𝐵  with 1𝐵𝑛 = 1𝐵  and ⋃𝐵𝑛̅̅ ̅̅ ̅̅ = 𝐵 . 

Since (𝑈𝑛)𝑛 ∈ 𝑈 ((𝐶(𝜕𝐸) ⊗ 𝐵)∞) , slightly modifying 𝑈𝑛 , we obtain an increasing 

sequence 𝑚𝑛 ∈ 𝑁, 𝑛 ∈ ℕ  and 𝑈𝑛
′ ∈ 𝑈(𝐶(𝜕𝐸)⊗ (𝐵𝑚𝑛

′ ∩ 𝐵))  such that 𝑚𝑛 ↗ ∞, (𝑈𝑛
′ )𝑛 =

(𝑈𝑛)𝑛, 𝑈𝑛
′ (0,0) = 1, and 𝐿𝑖𝑝(𝑈𝑛

′ ) < 𝑐. Since 𝐵𝑚𝑛
′ ∩ 𝐵 has the unique tracial state 𝜏|𝐵𝑚𝑛

′ ∩

𝐵  ,it follows that [𝑈𝑛
′ ]𝐾1(𝐵𝑚𝑛

′ ∩𝐵) = ∆̃𝜏
(𝐵𝑚𝑛
′ ∩𝐵)

(𝑈𝑛
′ ) =  ∆̃𝜏𝐵(𝑈𝑛

′ ) = ∆̃𝜏𝐵(𝑈𝑛) =  0 ,then we 

obtain 𝑈̃𝑛 ∈ 𝑈(𝐶([0,1]
2)⊗ (𝐵𝑚𝑛

′ ∩ 𝐵)), 𝑛 ∈ ℕ such that 𝑈̃𝑛|𝜕𝐸 = 𝑈𝑛
′  and Lip (𝑈̃𝑛) < 𝑐

′. 

Then we have that (𝑈̃𝑛)𝑛 ∈ (𝐶([0,1]
2) ⊗ 𝐵)∞ . Since 𝑈̃𝑛|𝜕𝐸 = 𝑈𝑛

′ , 𝑛 ∈ ℕ , slightly 

modifying 𝑈̃𝑛  on 𝜕𝐸 ,we obtain 𝑦𝑛 ∈ 𝑈 (𝐶([0,1]
2)⊗ 𝐵) 𝑛 ∈ ℕ  and 𝜀 >  0  such 

that(𝑦𝑛)𝑛 = (𝑈̃𝑛)𝑛, 𝑦𝑛|𝜕𝐸 = 𝑈𝑛 , and 𝐿𝑖𝑝(𝑦𝑛) < 𝑐
′ + 𝜀 for any 𝑛 ∈ ℕ. 

As in the proof of Proposition 2.2 in [206], unital∗-homomorphisms from 

𝐼(𝑘, 𝑘 + 1)𝑡𝑜(𝐴∞𝛼∞
 obtained in Lemma (6.1.13) implies the following lemma. 

Lemma(6.1.18)[227]: Let 𝐴 be 𝑎 unital separable C∗-algebra which does not necessarily 

have projections, has a unique tracial state, and absorbs the Jiang–Su algebra tensorially. 

Suppose that 𝐴 has the property (SI) and 𝑎 is an automorphism of 𝐴 with the weak Rohlin 

property. Then there exists a unital embedding of 𝑍 into (A∞)α∞ . 

Theorem (6.1.19)[227]: Suppose that 𝛼 ∈ Aut(𝑍) has the weak Rohlin property and 𝑢𝑛 ∈
𝑈(𝑍), 𝑛 ∈ ℕ satisfy (𝑢𝑛)𝑛 ∈ 𝑍∞ and that 
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∆𝜏𝑍(𝑢𝑛) = 0, for any 𝑛 ∈ ℕ. 

Then there exist 𝑣𝑛 ∈ 𝑈(𝑍), 𝑛 ∈ ℕ such that(𝑣𝑛)𝑛 ∈ 𝑍∞ and  

𝑣𝑛𝛼(𝑣𝑣)
∗
𝑛
= (𝑢𝑛)𝑛. 

The following lemma is a direct adaptation of Proposition 4.6 in [238]. 

Proof. Let 𝑍𝑘, 𝐵
(𝑖)and Φ(𝑖), 𝑖 = 0, 1, be the projectionless 𝐶∗-algebra, the UHF algebras, 

and the unital embeddings in the  proof of Proposition (6.1.9). 

Because of 𝑍 ⊗ 𝐵(𝑖) ≅ 𝐵(𝑖), the Røhlin property of 𝑎 ⊗ 𝑖𝑑𝐵(𝑖) ∈ Aut(𝑍 ⊗ 𝐵(𝑖), and  

∆𝜏
𝑧⨂𝐵(𝑖)

(𝑢𝑛⨂1𝐵(𝑖)) = 0,   𝑖𝑛ℝ 𝜏 (𝑘0(𝐵
(𝑖)))⁄ , 𝑛 ∈ ℕ, 

applying Proposition (6.1.16), we obtain 𝑉𝑛
(𝑖)
∈ 𝑈(𝑧⨂𝐵(𝑖)), 𝑖 =  0, 1, 𝑛 ∈ ℕ  such that 

(𝑉𝑛
(𝑖)
)
𝑛
∈ (𝑧⨂𝐵(𝑖))

∞
and 

(𝑉𝑛
(𝑖)
𝑎 ⊗ 𝑖𝑑𝐵(𝑖) (𝑉𝑛

(𝑖)
)
∗

)
𝑛
= (𝑢𝑛⊗ 1, 𝑖 =  0, 1, 

𝜏𝑧⨂𝐵(𝑖)𝜊 𝑙𝑜𝑔𝑉𝑛
(𝑖)
𝑎 ⊗ 𝑖𝑑𝐵(𝑖) (𝑉𝑛

(𝑖)
)
∗
𝑢𝑛
∗1𝐵(𝑖) = 0, 𝑛 ∈ ℕ 

By the following argument, we obtain a path of unitaries 𝑣̃𝑛 in 𝑍 ⊗ 𝑍𝑘  with endpoints 

Φ(𝑖) (𝑉𝑛
(𝑖)
) ∈  𝑈(𝑍 ⊗ 𝐵(0)⊗𝐵(1)), 𝑖 =  0, 1  which satisfies  𝑣̃𝑛𝑎 ⊗ 𝑖𝑑𝑍𝑘(𝑣̃𝑛

∗) ≈

𝑢𝑛⨂1𝑍𝑘 . 

Set 

𝑈𝑛,1 = Φ
(0) (𝑉𝑛

(0)
)
∗
Φ(1) (𝑉𝑛

(1)
), 

𝑊𝑛 = 𝑈𝑛,1𝑎𝑖𝑑𝐵(0)⨂𝐵(1)(𝑈𝑛,1)
∗
, 𝑛 ∈ ℕ 

Then it follows that ((𝑈𝑛,1)𝑛 ∈ (𝑍⨂𝐵
(0)⨂𝐵(1))

∞
, (𝑤𝑛)𝑛 = 1(𝑍⨂𝐵(0)⨂𝐵(1))

∞
 , and, by (i) in 

Proposition (6.1.16), 

𝜏𝑍⨂𝐵(0)⨂𝐵(1)𝜊log (𝑊𝑛) 

= 𝜏𝜊𝑙𝑔 (Φ(1) (𝑉𝑛
(1)𝑎 ⊗ 𝑖𝑑𝐵(1)(𝑉𝑛

(1))
∗
𝑢𝑛
∗⨂1𝐵(1)) .Φ

(0) (𝑉𝑛
(0)𝑎 ⊗ 𝑖𝑑𝐵(0)(𝑉𝑛

(0))
∗
𝑢𝑛
∗⨂1𝐵(0))

∗

) 

for any 𝑛 ∈  ℕ. 

Since (𝑈𝑛,1)𝑛 ∈ (𝑍⨂𝐵
(0)⨂𝐵(1))

∞
, there exist 𝑈̃𝑛 ∈  𝑈(𝐶([0, 1])  ⊗ 𝑍 ⊗ 𝐵(0)⊗

𝐵(1), 𝑛 ∈ ℕ  such that 𝑈̃𝑛(0)  = 1, 𝑈̃𝑛(1)  =  𝑈̃𝑛,1, (𝑈̃𝑛)𝑛 ∈  (𝐶([0, 1])  ⊗  𝑍 ⊗ 𝐵(0)⊗

 𝐵(1))) and Lip (𝑈̃𝑛) < 𝜋 + 𝜀 for some 𝜀 > 0. Define 𝑇̃𝑛
(𝑗)
∈  𝑈(𝐶([0, 1])  ⊗ 𝑍 ⊗ 𝐵(0)⊗

𝐵(1), 𝑛 ∈ ℕ by 

𝑇̃𝑛
(𝑗)
= 𝑈̃𝑛𝑖𝑑𝐶([0,1]𝑎

𝑗⊗ 𝑖𝑑𝐵(0)⊗ 𝐵(1)(𝑈̃𝑛)
∗
, 

 And 𝑇̃𝑛
(0)
=  1. Note that 

𝑇̃𝑛
(𝑗)
𝑖𝑑 ⊗ 𝑎 ⊗ 𝑖𝑑 (𝑇̃𝑛

(𝑗−1)
) = 𝑇̃𝑛

(1)
,   𝑗, 𝑛 ∈ ℕ 

By (𝑈̃𝑛)𝑛 ∈  (𝐶([0, 1])  ⊗ 𝑍 ⊗ 𝐵(0)⊗𝐵(1))∞, (𝑊𝑛)𝑛 = 1, 𝑡 𝜊 𝑙𝑜𝑔(𝑊𝑛)  =  0 , and 

𝐿𝑖𝑝(𝑈̃𝑛) < 𝜋 + 𝜀 , we have that (𝑇̃𝑛
(𝑗)
)𝑛 ∈  (𝐶([0, 1])  ⊗  𝑍 ⊗ 𝐵(0)⊗

 𝐵(1))∞, (𝑇̃𝑛
(𝑗)
(1))𝑛 =  1, 𝑡 𝜊 𝑙𝑜𝑔(𝑇̃𝑛

(𝑗)
(1))  = 𝑗𝑡 𝜊 𝑙𝑜𝑔(𝑊𝑛)  =  0, and 𝐿𝑖𝑝(𝑇̃𝑛

(𝑗)
 ) < 2(𝑝 +

 𝜀), 𝑗 ∈  ℕ . Then, by Lemma (6.1.17), we obtain a constant 𝑐 > 0  and 𝑦𝑛
(𝑗 )
∈

 𝑈(𝐶([0, 1]2)  ⊗ 𝑍 ⊗ 𝐵(0)  ⊗ 𝐵(1)), 𝑗 ∈ ℕ  such that (𝑦𝑛
(𝑗 )
)
𝑛
∈  𝑈(𝐶([0, 1]2)  ⊗ 𝑍 ⊗

𝐵(0)  ⊗ 𝐵(1))∞, 
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𝑦𝑛
(𝑗 )(0, 𝑡) = 1,       𝑦𝑛

(𝑗 )(1, 𝑡) = 𝑇̃𝑛
(𝑗)(𝑡), 𝑡 ∈ [0, 1] 

𝑦𝑛
(𝑗 )(𝑠, 1) = 𝑒𝑥𝑝 (𝑙𝑜𝑔 (𝑇̃𝑛

(𝑗)(1)𝑠)) , 𝑦𝑛
(𝑗 )(𝑠, 0) = 1, 𝑠 ∈ [0, 1], 

and 𝐿𝑖𝑝 (𝑦𝑛
(𝑗 )
) 𝑐, 𝑛 ∈  ℕ 

By the Rohlin property of 𝑎 ⊗ 𝑖𝑑𝐵(0)⊗ 𝐵(1)we obtain 𝑝𝑚
(𝑙)
∈  𝑃(𝑍 ⊗ 𝐵(0) ∈⊗ 𝐵(1))  and 

𝑝𝑚
(𝑙)
∈  𝑈(𝑍 ⊗ 𝐵(0) ∈⊗𝐵(1)), 𝑙,𝑚 ∈ ℕ such that (𝑝𝑚

(𝑙)
)
𝑚
∈ (𝑍 ⊗ 𝐵(0) ∈⊗

𝐵(1))
∞
, (𝑍𝑚

(𝑙)
)
𝑚
= 1  and 

∑ (𝐴𝑑𝑍𝑚
(𝑙)
𝜊𝑎⨂𝑖𝑑)

𝑗

(𝑝𝑚
(𝑙)
) = 1.

𝑘𝑙−1

𝑗=0

 

Set 𝑦𝑛
(𝑗)(𝑠)(𝑡) = 𝑦𝑛

(𝑗)(𝑠, 𝑡), 𝑠, 𝑠 ∈, 𝑗, 𝑛 ∈ ℕ 

α̃m
(l)
= 𝑖𝑑𝑐[0,1]⨂(𝐴𝑑𝑍𝑚

(𝑙)
𝜊𝑎⨂𝑖𝑑𝐵(0)∈⊗𝐵(1)) , 𝑙, 𝑚 ∈ ℕ 

𝑊̃𝑙,𝑚,𝑛
′ = ∑ 𝑇̃𝑛

(𝑗)
. (𝛼̃𝑚

(𝑙)
)
𝑗−𝑘𝑙

(𝑦𝑛
(𝑗)(𝑗 ∕ 𝑘𝑙))

∗

. (α̃m
(l)
)
𝑗

(𝑖𝑑𝑐[0,1]⨂𝑝𝑚
(𝑙)
) .

𝑘𝑙−1

𝑗=0

 

Since  ((α̃m
(l)
)
𝑗

(𝑖𝑑𝑐[0,1]⨂𝑝𝑚
(𝑙)
)
𝑚
∈ (𝑐[0, 1])⨂𝑍 ⊗ 𝐵(0) ∈⊗𝐵(1))

∞
 , 𝑗 = 0,1, . . , 𝑘𝑙 −

1are mutually orthogonal projections, we have that (𝑊̃𝑙,𝑚,𝑛
′ )

𝑚
 is a unitary and obtain 

𝑊̃𝑙,𝑚,𝑛 ∈ 𝑈(𝐶([0, 1])  ⊗ 𝑍 ⊗ 𝐵(0)⊗𝐵(1)), 𝑙, 𝑚, 𝑛 ∈  ℕ such that  

‖(𝑊̃𝑙,𝑚,𝑛)𝑚. 𝑖𝑑𝑐[0,1]⨂𝑎⨂𝑖𝑑(𝑊̃𝑙,𝑚,𝑛)
∗
− (𝑇̃𝑛

(1)
)
𝑚
‖ < 𝑐 𝑘𝑙⁄ , 𝑙,𝑚, 𝑛 ∈  ℕ 

Since (𝑇̃𝑛
(1)
)
𝑛
, ((α̃m

(l)
)
𝑗−𝑘𝑙

(𝑦𝑛
(𝑘𝑙)
(𝑐 𝑘𝑙⁄ )))

𝑛

 , and (α̃m
(l)
)
𝑗
 (1𝑐[0,1]⨂𝑝𝑚

(𝑙)
)
𝑚
∈

(𝑐[0, 1]⨂𝑧⨂𝐵(0) ∈⊗𝐵(1))
∞

, and ‖1 −𝑊𝑛‖ → 0 we obtain a slow increasing 

sequence 𝑙𝑛, 𝑛 ∈ ℕand a fast increasing sequence 𝑚𝑛 ∈ ℕ, 𝑛 ∈ ℕ such that  

𝑙𝑛 ↗ ∞ ,𝑚𝑛 ↗ ∞, 

(𝑊̃𝑙𝑛,𝑚𝑛,𝑛)𝑛 ∈ (𝑐[0, 1]⨂𝑧⨂𝐵
(0) ∈⊗ 𝐵(1))

∞
,  

𝑘2𝑙𝑛‖1 − 𝑤𝑛‖ → 0,‖𝑊̃𝑙𝑛,𝑚𝑛,𝑛𝑖𝑑⨂𝑎⨂𝑖𝑑(𝑊̃𝑙𝑛,𝑚𝑛,𝑛)
∗
− 𝑇̃𝑛

(1)
‖ < 𝑐 ∕ 𝑘𝑙𝑛  

Set 

𝑉̃𝑛
′ = 𝑊̃𝑙𝑛,𝑚𝑛,𝑛

∗ 𝑈̃𝑛 ∈ 𝑈(𝑐[0, 1] ⊗ 𝑍 ⊗ 𝐵(0)⊗𝐵(1)), 𝑛 ∈  ℕ 

Then it follows that (𝑉̃𝑛
′)
𝑛
∈ (𝑐[0, 1] ⊗ 𝑍 ⊗ 𝐵(0)⊗𝐵(1))

∞
and  

(𝑉̃𝑛
′𝑑𝑖𝑐[0,1]⨂𝑎⨂𝑖𝑑𝐵(0)⨂𝐵(1)(𝑉̃𝑛

′)
∗
)
𝑛
 

= 𝑊̃𝑙𝑛,𝑚𝑛,𝑛
′ (1) = ∑ 𝑇̃𝑛

(1)(1) (𝑎̃𝑚𝑛
(𝑙𝑛))

𝑗−𝑘𝑙𝑛

(𝑦𝑛
(𝑘𝑙𝑛)

(𝑗 𝑘𝑙𝑛⁄ , 1))

∗

(𝑎̃𝑚𝑛
(𝑙𝑛))

𝑗

(𝑝𝑚𝑛
(𝑙𝑛)) ≈𝛿𝑛 1,

𝑘𝑙𝑛−1

𝑗=0

 

Where  𝛿𝑛 = 2𝑘
2𝑙𝑛‖1 −𝑊𝑛‖, 𝑛 ∈ ℕ , and then we have 

(𝑉̃𝑛
′(1))

𝑛
= (𝑈𝑛,1)𝑛 = (Φ

(0) (𝑉𝑛
(0)
)
0
Φ(1) (𝑉𝑛

(1)
))
𝑛
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Define 

𝑉̃𝑛(𝑡) = Φ
(0) (𝑉𝑛

(1)
) 𝑉̃𝑛

′(1), 𝑡 ∈ [0,1], 

Then we have (𝑉̃𝑛)𝑛 ∈ (𝑐
[0, 1] ⊗ 𝑍 ⊗ 𝐵(0)⊗𝐵(1))

∞
 

(𝑉̃𝑛(𝑖))
𝑛
= (Φ(𝑖) (𝑉𝑛

(𝑖)
))
𝑛
, 𝑖 = 0,1 

And  

(𝑉̃𝑛𝑑𝑖𝑐[0,1]⨂𝑎⨂𝑖𝑑𝐵(0)⨂𝐵(1)(𝑉̃𝑛)
∗
)
𝑛
= (1𝑐[0,1]⨂Φ

(0) (𝑉𝑛
(0)
𝑎⨂𝑖𝑑𝐵(0) (𝑉𝑛

(0)
)
∗

))
𝑛

= (1𝑐[0,1]⨂𝑢𝑛⨂1𝐵(0)⨂𝐵(1))𝑛
 

Slightly modifying 𝑉̃𝑛  at the end points, we obtain 𝑉̃𝑛 ∈  𝑈(𝑍 ⊗ 𝑍𝑘) such that (𝑣̃𝑛)𝑛 =

(𝑉̃𝑛)𝑛, 

𝑣̃𝑛(𝑖) = Φ
(0) (𝑉𝑛

(𝑖)
) , 𝑖 = 0,1           (𝑣̃𝑛𝑎⨂𝑖𝑑𝑍𝑘(𝑣̃𝑛)

∗)
𝑛
= (𝑢𝑛⨂1𝑍𝑘)𝑛

 . 

Finally we obtain (𝑣𝑛)𝑛 ∈ 𝑍∞ which corresponds to 𝑣̃𝑛 ∈  𝑍 ⊗ 𝑍𝑘  and satisfies 

𝑣𝑛𝛼 (𝑢𝑛
∗ )𝑛 = (𝑣𝑛)𝑛 , by the following. By Lemma (6.1.18) and 𝑍𝑘  ⊂𝑢𝑛𝑖𝑡𝑎𝑙 𝑍  we obtain a 

unital embedding 𝛹 ∶  𝑍 ⊗ 𝑍𝑘 ↪ 𝑍
∞  such that 𝑎∞𝜊 𝛹 =  𝛹 𝜊 𝑎 ⊗ 𝑖𝑑𝑍𝑘  and 𝛹(𝑎 ⊗

 1𝑍𝑘) =  𝑎 ∈  𝑍 ⊂  𝑍
∞, 𝑎 ∈  𝑍. Let 𝐹𝑛 ⊂ 𝑍

1, 𝑛 ∈  ℕ be an increasing sequence of finite 

subsets of 𝑍1 and 𝜀𝑛 >  0, 𝑛 ∈ ℕ a decreasing sequence such that ⋃𝐹𝑛̅̅ ̅̅ ̅̅ =  𝑍1, 𝜀𝑛 ↘ 0 

 ‖[𝑣̃𝑛, 𝑥 ⊗ 1𝑍𝑘]‖ < 𝜀𝑛, 𝑥 ∈ 𝐹𝑛 , 

‖𝑣̃𝑛𝑎 ⊗ 𝑖𝑑𝑍𝑘(𝑣̃𝑛)
∗ − 𝑢𝑛⨂1𝑍𝑘‖ < 𝜀𝑛. 

It follows that  ‖Ψ(𝑣̃𝑛), 𝑥‖ = ‖Ψ([𝑣̃𝑛, 𝑥 ⊗ 1𝑍𝑘])‖ < 𝜀𝑛, 𝑥 ∈ 𝐹𝑛 and  

Denote by 𝑣𝑛,𝑝𝛹 ∈  𝑈(𝑍), 𝑝 ∈ ℕ  components of 𝛹(𝑣̃𝑛) ∈  𝑈(𝑍
∞) then we obtain an 

increasing sequence 𝑝𝑛 ∈ ℕ ∈ ℕ such that  

(𝑣𝑛,𝑝𝑛)𝑛 ∈  𝑍∞(𝑣𝑛,𝑝𝑛𝛼(𝑣𝑛,𝑝𝑛)
∗
)
𝑛
= (𝑢𝑛)𝑛. 

Define by 𝑢𝑛 = 𝑣𝑛,𝑝𝑛 This completes the proof. 

Corollary(6.1.20)[227]:Suppose that 𝑎 ∈ Aut(𝑍) has the weak Rohlin property. For any 

finite subset 𝐹of 𝑍1𝑎nd 𝛿 > 0, satisfying that: for any 𝑢 ∈ 𝑈(𝑍)with‖𝑢, 𝑦‖ < 𝛿, 𝑦 ∈ 𝐺 , 

there exist 𝑣 ∈ 𝑈(𝑍) and 𝜆 ∈ 𝕋 such that 

‖𝑣𝑎(𝑣)∗ − 𝜆𝑢‖ < ‖[𝑣, 𝑥]‖ < 𝜀, 𝑥 ∈ 𝐹 

Proof: For 𝑢𝑛 ∈ 𝑈(𝑍), 𝑛 ∈ ℕwith  (𝑢𝑛)𝑛 ∈  𝑍∞, 𝑠𝑒𝑡 𝜆𝑛 =  𝑒𝑥𝑝(−2𝜋√−1Δ𝑡𝑧(𝑢𝑛)))  ∈

𝕋 . Since Δ𝑡𝑧(𝜆𝑛𝑢𝑛)  =  0 ∈  ℝ/𝑡 (𝐾0(𝑍)),  by the above theorem we obtain 𝑣𝑛 ∈

 𝑈(𝑍), 𝑛 ∈ ℕ such that(𝑢𝑛)𝑛 ∈  𝑍∞and 

(𝑣𝑛𝛼(𝑣𝑛)
∗)𝑛 = (𝜆𝑛𝑢𝑛)𝑛 

Assume that there exist a finite subset 𝐹 of 𝑍1. and 𝜀 > 0 satisfying that: For any finite 

subset 𝐺  of 𝑍1  and 𝛿 > 0 there exists 𝑢 ∈  𝑈(𝑍) with ‖[𝑢, 𝑦]‖  < 𝛿, 𝑦 ∈  𝐺  such that if 

𝑣 ∈  𝑈(𝑍)  and 𝜆 ∈ 𝕋  satisfy ‖𝑣𝑎(𝑣)∗  −  𝜆𝑢‖  < 𝜀  then ‖[𝑢, 𝑥]‖  < 𝜀  for some 𝑥 ∈  𝐹 . 

This contradicts theabove statement.  

Theorem(6.1.21)[227]: Suppose that 𝑎 and 𝛽 are automorphisms of the Jiang–Su algebra 

with the weak Rohlin property. Then 𝑎  and 𝛽  are outer conjugate, i.e., there exist an 

automorphism 𝛿 of 𝑍 and 𝑎 unitary 𝑢 in 𝑍 such that 

𝑎 = 𝐴𝑑𝑢 𝜊 𝛿𝜊 𝛽 𝜊 𝛿−1. 
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Proof. By using the stability of the above form instead of Proposition 4.3 in [240] and by 

the Evans–Kishimoto intertwining argument in the proof of Theorem 5.1 in [240] we can 

give the proof. The details are as follows. 

Let 𝜀 > 0 and let {𝑥𝑛}𝑛∈ℕbe a dense sequence in 𝑍1. We shall construct inductively finite 

subsets 𝐹𝑛, 𝐺𝑛of 𝑍1𝑢𝑛, 𝑣𝑛 ∈ 𝑈(𝑧), and 𝛿𝑛 >  0, 𝑛 ∈ ℕ satisfying the following conditions: 

Set 𝐹0 = 𝐺0  = {1𝑍}, 𝑢0𝑣0 = 1𝑍, 𝑎 − 1 =  𝑎. 𝛽0 = 𝛽, 𝛿0 =  1. 
𝑎2𝑛−1 = 𝐴𝑑𝑢2𝑛+1𝜊𝑎2𝑛−1, 𝛽2𝑛+2 = 𝐴𝑑𝑢2𝑛+2𝜊𝛽2𝑛, 𝑛 ∈ ℕ ∪ {0} 

define 

𝑤2𝑛 = 𝑢2𝑛𝛽2𝑛−2(𝑣2𝑛)𝑣2𝑛
∗ , 𝑤2𝑛+1 = 𝑢2𝑛+1𝛽2𝑛−1(𝑣2𝑛+1)𝑣2𝑛+1

∗  
for 𝑛 ∈ ℕ, and inductively define 

𝑤2𝑛
′ = 𝑤2𝑛𝐴𝑑𝑣2𝑛(𝑤2𝑛−2

′ ), 𝑤2𝑛+1
′ = 𝑤2𝑛+1𝐴𝑑𝑣2+1(𝑤2𝑛−1

′ ) 
 for 𝑛 ∈ ℕ, where 𝑤0

′ = 1,w1
′ = w1. The conditions indexed by 𝑛 ∈ ℕ ∪ {0} are given by 

 (i) 𝐹𝑛+1 ⊃ {𝑥𝑖}𝑖=1
𝑛+1 ∪ {𝑣𝑛} ∪ {𝑤𝑛

′ }, 𝐹𝑛+1 ⊃ 𝐹𝑛, 
(ii) 𝐺𝑛+1 ⊃ 𝐹𝑛+1 ∪ 𝐺𝑛+1, 
(iii) ‖𝐴𝑑𝑢2𝑛+1𝜊 𝑎2𝑛−1(𝑥)  − 𝛽2𝑛(𝑥)‖ <  2

−1 𝛿2𝑛+1, 𝑥 ∈  𝐺2𝑛+1, 
(iv)  ‖𝐴𝑑𝑢2𝑛+2𝜊𝛽2𝑛(𝑥) − 𝑎2𝑛−1(𝑥)  −‖ <  2

−1 𝛿2𝑛+2, 𝑥 ∈  𝐺2𝑛+2, 
(v) ‖𝑣2𝑛+1𝑎2𝑛−1(𝑣2𝑛+1)

∗ − 𝑢2𝑛+1‖  <  2
−2𝑛−1𝜀, ‖[𝑣2𝑛+1 + 1, 𝑥]‖  <  2

−2𝑛−1, 𝜀, 𝑥 ∈ 𝐹2𝑛 

(vi) ‖𝑣2𝑛+2𝛽2𝑛(𝑣2𝑛+2)
∗ − 𝑢2𝑛+2‖  <  2

−2𝑛−2𝜀, ‖[𝑣2𝑛+2 + 2, 𝑥]‖  <  2
−2𝑛−2, 𝜀, 𝑥 ∈ 𝐹2𝑛+1 

(vii) 𝛿2𝑛+1 ≤ 2
−1𝛿2𝑛, and if 𝑢 ∈ 𝑈(𝑍) satisfies that ‖[𝑢, 𝑦]‖ < 𝛿2𝑛+1 𝐹2𝑛2𝑛 + 1 for any 

𝑦 ∈ 𝛽2𝑛(𝐺2𝑛+1),then there exist 𝑣 ∈ 𝑈(𝑍) and 𝜆 ∈ 𝕋 such that 

‖𝑣𝛽2𝑛(𝑣)
∗ − 𝜆𝑢‖ <  2−2𝑛−2𝜀, ‖[𝑣, 𝑥]‖ < 2−2𝑛−2,for any 𝑥 ∈ 𝐹2𝑛+1 

(viii) 𝛿2𝑛+2 ≤ 2
−1𝛿2𝑛+1 , and if 𝑢 ∈ 𝑈(𝑍)  satisfies that ‖[𝑢, 𝑦]‖ < 𝛿2𝑛+2 , for any 𝑦 ∈

𝛼2𝑛+1(𝐺2𝑛+2), then there exist 𝑣 ∈ 𝑈(𝑍) and 𝜆 ∈ 𝕋 such that  

 

‖𝑣2𝑛+1(𝑣)
∗ − 𝜆𝑢‖ < 2−2𝑛−3𝜀, ‖𝑣, 𝑥‖ < 2−2𝑛−3 for any 𝑥 ∈ 𝐹2𝑛+2 

First, we construct 𝐹1 , satisfying (i) for 𝑛 =  0 . Assuming that we have constructed 

𝐹𝑛, 𝐺𝑛, 𝑢𝑛, 𝑣𝑛, 𝛿𝑛, 𝑛 ≤  2𝑘, and 𝐹2𝑛+1 satisfying (i) for 𝑛 ≤ 2𝑘, (ii) for 𝑛 ≤ 2𝑘 − 1, and 

(iii)–(viii) for 𝑛 ≤  𝑘 − 1, we proceed as follows: Since 𝛽2𝑘has the weak Rohlin property, 

by Corollary (6.1.20), we obtaina finite subset 𝐺2𝑘+1and 𝛿2𝑘+1 >  0 satisfying (ii) for 𝑛 =
 2𝑘  and (vii) for 𝑛 =  𝑘 . Because any automorphism of the Jiang–Su algebra is 

approximately inner, we obtain 𝑢2𝑘+1 ∈  𝑈(𝑍)satisfying (iii) for 𝑛 =  𝑘. When we obtain 

𝐺1, 𝛿1 and 𝑢1 , take the same argument for 𝑘 =  0. By (iv) for 𝑛 =  𝑘 −  1, (iii) for 𝑛 =
 𝑘, 𝐺2𝑘 ⊂ 𝐺2𝑘+1, and 𝛿2𝑘 > 𝛿2𝑘+1(when 𝑘 > 0), we have that 

‖𝑢2𝑘+1, 𝑦‖ < (𝛿2𝑘 + 𝛿2𝑘+1) < 𝛿2𝑘 

for any 𝑦 ∈ 𝑎2𝑘+1(𝐺2𝑘) . Then by (viii) for  𝑛 = 𝑘 − 1  we obtain 𝑣2𝑘+1 ∈ 𝑈(𝑍)  and 
𝜆2𝑘+1, ∈  𝕋such that  

‖𝑣2𝑘+1𝑎2𝑘−1(𝑣2𝑘+1)
∗‖ < 2−2𝑛−1𝜀, ‖[𝑣2𝑘+1, 𝑥]‖ < 2

−2𝑛−1 

for 𝑥 ∈  𝐹2𝑘. When we obtain 𝑣1, because for 𝐹 = ∅ we may assume 𝐺 = ∅ in Corollary 

(6.1.20), we obtain 𝑣1 ∈  𝑈(𝑍) and 𝜆1 ∈ 𝕋 such that ‖𝑣1𝑎(𝑣1)
∗ − 𝜆1𝑢1‖ <  2

−1𝜀 . Since 

𝐴𝑑𝑢2𝑘+1  = 𝐴𝑑𝜆2𝑘+1𝑢2𝑘+1, replacing 𝑢2𝑘+1 we can obtain the ones which satisfy (iii) and 

(v) for 𝑛 =  𝑘 (for 𝑢1 and 𝑣1 ,wetake 𝑘 =  0 ). Let 𝐹2𝑘+2  satisfy (i) for 𝑛 =  2𝑘 +  1 . 

Similarly, by the weak Rohlin property of 𝑎2𝑘+1and Corollary (6.1.20), we obtain a finite 
subset 𝐺2𝑘+2  and 𝑑 >  0  satisfying (ii) for 𝑛 =  2𝑘 + 1  and (viii) for 𝑛 =  𝑘 . By 

approximately innerness of automorphisms of the Jiang–Su algebra, (iii) for 𝑛 =  𝑘, and 

(vii) for 𝑛 = 𝑘 , we obtain unitaries 𝑢2𝑘+2and 𝑣2𝑘+2  satisfying(iv) and (vi) for 𝑛 =  𝑘 . 
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Finally we obtain a finite subset 𝐹2𝑘+3 satisfying (i) for 𝑛 =  2𝑘 +  2. This completes  the 

induction. 

Set 𝜎2𝑛 =  𝐴𝑑(𝑣2𝑛𝑣2𝑛−2 ··· 𝑣2)  and 𝜎2𝑛+1 =  𝐴𝑑(𝑣2𝑘+1𝑣2𝑛−1 ··· 𝑣1) . From (i), (v), and 

(vi) it follows that ‖[𝑣2𝑛+𝑖 , 𝑣2𝑛−2+𝑖]‖ <  2
−(2𝑛+𝑖) for any 𝑛 ∈ ℕ and 𝑖 =  0, 1. Then, since 

⋃ 𝐹2𝑛𝑛∈ℕ  is dense in 𝑍1, we can define automorphisms of 𝑍 by 

𝜎̃0 =  𝑙𝑖𝑚 𝜎2𝑛, 𝜎̃1 =  𝑙𝑖𝑚 𝜎2𝑛+1. 
Indeed for 𝑥 ∈  𝐹2𝑚  and 𝑛 > 𝑚 it follows that ‖𝜎2𝑛+2(𝑥)  − 𝜎2𝑛(𝑥)‖  < (2𝑛 +  1)  ·
 2−2𝑛−2𝜀, then 𝜎2𝑛(𝑥), 𝑛 ∈  ℕis a Cauchy sequence. Similarly 𝜎2𝑛+1(𝑥), 𝑛 ∈  ℕ is also a 

Cauchy sequence. Thus we can define * homomorphisms  𝜎̃0, 𝜎̃1 . Since ‖𝜎2𝑛+2+𝑖
−1 (𝑥)  −

 𝜎2𝑛+𝑖
−1 (𝑥)‖  <  2−2𝑛−2−𝑖 , 𝑥 ∈ 𝐹2𝑚 , 𝑛 > 𝑚 , we also define *-homomorphisms 𝜎2𝑛+𝑖

−1 , : =

 𝑙𝑖𝑚 𝜎2𝑛+𝑖
−1 , 𝑖 =  0, 1, on 𝑍. It is not so hard to see that 𝜎̃𝑖𝜊 𝜎̃𝑖

−1 =  𝑖𝑑𝑍 = 𝜎̃𝑖
−1𝜊𝜎̃𝑖 , 𝑖 =  0, 1. 

By (i), (v) and (vi), we see that ‖𝑤2𝑛+𝑖 −  1 ‖ <  2
−2𝑛−𝑖𝜀  and 

‖[𝑣2𝑛+𝑖 , 𝑤2𝑛−2+𝑖
′ ]‖2−2𝑛−2−𝑖𝜀 , then  𝑤2𝑛−2+𝑖

′ , 𝑛  ∈  ℕ, 𝑖 =  0, 1  converge to 𝑤𝑖  ∈
 𝑈(𝑍), 𝑖 =  0, 1 such that ‖𝑤̃𝑖  −  1‖ < 𝜀.By(iii),we have that for 𝑥 ∈ 𝐹2𝑛+1  

‖𝐴𝑑𝑤2𝑛−2+𝑖
′ 𝜊𝜎2𝑛+1𝜊𝑎𝜎2𝑛+1

−1 (𝑥) − 𝐴𝑑𝑤2𝑛
′ 𝜊𝜎2𝑛𝜊𝑎𝜎2𝑛

−1(𝑥)‖ < 2−1𝛿2𝑛+1 

Since 𝛿𝑛 → 0, we conclude that  

𝐴𝑑𝑤̃1𝜊𝜎̃1𝜊𝑎𝜊𝜎̃1
−1 = 𝐴𝑑𝑤̃0𝜊𝜎̃0𝜊𝛽𝜊𝜎̃0

−1 
Corollary (6.1.22)[370]: Let 𝐴𝑚 be 𝑎 unital 𝐶∗-algebra with a unique tracial state 𝜏. 
(i) For 𝑢1

𝑚, 𝑢2
𝑚 ∈ 𝑈(𝐴𝑚)with, ‖𝑢𝑖

𝑚 − 1‖ < 1/2, 𝑖 = 1,2 it follows that 

𝜏 ∘ 𝑙𝑜𝑔(𝑢1
𝑚𝑢2

𝑚) = 𝜏 ∘ 𝑙𝑜𝑔(𝑢1
𝑚) + 𝜏 ∘ 𝑙𝑜𝑔(𝑢2

𝑚). 
(ii)For 𝑢1

𝑚, 𝑢2
𝑚, and 𝑣𝑚 ∈ U(𝐴𝑚)with ‖𝑢1

𝑚 − 𝑢2
𝑚‖ < 1/2and ‖𝑣𝑚 − 1‖ < 1/4, it follows 

that 

τ ∘ log(𝑢1
𝑚𝑣𝑚𝑢2

𝑚∗𝑣𝑚∗) = τ ∘ log(𝑢1
𝑚𝑢2

𝑚∗). 

Proof: (i) Let ℎi
𝑚 ∈ 𝐴sa

𝑚  be such that exp (2π√−1ℎi
𝑚) = 𝑢i

𝑚 , i = 1,2, and ℎ3
𝑚 ∈ 𝐴sa

𝑚  be 

such that exp(2π√−1ℎ3
𝑚) = 𝑢1

𝑚𝑢2
𝑚 . Set 𝑢𝑚(t) = exp(2π√−1tℎ1

𝑚) ·  exp(2π√−1tℎ2
𝑚),  

w(t) = exp(2π √−1tℎ3
𝑚), t ∈ [0,1] . Since‖1 − 𝑢𝑚(t)‖ < 1, ‖1 − w(t)‖ < 1 , and ‖1 −

w∗𝑢𝑚(t)‖ < 2, 𝑡 ∈ [0,1],  we can define ℎ𝑚 ∈ C([0,1]) ⊗ 𝐴𝑠𝑎
𝑚 by ℎ𝑚(t) =

log(w∗𝑢𝑚(t)), t ∈ [0,1] , then 𝑢𝑚  and ware homotopic, by H(s, t) = w(t)exp((1 −
s)ℎ𝑚(t))with fixed endpoints H(s, 0) = 1 and H(s, 1) = w(1). Hence, we have that 

τοlog(𝑢1
𝑚𝑢2

𝑚) = 2π√−1τ(ℎ3
𝑚) = ∫τ (ẇw∗(t))dt

1

0

= ∫τ (u̇𝑚𝑢𝑚∗(t))dt

1

0

 

= 2𝜋√−1𝜏(ℎ1
𝑚 + ℎ2

𝑚) = 𝜏 ∘ 𝑙𝑜𝑔(𝑢1
𝑚) + 𝜏 ∘ 𝑙𝑜𝑔(𝑢2

𝑚). 
(ii) Set 𝑈1 = 𝑣

𝑚∗𝑢1
𝑚𝑣𝑚𝑢𝑚1

∗ , 𝑈2𝑢1
𝑚𝑢2

𝑚∗ , then it follows that ‖𝑈𝑖 − 1‖ < 1/2, 𝑖 = 1,2 . 

Applying (i), since 𝜏 ∘  𝑙𝑜𝑔(𝑈1) = 𝜏 ∘ 𝑙𝑜𝑔(𝑣
𝑚∗) + 𝜏 ∘ 𝑙𝑜𝑔(𝑢1

𝑚𝑣𝑚𝑢1
𝑚∗) =  0 we have that 

𝜏 ∘ 𝑙𝑜𝑔(𝑈1𝑈2) = 𝜏 ∘ 𝑙𝑜𝑔(𝑈1) + 𝜏 ∘ 𝑙𝑜𝑔(𝑈2) = 𝜏 ∘ 𝑙𝑜𝑔(𝑈2). 
Corollary(6.1.23)[370]: Let 𝐵  be the UHF  algebra of rank 𝑘∞ , where 𝑘 ∈ ℕ\{1}, 𝜏  the 

unique tracial state of 𝐵, 𝛽 ∈ 𝐴𝑢𝑡(𝐵), and 𝑢𝑛
𝑟 ∈ 𝑈(𝐵), 𝑛 ∈ ℕ with (𝑢𝑛

𝑟)𝑛∈𝐵∞ . Suppose that 

𝛽 ∈ 𝐴𝑢𝑡(𝐵)has the Rohlin property and  

∑ 

𝑟

∆τ(𝑢𝑛
𝑟) = 0,          for any 𝑛 ∈ ℕ. 

Then there exist 𝑣𝑛
𝑟 ∈ 𝑈(𝐵), 𝑛 ∈ ℕ such that(𝑣𝑛

𝑟)𝑛 ∈ 𝐵∞, 



 

216 

∑ 

𝑟

(𝑣𝑛
𝑟𝛽(𝑣𝑛

𝑟)∗)𝑟,𝑛 =∑ 

𝑟

(𝑢𝑛
𝑟)𝑛, ∑  

𝑟

𝜏 ∘ 𝑙𝑜𝑔(𝑣𝑛
𝑟𝛽(𝑣𝑛

𝑟)∗𝑢𝑛
∗𝑟) = 0, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑛 ∈ ℕ. 

The following lemma was essentially proved in [233]. 

Proof. Because 𝛽 ∈ 𝐴𝑢𝑡(𝐵) has the Rohlin property in [239], there exist (𝑣𝑛
𝑟)′ ∈ 𝑈(𝐵), 𝑛 ∈

𝑁 such that ((𝑣𝑛
𝑟)′)𝑛 ∈ 𝐵∞, and 

∑ 

𝑟

((𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗)𝑟,𝑛 =∑ 

𝑟

(𝑢𝑛
𝑟). 

By the assumption and 
1

2𝜋√−1
∑ 

𝑟

𝜏 ∘ log((𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗𝑢𝑛
∗𝑟) + 𝜏(𝐾0(𝐵)) 

=∑ 

𝑟

Δ𝜏((𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗𝑢𝑛
∗𝑟) =∑ 

𝑟

Δ𝜏((𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗) −∑ 

𝑟

Δ𝜏(𝑢𝑛
𝑟)

= −∑ 

𝑟

Δ𝜏(𝑢𝑛
𝑟), 

we have that 
1

2𝜋√−1
∑ 

𝑟

𝜏 ∘ 𝑙𝑜𝑔((𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗𝑢𝑛
∗𝑟) + 𝜏(𝐾0(𝐵)), 𝑛 ∈ ℕ. 

Since 𝐵 is the UHF algebra of rank 𝑘∞, we obtain 𝑙𝑛 ∈ ℕ and 𝑚𝑛 ∈ ℤ such that (𝑚𝑛, 𝑘) =
1 and 

𝑘−𝑙𝑛𝑚𝑛 = −
1

2𝜋√−1
∑ 

𝑟

𝜏 ∘ log((𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗𝑢𝑛
∗𝑟) + 𝜏(𝐾0(𝐵)). 

Set 𝜆𝑛 = 𝑒𝑥𝑝(2𝜋√−1𝑘
−𝑙𝑛𝑚𝑛)  , then we have that 𝜆𝑛 → 1 , by 

∑  𝑟 ((𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗𝑢𝑛
∗𝑟)𝑛 =  1. By the Rohlin property of ∈ 𝐴𝑢𝑡(𝐵) , there exist 𝑝𝑛 ∈

𝑃(𝐵) and 𝑧𝑛
𝑟 ∈ 𝑈(𝐵) , 𝑛 ∈ ℕ such that (𝑝𝑛)𝑛 ∈ 𝐵∞, (𝑧𝑛

𝑟)𝑛 = 1𝐵∞ , and 

∑ ∑ 

𝑟

(Ad𝑧n
𝑟οβ)j(pn) = 1B

kln−1

j=0

. 

Define 

∑ 

𝑟

𝑣̅𝑛
𝑟 = ∑ ∑ 

𝑟

exp(2π√−1jk−lnmn) · (Ad𝑧n
𝑟οβ)j(pn)

kln−1

j=0

,

∑  

𝑟

𝑣𝑛
𝑟 =∑ 

𝑟

(𝑣𝑛
𝑟)′𝑣̅𝑛

𝑟 ∈ U(B), n ∈ ℕ. 

Taking a subsequence of (𝑝𝑛)𝑛and(𝑧𝑛
𝑟)𝑛 , we may suppose that (𝑣̅𝑛

𝑟)𝑛 ∈ 𝐵∞.   

Then it follows that (𝑣𝑛
𝑟)𝑛 ∈ 𝐵∞.By the definition of 𝑣̅𝑛

𝑟 we have that 𝑣̅𝑛
𝑟𝐴𝑑𝑧𝑛

𝑟 ∘ 𝛽(𝑣̅𝑛
𝑟)∗ =

𝜆𝑛 and 

 (𝑣𝑛
𝑟𝛽(𝑣𝑛

𝑟)∗𝑢𝑛
∗𝑟)𝑛 = (𝑣𝑛

𝑟𝐴𝑑𝑧𝑛
𝑟 ∘ 𝛽𝑣𝑛

∗𝑟𝑢𝑛
∗𝑟)𝑛 = (𝜆𝑛(𝑣𝑛

𝑟)′𝛽((𝑣𝑛
𝑟)′)∗𝑢𝑛

∗𝑟)𝑛 = 1. 
And, by Lemma (6.1.15), we have that 

∑ 

𝑟

𝜏 ∘ 𝑙𝑜𝑔(𝑣𝑣𝛽(𝑣𝑛
𝑟)∗𝑢𝑛

∗𝑟) =∑ 

𝑟

𝜏 ∘ 𝑙𝑜𝑔(𝑣𝑛
𝑟  𝐴𝑑𝑧𝑛

𝑟 ∘ 𝛽(𝑣𝑛
𝑟)∗𝑢𝑛

∗𝑟) 
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=∑ 

𝑟

𝜏 ∘ 𝑙𝑜𝑔(𝑣̅𝑛
𝑟𝐴𝑑𝑧𝑟𝑛 ∘ 𝛽(𝑣̅𝑛

𝑟)∗𝐴𝑑𝑧𝑛
𝑟 ∘ 𝛽((𝑣𝑛

𝑟)′)∗𝑢𝑛
∗𝑟(𝑣𝑛

𝑟)′)  

= 2𝜋√−1𝑘−𝑙𝑛𝑚𝑛 +∑ 

𝑟

𝜏 ∘ 𝑙𝑜𝑔(𝑣𝑛
𝑟)′𝛽((𝑣𝑛

𝑟)′)∗𝑢𝑛
∗𝑟 = 0, 𝑛 ∈ ℕ. 

Corollary (6.1.24)[370]:Suppose that 𝑎2 ∈ Aut(𝑍) has the weak Rohlin property. For any 

finite subset 𝐹 of 𝑍1 and 𝛿 > 0, satisfying that: for any 𝑢𝑚 ∈ 𝑈(𝑍)with‖𝑢𝑚, 𝑦‖ < 𝛿, 𝑦 ∈
𝐺, there exist 𝑣𝑚 ∈ 𝑈(𝑍) and 𝜆2 ∈ 𝕋 such that 

‖𝑣𝑚𝑎2(𝑣𝑚)∗ − 𝜆2𝑢𝑚‖ < ‖[𝑣𝑚, 𝑥𝑚]‖ < 𝜀, 𝑥𝑚 ∈ 𝐹 

Proof: For 𝑢𝑛
𝑚 ∈ 𝑈(𝑍), 𝑛 ∈ ℕ with (𝑢𝑛

𝑚)𝑚,𝑛 ∈  𝑍∞, set 𝜆𝑛
2 =  𝑒𝑥𝑝(−2𝜋√−1Δ𝑡𝑧(𝑢𝑛

𝑚))) ∈

𝕋 . Since Δ𝑡𝑧(𝜆𝑛
2𝑢𝑛

𝑚)  =  0 ∈  ℝ/𝑡 (𝐾0(𝑍)),  by the above theorem we obtain 𝑣𝑛
𝑚 ∈

 𝑈(𝑍), 𝑛 ∈ ℕ such that(𝑢𝑛
𝑚)𝑚,𝑛 ∈  𝑍∞and 

(𝑣𝑛
𝑚𝛼(𝑣𝑛

𝑚)∗)𝑚,𝑛 = (𝑢𝑛
𝑚)𝑚,𝑛 

Assume that there exist a finite subset 𝐹 of 𝑍1. and 𝜀 > 0 satisfying that: For any finite 

subset 𝐺  of 𝑍1  and 𝛿 > 0 there exists 𝑢𝑚  ∈  𝑈(𝑍) with ‖[𝑢𝑚, 𝑦]‖  < 𝛿, 𝑦 ∈  𝐺 such that 

if 𝑣𝑚  ∈  𝑈(𝑍) and 𝜆2  ∈ 𝕋 satisfy ‖𝑣𝑚𝑎2(𝑣𝑚)∗  −  𝜆2𝑢𝑚‖  < 𝜀 then ‖[𝑢𝑚, 𝑥𝑚]‖  < 𝜀 for 

some 𝑥𝑚 ∈  𝐹. This contradicts the above statement.  

Section (6.2): Automorphisms of 𝑪∗- Algebras 

A major program in descriptive set theory over the last twenty-five years has been to 

analyze the relative complexity of classification problems by encoding these as equivalence 

relations on standard Borel spaces. If one can naturally parametrize the objects of a 

classification problem as points in a standard Borel space equipped with the relation of 

isomorphism, then one should expect that any reasonable assignment of complete invariants 

will be expressible within this descriptive framework, with the invariants being similarly 

parametrized. Accordingly, given equivalence  relations  𝐸  and 𝐹  on standard Borel  spaces  

𝑋  and  𝑌 , one says that 𝐸  is Borel reducible  to 𝐹  if there is a Borel map θ ∶  X →  Y  such 

that, for all 𝑥1, 𝑥2 ∈ 𝑋 , 

𝜃(𝑥1)𝐹𝜃(𝑥2) ⟺ 𝑥1 𝐸 𝑥2. 

Borel  reducibility  to the relation  of equality  on ℝ is the definition  of smoothness   

for  anequivalence  relation,  which was introduced  by Mackey  in the 1950s.  In a celebrated  

theorem,Glimm  verified  a  conjecture  of Mackey  by  showing  that the classification  of 

the irreducible representations of a separable  𝐶∗-algebra  is smooth if and only if the 𝐶∗-

algebra  is type I [286]. 

A much more generous notion of classification is that of Borel reducibility to the 

isomorphism relation on the space of countable structures of some countable language [260].  

This classification  by countable  structures is equivalent to Borel reducibility to the orbit 

equivalence  relation  of a Borel action  of the infinite  permutation  group  𝑆∞  on a Polish  

space [354].   The isomorphism relation on any kind ofcountable algebraic structure canbe 

parametrized by such an orbitequivalence relation (see Example 2in [358]). Nonsmooth 

examples of classification by countable structures include Elliott’s classification of AF 

algebras in terms of their ordered 𝐾 -theory [161] and the Giordano-Putnam-Skau 
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classification of minimal homeomorphisms of the Cantor set up to strong orbit equivalence 

[359]. 

  A classification problem  is often naturally parametrized as the orbit equivalence relation 

of a continuous action 𝐺 ↷ 𝑋 of a Polish group on a Polish space. Starting from the fact that 

every Borel map between Polish spaces is Baire measurable and hence continuous on a 

comeager subset,one might then aim to analyze Borel complexity in this setting by using 

methods of topological dynamics and Baire category. As a basic example, onecan show that 

the orbit equivalence relation  for the action  𝐺 ↷ 𝑋 fails to be smooth  whenever  every 

orbit  is dense and  meager.By locally strengthening the orbit density condition in this 

obstruction to smoothness, Hjorth formulated the following concept of turbulence 

Definition (6.2.2) and proved that it obstructs classification by countable structures [260]. 

Definition(6.2.1)[288]: Let 𝐺 ↷ 𝑋 be an action  of a topological  group 𝐺 on a topological  

space 𝑋 . For  𝑥 ∈ 𝑋 , an  open  set  𝑈 ⊆ 𝑋  which  contains  𝑥,  and  open  set  𝑉 ⊆ 𝐺 which  

contains  the identity element 1 ∈ 𝐺, we define the local orbit  𝒪(𝑥, 𝑈, 𝑉 ) to be the set of 

all 𝑦 ∈ 𝑈  for which there exist 𝑛 ∈ ℕ  and 𝑔1 , 𝑔2 , . . . , 𝑔𝑛 ∈ 𝑉   satisfying 𝑔𝑘𝑔𝑘−1  · · ·

 𝑔 1𝑥 ∈ 𝑈 for each 𝑘 =  1, 2, . . . , 𝑛 − 1 and 𝑔𝑛𝑔𝑛−1  · · ·  𝑔 1𝑥 = 𝑦. 

Definition(6.2.2)[288]: Let  𝐺 ↷ 𝑋  be an action  of a Polish  group 𝐺 on a Polish  space 𝑋.  

A point 𝑥 ∈ 𝑋  is turbulent if for every  𝑈  and  𝑉 as in Definition(6.2.2),  the closure  of 

𝒪(𝑥, 𝑈, 𝑉)  has nonempty interior.  We refer to the orbit of 𝑥 as a turbulent orbit.  The  action  

𝐺 ↷ 𝑋 is saidto be turbulent  if every orbit is dense, turbulent, and meager, and generically 

turbulent  if everyorbit is meager and there exist a dense orbit and a turbulent orbit. 

The definition of a turbulent orbit is sensible because one point in an orbit is turbulent if and 

only if all points in the orbit are turbulent. Generic turbulence is defined differently in 

Definition 3.20 of [260]. The equivalence of conditions (I) and (VI) in Theorem 3.21 of 

[260] shows that our definition is equivalent. 

In [260], if 𝐺 ↷ 𝑋  is generically turbulent then for every equivalence relation 𝐹 

arising from a continuous action of 𝑆∞ on a Polish space 𝑌 and every Baire measurable map 

𝜃: 𝑋 → 𝑌   such that 𝑥1𝐸 𝑥2  implies 𝜃(𝑥1)𝐹 𝜃(𝑥2),  there exists a comeager set 𝐶 ⊆  𝑋  

such that 𝜃(𝑥1)𝐹𝜃(𝑥2) for all 𝑥1, 𝑥2 ∈ 𝐶 . It follows that the orbit equivalence relation on 𝑋 

does notadmit classification by countable structures. 

      In [358] Foreman and Weiss established generic turbulence for the action of the space 

of measure-preserving automorphisms of a standard atomless probability space on itself by 

conjugation. In an analogous noncommutative setting, Kerr, Li, and Pichot showed that 

generic turbulence also occurs for the conjugation action Aut(𝑅) ↷ Aut(𝑅) where Aut(𝑅) 

is the spaceof automorphisms of the hyperfinite 𝐼𝐼1  factor R[267]. This raises the question 

of whether something similar can be said about the Borel complexity of automorphism 

groups in the topologicalframework of separable  nuclear 𝐶∗-algebras,  especially those that 

enjoy the regularity properties that have come to play a prominent role in the Elliott 

classification program  [145]. 
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For the topological analogue  of an atomless probability space, namely the Cantor set 𝑋 , 

the group Homeo(𝑋)  of homeomorphisms from 𝑋  to itself  can  be canonically  identified  

with  the set  of automorphisms  of the Boolean  algebra  of clopen subsets  of 𝑋  (see [280]),  

and thus the relation of conjugacy in Homeo(𝑋) is classifiable by countable structures. In 

particular, there is no generic turbulence, in contrast to the measurable setting. On the other  

hand,  by [280], the relation  of conjugacy  in Homeo(𝑋) has  the maximum  complexity  

among all equivalence  relations that are  classifiable  by countable structures. It is thus of 

particular interest  to determine  on which  side of the countable  structure benchmark we 

can  locate  the automorphism groups  of various  noncommutative versions of zero-

dimensional  spaces,  such as UHF algebras  and the Jiang-Su algebra  𝒵. 

We show that whenever 𝐴 is 𝒵, 𝒪2 , 𝒪∞, a UHF algebra  of infinite type, or the tensor 

product of a UHF algebra of infinite type and 𝒪∞, then the conjugation action Aut(𝐴) ↷

Aut(𝐴) is generically  turbulent with respect to the point-norm topology Theorem  (6.2.15). 

We furthermore use this in the case of 𝒵 to prove that for every separable  𝐶∗-algebra  𝐴 

satisfying𝒵⊗  𝐴 ≅  𝐴 (a property referred to as 𝒵 -stability ) the relation of conjugacy  on 

the set Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅  ofapproximately  inner  automorphisms is not classifiable by countable  

structures  Theorem (6.2.21).This class of 𝐶∗-algebras  includes all of the simple nuclear 

𝐶∗-algebras  that fall under the scope of the standard classification results based  on the 

Elliott invariant [145]. We  thus see here  an illustration of how noncommutativity tends to 

tilt the behaviour  of a 𝐶∗-algebra  more in the direction  of measure  theory,  and  not merely  

through  the kind  of “zero-dimensionality”  that one frequently encounters in simple  nuclear  

𝐶∗-algebras. We also prove nonclassifiability by countable structures for approximately 

inner  automorphisms of separable  stable 𝐶∗-algebras Theorem  (6.2.22) and  of separable  

𝐼𝐼1 factors which are  𝑀𝑐 Duff or a free product of 𝐼𝐼1  factors Theorem  (6.2.26), which 

includes the free group factors. 

In [267], the existence of a turbulent orbit for the action Aut(R) ↷  Aut(R) was 

verified by afactor exchange  argument applied  to the tensor product of a dense sequence 

of automorphismsof 𝑅. This factor exchange was accomplished by cutting into pieces which 

are small in trace norm and then swapping these pieces one by one to construct the required 

succession of small steps in the definition of turbulence.  In the point-norm setting of a 

separable  𝐶∗-algebra,  any such  kind  of swapping  is topologically too drastic an  operation 

if we are  similarly  aiming  to establish turbulence,  and  so a different  strategy  is required.   

The  novelty  in our  approach  is to apply  the exchange  argument  not to an arbitrary dense 

sequence of automorphisms  but toan infinite tensor  power of the tensor  product shift 

automorphism of 𝐴⊗𝑍, which allows us tocarry out the exchange via a continuous path of 

unitaries in a way that commutes with the shift action. This malleability  property of the 

tensor product shift plays an important role in Popa’s deformation-rigidity theory [366] but 

does not seem to have appeared  in the 𝐶∗ -algebra  context before.  It is the exact 

commutativity of the factor exchange with the shift action that turns out to be the key for 
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verifying turbulence. This should be compared with the kind of approximate commutativity 

that one's finds in a result like Lemma 2.1 of [214], which does not seem to provide enough 

control for our purposes.  Our use of the shift also relies on the density of its  conjugacy  

class in various  situations,  notably  in the case of the Jiang-Su algebra  𝒵, for which it is a 

consequence of recent work of Sato [227]. 

To establish the other part of our turbulence theorem, namely thatevery orbit is meager, we 

employ a result of Rosendal whichprovides acriterion interms ofperiodic approximation for 

every conjugacy class in a Polish group to be meager [367] (see also page 9 of [362]). The 

Rokhlin lemma inergodic theorymay be seen as a prototype for this kind ofperiodic 

approximation, which we call the Rosendal property Definition (6.2.10). We relativize 

Rosendal’s result in Lemma (6.2.17) so that we may use the Rosendal property in 

conjunction with generic turbulence to derive nonclassifiability by countable structures 

within the broader classes of operator algebras described above. 

Throughout an undecorated ⊗ will denote the minimal 𝐶∗-tensor product.  In fact,in  all  of 

our  applications involving  separable  𝐶∗-algebras  at least one of the factors will be nuclear,  

and  so there  will be no ambiguity  about the tensor  product.  We take  ℕ =

{1, 2, . . . }(excluding 0). If 𝐴 is a unital 𝐶∗-algebra,  we denote its identity by 1𝐴 when 𝐴 

must be explicitly specified. 

The goal is to establish Lemma(6.2.9), which guarantees the existence of a dense 

turbulent orbit in Aut(𝐴) for various  strongly self-absorbing  𝐶∗-algebras A.  This forms 

one component of the proof of Theorem(6.2.15), which will be completed. 

    Recall that a separable unital 𝐶∗-algebra𝐴 ≇ ℂ is said to be strongly  self-absorbing  if 

there is an isomorphism  𝐴 ⊗  𝐴 ≅  𝐴 which is approximately unitarily equivalent to the 

first coordinate embedding  𝑎 ↦ 𝑎 ⊗  1 [205].  This is a strong homogeneity property of 

which one consequence is𝐴⊗ℤ  ≅ 𝐴, which enables us to exploit the tensor product shift. 

Notation(6.2.3)[288]:Let A be a separable  𝐶∗-algebra.  For 𝛼 ∈ 𝐴𝑢𝑡(𝐴), a finite set Ω ⊆

 𝐴, and ε >  0, we write 

𝑈𝛼,𝛺,𝜀 = {𝛽 ∈ Aut(𝐴): ‖𝛽(𝑎) − 𝛼(𝑎)‖ < 𝜀  for all 𝑎 ∈ Ω}  . 

These  sets  form  a base  for the point-norm  topology  on 𝐴𝑢𝑡(𝐴), under  which 𝐴𝑢𝑡(𝐴)  is 

a Polish  group. (For some details, see Lemma 3.2 of [365].)   The  action  𝐴𝑢𝑡(𝐴) ↷

 𝐴𝑢𝑡(𝐴)  byconjugation is continuous. 

Notation(6.2.4)[288]:Let 𝐴  be a unital nuclear 𝐶∗ -algebra.  We let 𝐴⊗ℤ  be the infinite 

tensor product of copies of 𝐴 indexed  by ℤ, taken  in the given order.  Formally,  𝐴⊗ℤ is 

the direct limit of thesystem 

𝐴 → 𝐴⊗𝐴⊗𝐴 → 𝐴⊗𝐴⊗𝐴⊗𝐴⊗𝐴 → · · · 

under  the maps  𝑎 ↦ 1𝐴⊗𝑎⊗ 1𝐴  at each  stage. 𝐴 dense  subalgebra  is spanned  by  

infinite elementary  tensors in which all but finitely  many  of the tensor  factors  are 1𝐴.  

For  𝑆 ⊆ ℤ, we further  write  𝐴⊗𝑆  for the subalgebra  of 𝐴⊗ℤ obtained  as the closed linear  

span  of all  infiniteelementary  tensors  as above  in which  the tensor  factors  are  1𝐴  for 



 

211 

all indices  not in 𝑆.   For 𝑚, 𝑛 ∈ ℤ with 𝑚 ≤ 𝑛, we take 𝐴⊗[𝑚,𝑛] = 𝐴⊗([𝑚,𝑛]∩ℤ).  We use 

the analogous notation for other intervals, and for tensor powers of automorphisms as well 

as of algebras. 

Lemma(6.2.5)[288]:Let 𝐴  be a strongly self-absorbing 𝐶∗ -algebra. Let 𝛾  be an 

automorphism of 𝐴⊗ℤ, let Ω be a finite subset of 𝐴⊗ℕ, and let 𝛿 > 0.  Then  there  are  𝑞 ∈

ℕ and  𝛾̃ ∈ Aut(𝐴⊗[1,𝑞])  such that, with id being the identity  automorphism of 𝐴⊗[𝑞+1,∞[, 

we have ‖(𝛾̃ ⊗  𝑖𝑑)(𝑎) − 𝛾(𝑎)‖ < 𝛿 for all 𝑎 ∈ Ω. 

Proof: Take  𝑞 ∈ ℕ large  enough  that, with  1 being  the identity  of 𝐴⊗[𝑞+1,∞[,  for every  

𝑎 ∈ Ω ∪ 𝛾(Ω) there is 𝑎𝑏 ∈ 𝐴⊗[1,𝑞]  such that ‖𝑎 − 𝑎♭⊗1‖𝑘 < 𝛿/6. 

  Since 𝐴 is strongly self-absorbing,  there is an isomorphism  𝜃 ∶ 𝐴⊗[1,𝑞]  →  𝐴⊗ℕ which is 

approx- imately  unitarily  equivalent  to the embedding 𝐴⊗[1,𝑞] ↪ 𝐴⊗[1,𝑞]⊗ 𝐴⊗[𝑞+1,∞[ =

 𝐴⊗ℕ given by𝑎 ↦ 𝑎 ⊗ 1. Thus  by composing 𝜃 with a suitable inner automorphism of 

𝐴⊗ℕ we can construct an isomorphism  𝜔:𝐴⊗[1,𝑞] → 𝐴⊗ℕ such that ‖𝜔(𝑎𝑏) − 𝑎𝑏⊗1‖ <

𝛿/6 for all 𝑎 ∈ Ω ∪ 𝛾(Ω).  Set γ = ω−1 ο γ οω ∈ Aut(A⊗[1,q]).  Then  for every 𝑎 ∈ Ω we 

have 

‖𝛾̃(𝑎𝑏) −  𝛾(𝑎)𝑏‖ ≤ ‖(𝜔−1𝜊 𝛾)(𝜔(𝑎𝑏) − 𝑎𝑏⊗1)‖ + ‖(𝜔−1𝜊 𝛾)(𝑎𝑏⊗1− 𝑎)‖ 

+‖𝜔−1(𝛾(𝑎) − 𝛾(𝑎)𝑏⊗1)‖ + ‖𝜔−1 (𝛾(𝑎)𝑏⊗  1) − 𝛾(𝑎)𝑏‖ 

<
𝛿

6
+
𝛿

6
+
𝛿

6
+
𝛿

6
=
2𝛿

3
 

and so  

‖ (𝛾̃ ⊗ 𝑖𝑑)(𝑎) − 𝛾(𝑎)‖

≤ ‖(𝛾̃ ⊗ 𝑖𝑑)(𝑎 − 𝑎𝑏⊗1)‖ + ‖𝛾̃(𝑎𝑏) −  𝛾(𝑎)𝑏⊗1‖

+ ‖𝛾(𝑎)𝑏⊗1− 𝛾(𝑎)‖ <
𝛿

6
+
2𝛿

3
+
𝛿

6
= 𝛿, 

as desired. 

Lemma(6.2.6)[288]:Let 𝐴 be 𝑍, 𝒪2, 𝒪∞, 𝑎 UHF   algebra,  or  the  tensor  product of 

𝑎 𝑈𝐻𝐹  algebra and  𝒪∞.  Then thetensor product shift automorphism 𝛽 of 𝐴⊗ℤ  has dense  

conjugacy  class in Aut(𝐴⊗ℤ). 

Proof: Consider first the case 𝐴 = 𝑍. Let 𝛼  be an automorphism of 𝑍, let Ω be a finite 

subset of 𝑍, and let 𝜀 > 0. Set 𝑀 = 1 + sup({‖𝑎‖ ∶ 𝑎 ∈ Ω}). As every automorphism of 𝑍 

is approximately inner (Theorem 7.6 of [177]), there is a unitary 𝑢 ∈ 𝑍 such that ‖𝛼(𝑎) −

𝑢𝛽(𝑎)𝑢∗‖ < 𝜀/3  for all 𝑎 ∈ Ω . Proposition 4.4 of [227] implies that 𝛽  has the weak 

Rokhlin property, and so by Corollary 5.6of [227] (or more precisely the simpler version 

omitting the quantification of finite subsets, which follows from the proof ) there are a 

unitary 𝑣 ∈ 𝑍 and 𝜆 ∈ 𝕋 such that ‖𝜆𝜇 − 𝑣𝛽(𝑣∗)‖ < 𝜀/(3𝑀) (stability). Then for all 𝑎 ∈

Ω we have 
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‖𝛼(𝑎) − (𝐴𝑑(𝑣) ∘ 𝛽 ∘ 𝐴𝑑(𝑣)−1)(𝑎)‖ = ‖𝛼(𝑎) − 𝑣𝛽(𝑣∗)𝛽(𝑎)𝛽(𝑣)𝑣∗‖

≤ ‖𝛼(𝑎) − 𝑢𝛽(𝑎)𝑢∗‖ + ‖(𝜆𝑢 − 𝑣𝛽(𝑣∗))‖. ‖𝛽(𝑎)‖. ‖𝜆̅𝑢∗‖

+ ‖𝑣𝛽(𝑎∗)‖. ‖𝛽(𝑎)‖. ‖( 𝜆𝑢 − 𝑣𝛽(𝑣∗))∗‖ <
𝜖

3
+ (

𝜖

3𝑀
)𝑀 +𝑀(

𝜖

3𝑀
) ≤ 𝜖. 

Thus 𝛽 has dense conjugacy class in Aut( 𝐴⊗𝑍). 

For 𝒪2, 𝒪∞, 𝑎 UHF  algebra, or  the tensor product  of a  UHF  algebra  and  𝒪∞,  we can 

proceed  using a similar  argument. Automorphisms of these 𝐶∗-algebras are well known to 

be approximately inner. (See for example Proposition 1.13 of [205], which shows this for 

every strongly self-absorbing 𝐶∗-algebra.)    In the case of 𝒪2 , 𝒪∞, or the tensor  product  

of a UHF algebra  and 𝒪∞, 𝛽, has the Rokhlin property by Theorem  1 of [244] and thus 

satisfies stability by Lemma 7.2 of [361]. In the case of a UHF algebra, the unital one sided 

tensor shift endomorphism is shown to have theRokhlin property in [355] and [363].  The 

Rokhlinproperty for the two sided tensor shift 𝛽 follows by tensoring with 1 in front. So 𝛽 

satisfies stability by Theorem 1 of [360]. 

Definition(6.2.7)[288]:An automorphism 𝛼  of a 𝐶∗ -algebra 𝐴  is said to be malleable if   

there is a point-norm continuous path (𝜌𝑡)𝑡∈[0,1] in  𝐴𝑢𝑡(𝐴⊗ 𝐴)   such that 𝜌0  is  the  

identity, 𝜌1is the tensor product flip, and  𝜌𝑡 ∘ (𝛼 ⊗ 𝛼) = (𝛼 ⊗ 𝛼) ∘  𝜌𝑡for  all 𝑡 ∈ [0, 1].  

Lemma(6.2.8)[288]:Let A be a strongly   self-absorbing   𝐶∗-algebra   and   let   𝛼 the   

tensor   product   shift automorphism of 𝐴⊗ 𝑍.   Then 𝛼 is malleable.  

Proof:Let 𝜑 be the tensor product flip automorphism of 𝐴⊗ 𝐴. Since Ais strongly self-

absorbing we have 𝐴⊗  𝐴 ≅  𝐴, and so by Theorem 2.2 of [214] we can find a norm-

continuous path (𝑢𝑡)𝑡∈[0,1] of  unitaries in 𝐴⊗ 𝐴 such  that  𝑢0 = 1𝐴⊗𝐴and  lim
𝑡→1−

‖𝑢𝑡 𝑎𝑢𝑡
∗ −

𝜑(𝑎)‖ = 0 for  all  𝑎 ∈ 𝐴⊗  𝐴.  

Define a path (𝜌𝑡)𝑡∈[0,1]  in Aut(𝐴⊗  𝐴)⊗ℤ   by setting  𝑝𝑡 = 𝐴𝑑(𝑢𝑡)
⊗ℤ  for  every  𝑡 ∈

[0, 1)  and 𝜌𝑡 =   𝜑 
⊗ℤ  .  Then 𝜌0  is  the identity. 𝐴  simple approximation   argument 

showsthat this path is point-norm continuous. Moreover, by viewing ((𝐴⊗  𝐴)⊗ℤ)  as 

(𝐴⊗ℤ) ⊗ (𝐴⊗ℤ)  via the identificationthat pairs like indices, we see that 𝜌1 is the flip 

automorphism and 𝜌𝑡 ∘ (𝛼 ⊗ 𝛼) =  (𝛼 ⊗ 𝛼) ∘ 𝜌𝑡for all  𝑡 ∈ [0, 1].   Thus 𝛼 is malleable.  

Lemma (6.2.9)[288]:Let  𝐴 be  𝒵, 𝒪2, 𝒪∞ , 𝑎 𝑈𝐻𝐹 algebr𝑎 of infinite type,  or a tensor 

product  of  𝑎 UHF algebra of  infinite type and 𝒪∞. Then there exists 𝑎 dense turbulent 

orbit Definition (6.2.2)  for the action of Aut(𝐴) on itself by conjugation.  

Proof:We   follow   Notation (6.2.4) throughout. Also, in this proof, for any interval 𝑆 we 

let 𝑖𝑑𝑆 ∈ Aut(𝐴
⊗𝑆)be the identity automorphism and let  1𝑆 ∈ 𝐴

⊗𝑆be  the  identity  of  the  

algebra.  

    Note  that  𝐴⊗𝑆 ≅  𝐴,  as  all  of  the  above  𝐶∗-algebras  are  strongly  self-absorbing.   

Thus there is an automorphism 𝛽 of 𝐴 which is conjugate to the tensor shift automorphism 

of 𝐴⊗𝑆. It followsfrom Lemma(6.2.8) that 𝛽 is malleable.  Set 𝛼 = 𝛽⊗ℕ ∈ 𝐴𝑢𝑡(𝐴⊗ℕ).   By 

a tensor product coordinate shuffle we can view 𝛼 as the shift automorphism of (𝐴⊗ℕ)
⊗ℤ

, 
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and since 𝐴⊗ℕ ≅ 𝐴 it follows that 𝛼 is conjugate to 𝛽.By Lemma(6.2.6) we deduce that 𝛼 

has dense conjugacy class in Aut(𝐴⊗ℕ).Thus to establish the lemma it suces to show, given 

a neighbourhood 𝑈 of 𝛼 in Aut(𝐴⊗ℕ)and a neighbourhood 𝑉 of the identity automorphism  

𝑖𝑑ℕ in  Aut(𝐴⊗ℕ),  that the  closure  of  the  local orbit  𝒪(𝛼, 𝑈, 𝑉) Definition (6.2.1) has  

nonempty  interior.  

    By a straightforward approximation argument, there exist 𝑚 ∈ ℕ, 𝜀 >  0, and a finite set 

Ω0 in the unit ball of 𝐴⊗[1,𝑚]such that, if we set 

Ω = {𝑎 ⊗ 1[𝑚+1,∞) ∶ 𝑎 ∈ Ω0} ⊆ 𝐴
⊗𝑁, 

then (using Notation6.2.3) we have 𝑈𝛼,Ω,𝜀 ⊆  𝑈 and  𝑈𝑖𝑑𝑁,Ω,𝜀 ⊆  𝑉.  

   Since 𝛽  is malleable so is 𝛽⊗[1,𝑚]  , for we can rewrite 𝐴⊗[1,𝑚]  ⊗ 𝐴⊗[1,𝑚]as   (𝐴 ⊗

𝐴)⊗[1,𝑚] by pairing  like indices  and  then take the 𝑚-fold  tensor power  of  a path  in  

𝐴𝑢𝑡(𝐴⊗ 𝐴)witnessing the malleability of 𝛽. Thus there is a point-norm continuous path 

(𝜌𝑡)𝑡∈[0,1] 𝑖𝑛  𝐴
⊗[1,𝑚]  ⊗ 𝐴⊗[1,𝑚]such  that 𝜌0   is  the  identity  automorphism,  𝜌1is  the  

tensor  product  flip  automorphism,  and  

(𝛽⊗[1,𝑚]  ⊗ 𝛽⊗[1,𝑚]) ∘ 𝜌𝑡 = 𝜌𝑡 ∘ (𝛽
⊗[1,𝑚]  ⊗ 𝛽⊗[1,𝑚] )                    (1) 

for all 𝑡 ∈ [0,1] .   By point-norm continuity we can find a finite set F ⊆ 𝐴⊗[1,𝑚]  ⊗

𝐴⊗[1,𝑚]which is  𝜀/6-densein {𝜌𝑡(𝑎 ⊗ 1[1,𝑚]): 𝑎 ∈ Ω0   and  𝑡 ∈ [0,1]}. 

   Now choose a finite subset 𝐸0 of the unit ball of 𝐴⊗[1,𝑚] such that for every 𝑏 ∈ 𝐹 there 

are𝜆𝑥,𝑦,𝑏 ∈ ℂ for 𝑥, 𝑦 ∈ 𝐸0 with 

‖𝑏 − ∑ 𝜆𝑥,𝑦,𝑏 𝑥 ⊗  𝑦

𝑥,𝑦∈𝐸0

‖ <
𝜀

6
 

Taking 

𝑀 = sup ({|𝜆𝑥,𝑦,𝑏|: 𝑥, 𝑦 ∈ 𝐸0 and 𝑏 ∈ 𝐹}) , 

for every 𝑡 ∈ [0,1]and 𝑎 ∈ Ω0 we find scalars𝜆𝑥,𝑦,𝑡,𝑎 ∈ ℂwith |𝜆𝑥,𝑦,𝑡,𝑎| ≤ 𝑀 for 𝑥, 𝑦 ∈ 𝐸0 

such 

‖𝑝𝑡(𝑎 ⊗ 1[1,𝑚]) − ∑ 𝜆𝑥,𝑦,𝑡,𝑎 𝑥 ⊗  𝑦

𝑥,𝑦∈𝐸0

‖ <
𝜀

3
 

Set 

𝜀′ =
𝜀

9(𝑀 + 1)card(𝐸0)
2
   and 𝐸 = {𝑎 ⊗ 1[𝑚+1,∞) ∶ 𝑎 ∈ 𝐸0} ⊆ 𝐴

⊗ℕ 

Let 𝑊 ⊆ 𝑈𝛼,𝐸,𝜀′  be a nonempty open set. We will construct a continuous path 

(𝜅𝑡)𝑡∈[0,1] in Aut(𝐴
⊗ℕ) such that 𝜅0 is the identity automorphism, 𝜅𝑡 ∘ 𝛼 ∘  𝜅𝑡

−1 ∈ 𝑈𝛼,Ω,𝜀 

for all 𝑡 ∈ [0, 1] , and𝜅1 ∘ 𝛼 ∘  𝜅𝑡
−1 ∈  𝑊 . By discretizing this path in small enough 

increments, this will show that𝒪(𝛼, 𝑈, 𝑉)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ contains 𝑈𝛼,𝐸,𝜀′and hence has nonempty interior. 
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A simple approximation argument provides 𝛾 ∈ Aut(𝐴⊗ℕ), 𝛿 > 0, 𝑞 ∈ ℕ, 𝑤𝑖𝑡ℎ 𝑞 >

 𝑚 and afinite set Υ0 ⊆ 𝐴
⊗[1,𝑞] such that, if we set 𝛶 = {𝑎 ⊗ 1[𝑞+1,∞) ∶ 𝑎 ∈ 𝛶0} ⊆ 𝐴

⊗ℕ , 

then we have 𝑈𝛾, 𝛶, 𝛿 ⊆  𝑊. By Lemma(6.2.1) we may furthermore assume, increasing 𝑞 

if necessary,that there is an automorphism 𝛾̅ 𝑜𝑓 𝐴⊗[1,𝑞] such that 

‖𝛾̅ ⊗ 𝑖𝑑[𝑞+1,∞)(𝑏) − 𝛾(𝑏)‖ <
𝛿

2
                     (2)  

for all 𝑏 ∈ 𝛶 and 

‖𝛾̅ ⊗ 𝑖𝑑[𝑞+1,∞)(𝑏) − 𝛾(𝑏)‖ < 𝜀
′                          (3)  

for all 𝑏 ∈  𝐸. 

By Lemma(6.2.6) there is an isomorphism 𝜃 ∶  𝐴⊗[1,𝑞] →  𝐴 such that 

‖(𝜃−1 ∘ β ∘ θ)(𝑎) − 𝛾̅(𝑎)‖ <
𝛿

2
                             (4)  

for all 𝑎 ∈ 𝛶0 and 

‖(𝜃−1 ∘ β ∘ θ)(𝑥 ⊗ 1[𝑞+1,∞)) − 𝛾̅(𝑥 ⊗ 1[𝑞+1,∞))‖ < 𝜀
′               (5)  

for all 𝑎 ∈ 𝐸0. 

Let 𝜑 be the tensor flip on 𝐴⊗[𝑚+1,𝑞]⊗𝐴⊗[𝑚+1,𝑞]. The algebra 𝐴⊗[𝑚+1,𝑞]⊗𝐴⊗[𝑚+1,𝑞] is 

strongly self-absorbing and 𝑘1-injective (since 𝐴 is). So 𝜑 is strongly asymptotically inner 

(in the sense of Definition 1.1 (ii) of [214]) by Theorem 2.2 of [214]. Therefore there is a 

point-norm continuous path (𝜎𝑡)𝑡∈[0,1]of automorphisms of 𝐴⊗[𝑚+1,𝑞]⊗𝐴⊗[𝑚+1,𝑞]  such 

that 𝜎0 = 𝑖𝑑 and 𝜎1 = 𝜑. Set 

𝐵 = 𝐴⊗[𝑚,1]⊗𝐴⊗[𝑚,1]⊗𝐴⊗[𝑚+1,𝑞]⊗𝐴⊗[𝑚+1,𝑞] 

and let 𝜓 ∶ 𝐵 →  𝐴⊗[1,𝑞]  ⊗ 𝐴⊗[1,𝑞]    be  the  isomorphism  

𝑐1  ⊗ 𝑐2⊗ 𝑑1⊗ 𝑑2 → 𝑐1⊗ 𝑑1⊗ 𝑐2⊗ 𝑑2. 

Then we have an isomorphism 

𝜏 = (𝑖𝑑[1,𝑞] ⊗  𝜃) ∘  𝜓 ∶  𝐵 →  𝐴⊗[1,𝑞+1] .  

For 

𝑡 ∈ [0,1], 𝑠𝑒𝑡 𝜅𝑡̃ = 𝑇 ∘ (𝑝𝑡⊗ 𝜎𝑡) 
−1 ∘ 𝑇−1 ,

and  define  𝜅𝑡 = 𝜅𝑡̃⊗ 𝑖𝑑(𝑞+2,∞) ∈ 𝐴𝑢𝑡(𝐴
⊗ℕ).  

Then (𝜅𝑡) 𝑡 ∈ [0,1] is  a  point-norm  continuous  path in 𝐴𝑢𝑡(𝐴⊗ℕ). We  complete  the 

proof by  showing  that 

𝜅0 = 𝑖𝑑ℕ , that 𝜅𝑡 ∘  𝛼 ∘ 𝜅𝑡
−1 ∈  𝑈𝛼,Ω,𝜀 for all 𝑡 ∈  [0, 1], and that 𝜅1 ∘  𝛼 ∘ 𝜅1

−1 ∈  𝑈𝛾,𝛶,𝛿 

That 𝜅0 = 𝑖𝑑ℕ is obvious. 

We prove that 𝜅1 ∘  𝛼 ∘ 𝜅1
−1 ∈  𝑈𝛾,𝛶,𝛿. Let 𝑏 ∈  𝛶. Then there is 𝑎 ∈ 𝛶0 such that 

𝑏 =  𝑎 ⊗ 1𝐴⊗1(𝑞+2,∞) ∈ 𝐴
⊗[1,𝑞]⊗  𝐴 ⊗ 𝐴⊗(𝑞+2,∞). 

Since 𝜌1 is the tensor flip on 𝐴⊗[1,𝑚]⊗𝐴⊗[1,𝑚]and 𝜎1 is the tensor flip on 𝐴⊗[𝑚+1,𝑞]⊗

𝐴⊗[𝑚+1,𝑞],it follows that 𝜓 ∘  (𝜌1⊗𝜎1)  ∘  𝜓
−1 is the tensor flip 𝜑𝑞  𝑜𝑛 𝐴

⊗[1,𝑞]⊗𝐴⊗[1,𝑞]. 

Therefore 
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(𝜅̃1)
−1(𝑎 ⊗ 1𝐴) = 

(𝑖𝑑[1,𝑞]⊗  𝜃) ∘  𝜑𝑞  ∘ (𝑖𝑑[1,𝑞]⊗  𝜃)
−1
(𝑎 ⊗  𝜃(1[1,𝑞]) 

= 1[1,𝑞]⊗  𝜃(𝑎). 

Continuing with similar reasoning, we conclude that 

(𝜅̃1 ∘  𝛽
⊗[1,𝑞+1] ∘  (𝜅̃1)

−1)(𝑎 ⊗ 1𝐴) = (𝜃
−1 ∘ 𝛽 ∘ 𝜃)(𝑎)⊗ 1𝐴              (6) 

In the second step of the following calculation, recall that 𝑏 = 𝑎 ⊗ 1𝐴⊗1(𝑞+2,∞), use 

(6.2.8)and (6.2.6) on the first term, and use (6.2.4) on the second term, getting 

‖(𝜅1 ∘ 𝛼 ∘ 𝜅1
−1 )(𝑏) − 𝛾(𝑏)‖ 

≤  ‖[(𝜅̃1 ∘  𝛽
⊗[1,𝑞+1] ∘  (𝜅̃1)

−1) (𝑎 ⊗ 1𝐴) ] − 𝛾̃(𝑎)  ⊗ 1𝐴  ⊗ 1[𝑞+2,∞)‖

+ ‖(𝛾̃(𝑎)⊗ 𝑖𝑑𝐴⊗ 𝑖𝑑[𝑞+2,∞))(𝑏) − 𝛾(𝑏)‖ 

<
𝛿

2
+ 
𝛿

2
= 𝛿, 

Thus 𝜅1 ∘  𝛼 ∘ 𝜅1
−1 ∈  𝑈𝛾,𝛶,𝛿, as desired. 

Finally, we prove that 𝜅1 ∘  𝛼 ∘ 𝜅1
−1 ∈  𝑈𝛼,Ω,𝜀 .  for all 𝑡 ∈ [0, 1] . Let 𝑏 ∈ Ω  and let 𝑡 ∈

 [0, 1]. We need to prove that ‖(𝜅1 ∘ 𝛼 ∘ 𝜅1
−1 )(𝑏) −  𝛼(𝑏)‖ < 𝜀. There is 𝑎 ∈ Ω0  such 

that 

𝑏 = 𝑎 ⊗ 1[𝑚+1,𝑞]⊗1𝐴⊗1(𝑞+2,∞) ∈ 𝐴
⊗[1,𝑚]⊗𝐴⊗[𝑚+1,𝑞]⊗  𝐴 ⊗ 𝐴⊗(𝑞+2,∞). 

We carry out two preliminary estimates. For the first, recall that 𝐸0 ⊆ 𝐴
⊗[1,𝑚]was a subsetof 

the unit ball chosen so that there are scalars 𝜆𝑥,𝑦 = 𝜆𝑥,𝑦,𝑡,𝑎 ∈  ℂ with |𝜆𝑥,𝑦| ≤  𝑀 for 𝑥, 𝑦 ∈

𝐸0such that 

‖𝜌𝑡(𝑎 ⊗ 1[1,𝑚]) − ∑ 𝜆𝑥,𝑦
𝑥,𝑦∈𝐸0

𝑥 ⊗ 𝑦‖ <
𝜀

3
                        (7) 

We have 

(𝜅̃1)
−1𝑎 ⊗ 1[𝑚+1,𝑞]⊗1𝐴 = (𝜏 ∘  (𝜌𝑡⊗𝜎𝑡))(𝑎 ⊗ 1[1,𝑚]⊗1[𝑚+1,𝑞]⊗1[𝑚+1,𝑞]) 

= ((𝑖𝑑[1,𝑞]⊗𝜃) ∘  𝜓) (𝜌𝑡(𝑎  ⊗ 1[1,𝑚]) ⊗ 1[𝑚+1,𝑞]⊗1[𝑚+1,𝑞]). 

So 

‖(𝜅̃1)
−1(𝑎 ⊗ 1[𝑚+1,𝑞]⊗1𝐴 − ∑ 𝜆𝑥,𝑦𝑥

𝑥,𝑦∈𝐸0

⊗1[𝑚+1,𝑞]⊗𝜃(𝑦⊗ 1[𝑚+1,𝑞])‖ <
𝜀

3
    (8) 

Our second preliminary estimate is that for 𝑦 ∈ 𝐸0, we have 

‖(𝜃−1 ∘ 𝛽 ∘ 𝜃)(𝑦 ⊗ 1[𝑚+1,𝑞]) −  𝛽
⊗[1,𝑞] ‖ < 3𝜀́                   (9) 

To prove this, since 𝛾 ∈ 𝑊 ⊆ 𝑈𝛼,𝐸,𝜀′ , we have 

‖𝛾(𝑦⊗ 1[𝑚+1,𝑞]) − 𝛼(𝑦⊗ 1[𝑚+1,𝑞])‖ < 𝜀́ 

Combine this inequality with (5) and (7) (tensoring with a suitable identity as needed) to get 

‖(𝜃−1 ∘ 𝛽 ∘ 𝜃)(𝑦 ⊗ 1[𝑚+1,𝑞]) ⊗ 1[𝑞+1,∞)[𝑞+1,∞) −  𝛼(𝑦 ⊗ 1[𝑞+1,∞))‖ <  3𝜀́ 

Now use  
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𝛼(𝑦 ⊗ 1[𝑚+1,∞)) =  𝛽
⊗[1,𝑞](𝑦 ⊗ 1[𝑚+1,∞) ) ⊗ 1[𝑚+1,∞) 

and drop the tensor factor 1[𝑞+1,∞)  to get (9). From (9) and |𝜆𝑥,𝑦| ≤ 𝑀 , ǁ𝑥ǁ ≤  1, and 

‖𝑦‖ ≤ 1 for 𝑥, 𝑦 ∈ 𝐸0, we then get 

‖ ∑ 𝜆𝑥,𝑦⊗  𝛽⊗[1,𝑞](𝑥 ⊗ 1[𝑚+1,∞)) ⊗ (𝜃−1 ∘ 𝛽 ∘  𝜃)(𝑦 ⊗ 1[𝑚+1,𝑞])

𝑥,𝑦∈𝐸0

− ∑ 𝜆𝑥,𝑦⊗  𝛽⊗[1,𝑞](𝑥 ⊗ 1[𝑚+1,∞)) ⊗  𝛽⊗[1,𝑞](𝑦 ⊗ 1[𝑚+1,𝑞])

𝑥,𝑦∈𝐸0

‖

≤ 3𝑀𝑐𝑎𝑟𝑑(𝐸0)
2𝜀́ <

𝜀

3
                                                                                  (10) 

We are now ready to show that ‖(𝜅𝑡 ∘ 𝛼 ∘ 𝜅𝑡
−1)(𝑏) − 𝛼(𝑏)‖ < 𝜀 . We calculate 

(justificationsgiven afterwards): 

 (𝜅𝑡 ∘ 𝛼 ∘ 𝜅𝑡
−1)(𝑏) 

− 𝛼(𝑏) ≈∈
3⁄
( ∑ 𝜆𝑥,𝑦 𝛽

⊗[1,𝑞](𝑥 ⊗ 1[𝑚+1,∞)) ⊗ (𝛽 ∘ 𝜃)(𝑦 ⊗ 1[𝑚+1,𝑞])

𝑥,𝑦∈𝐸0

)

⊗ 1[𝑞+2,∞) 

= ((𝑖𝑑[1,𝑞]⊗  𝜃) ∘  𝜓 ∘ (𝜌𝑡⊗𝜎𝑡)
−1 ∘ 𝜓−1) 

( ∑ 𝜆𝑥,𝑦 𝛽
⊗[1,𝑞](𝑥 ⊗ 1[𝑚+1,∞)) ⊗ (𝜃−1 ∘ 𝛽 ∘ 𝜃)(𝑦 ⊗ 1[𝑚+1,𝑞])

𝑥,𝑦∈𝐸0

)⊗ 1[𝑞+2,∞) 

≈∈
3⁄
(𝑖𝑑[1,𝑞]⊗  𝜃) ∘ 𝜓 ∘ (𝜌𝑡⊗𝜎𝑡)

−1 ∘ 𝜓−1)  

( ∑ 𝜆𝑥,𝑦 𝛽
⊗[1,𝑞](𝑥 ⊗ 1[𝑚+1,∞)) ⊗  𝛽⊗[1,𝑞](𝑦 ⊗ 1[𝑚+1,𝑞])

𝑥,𝑦∈𝐸0

)⊗ 1[𝑞+2,∞) 

 (𝑖𝑑[1,𝑞]⊗  𝜃) ∘  𝜓 ∘ (𝜌𝑡⊗𝜎𝑡)
−1) 

 ( ∑ 𝜆𝑥,𝑦 𝛽
⊗[1,𝑚](𝑥)⊗  𝛽⊗[1,𝑚](𝑦) ⊗ 1[𝑚+1,𝑞]

𝑥,𝑦∈𝐸0

⊗ 1[𝑚+1,𝑞])⊗ 1[𝑞+2,∞) 

= ((𝑖𝑑[1,𝑞]⊗  𝜃) ∘  𝜓) 

 ( ∑ 𝜆𝑥,𝑦( 𝛽
⊗[1,𝑚]⊗  𝛽⊗[1,𝑚])(𝜌𝑡

−1(𝑥 ⊗ 𝑦))⊗ 1[𝑚+1,𝑞]
𝑥,𝑦∈𝐸0

⊗ 1[𝑚+1,𝑞])⊗ 1[𝑞+2,∞) 

= ((𝑖𝑑[1,𝑞]⊗  𝜃) ∘ ( 𝛽⊗[1,𝑚]⊗  𝛽⊗[1,𝑚])) ∘  𝜓 ∘ (𝜌𝑡
−1⊗ 𝑖𝑑[𝑚+1,𝑞]⊗ 𝑖𝑑[𝑚+1,𝑞])  
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˜ 

( ∑ 𝜆𝑥,𝑦𝑥 ⊗ 𝑦⊗ 1[𝑚+1,𝑞]
𝑥,𝑦∈𝐸0

⊗ 1[𝑚+1,𝑞])⊗ 1[𝑞+2,∞) 

≈∈
3⁄
((𝑖𝑑[1,𝑞]⊗  𝜃) ∘ ( 𝛽⊗[1,𝑞]⊗  𝛽⊗[1,𝑞])  ∘ 𝜓) (𝑎 ⊗ 1[1,𝑚]⊗1[𝑚+1,𝑞]⊗1[𝑚+1,𝑞])

⊗ 1[𝑞+2,∞) 

=  𝛽⊗[1,𝑞](𝑎 ⊗ 1[𝑚+1,𝑞]) ⊗ 1[𝑞+2,∞) 

= 𝛼(𝑏). 

The first step follows from (8) and 𝛼 = 𝛽⊗ℕ. The second step is the definition of 𝜅̃𝑡. The 

third follows from (10). The fourth is the definition of 𝜓 and 𝛽⊗[𝑚+1,𝑞] (1) = 1. For the 

fifth, we use   

( 𝛽⊗[1,𝑚]⊗  𝛽⊗[1,𝑚]) ∘ 𝜌𝑡
−1 = 𝜌𝑡

−1 ∘ ( 𝛽⊗[1,𝑚]⊗  𝛽⊗[1,𝑚]),  

which follows from (1). The sixth step uses the definition of 𝜓  and the relation 

 𝛽⊗[𝑚+1,𝑞](1) = 1. The seventh step follows from (7), the eighth is easy, and the last step 

is 𝛼 = 𝛽⊗ℕ.  

For any unital  ‑ algebra 𝐴, we denote its unitary group by 𝑈(𝐴), and equip it with the norm 

topology. 

To establish turbulence for the action 𝑈 (𝐴)  ↷ 𝐴𝑢𝑡(𝐴)we proceed as follows. 

Observe that the orbits are just translates of the group Inn(A) of inner automorphisms.  As 

𝐼𝑛𝑛(𝐴)a non- closed Borel subgroup of 𝐴𝑢𝑡(𝐴) [297], it follows from Pettis’s theorem (see 

[259]) that 𝐼𝑛𝑛(𝐴)  is meager in 𝐴𝑢𝑡(𝐴) . Moreover, 𝐼𝑛𝑛(𝐴)  is dense in 𝐴𝑢𝑡(𝐴)  by 

Proposition 1.13 of [205]. It follows that every orbit is dense and meager. It thus remains to 

show, given 𝛼 ∈ 𝐴𝑢𝑡(𝐴), a neighbourhood 𝑈 of 𝛼 in 𝐴𝑢𝑡(𝐴), and a neighbourhoodV of 1 

in 𝑈(𝐴), that the local orbit 𝒪(𝛼, 𝑈, 𝑉 ) is somewhere dense. 

To this end, we may assume that 𝑈 is of the form 𝑈𝛼Ω𝜀  as in Notation 6.2.1 for some finite 

set Ω ⊆ 𝐴 and 𝜀 > 0, and that 𝑉 = {𝑢 ∈ 𝑈 (𝐴): ‖𝑢 −  1‖ < 𝜀}. Write 𝑈0(𝐴) for the path 

connected component of the identity in the unitary group of A.  By Lemma 2.1 of [214], 

there are a finite set 𝛶 ⊆ 𝐴 and 𝛿 > 0 such that if 𝑤  is a unitary in  𝑈0(𝐴) 

satisfying ‖[𝑤, 𝑥]‖ <  𝛿for all 𝑥 ∈  𝛶,then there is a continuous path (𝑤𝑡)𝑡∈[0,1] of unitaries 

in 𝑈0(𝐴) such that 𝑤0 = 𝑤 , 𝑤1 = 1, and ǁ[𝑤𝑡 , 𝑥]ǁ <  𝜀for all 𝑥 ∈ 𝛼(Ω) and 𝑡 ∈ [0, 1]. To 

complete the argument we will show that the open set 𝑈𝛼,𝛼−1 (𝛶),δ is contained in the closure 

of 𝒪(𝛼, 𝑈, 𝑉 ). So let 𝛽 ∈ 𝑈𝛼,𝛼 −1 (𝛶), 𝛿 and let W be an open neighbourhood of β contained 

in 𝑈 . By Theorem 3.1 of [369], the algebra A is automatically𝒵‑ stable. In particular, (see 

Remark 3.3 of [369]), it is K1-injective, so Proposition 1.13 of [205] applies. Thus there is 

𝑢 ∈ 𝑈0(𝐴)  such that 𝐴𝑑(𝑢)  ∘  𝛼 ∈ 𝑊 ⊆ 𝑈𝛼,𝛼 −1(𝛶),δ .  In  particular, 𝐴𝑑(𝑢)  ∘  𝛼 ∈

𝑈𝛼,𝛼 −1(𝛶),δ, and so by our choice of 𝛶 and δ there is a continuous path (𝑢𝑡)𝑡∈[0,1] of unitaries 

in 𝑈0(𝐴) such that 𝑢0 = 𝑢 , 𝑢1 = 1, and ǁ[𝑢𝑡 , 𝑥]ǁ <  𝜀for all 𝑥 ∈  𝛼(Ω) and 𝑡 ∈  [0, 1]. 
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This last condition is the same as saying that 𝐴𝑑(𝑢𝑡)  ∘  𝛼 ∈ 𝑈𝛼,Ω,𝜀 for all 𝑡 ∈  [0, 1]. We 

can now discretize the path (𝑢𝑡)𝑡∈[0,1] in small enough increments to verify the membership 

of β in 𝒪(𝛼, 𝑈, 𝑉 ). We conclude that 𝑈𝛼,𝛼 −1(𝛶),δ  is contained in the closure of 𝒪(𝛼, 𝑈, 𝑉 ), 

as desired. 

Implies that automorphisms of strongly self-absorbing 𝐶∗-algebras are not clas- sifiable up 

to unitary equivalence by countable structures. This consequence is proved using different 

methods in [278], in much greater generality (for separable 𝐶∗-algebras which do not have 

continuous trace). 

With the aim of completing the proof of Theorem(6.2.15), we now concentrate on verifying 

the meagerness of orbits condition in the definition of generic turbulence. For this we will 

employ a result of Rosendal that gives a criterion in terms of periodic approximation for 

every conjugacy class in a Polish group to be meager [367]. As we will later relativize this 

result in Lemma(6.2.17) for applications, it will be convenient to abstract the relevant 

periodic approximation property into a definition. 

Definition(6.2.10)[288]:We say that a Polish group 𝐺has the Rosendal property if for every 

infinite set 𝐼 ⊆ ℕ and neighbourhood 𝑉 of 1 in 𝐺the set. 

{𝑔 ∈ 𝐺 ∶ there is 𝑛 ∈ 𝐼 such that 𝑔𝑛 ∈ 𝑉} 

is dense. Rosendal’s result [367] can now be formulated as follows. 

Lemma(6.2.11)[288]:Let 𝐺 be a nontrivial Polish group with the Rosendal property. Then 

every con- jugacy class in 𝐺 is meager. 

   For a unital 𝐶∗-algebra 𝐴 we write 𝑈0(𝐴) for the path connected component of the identity  

in the unitary group 𝑈(𝐴) of 𝐴, and Inn0(𝐴) for the normal subgroup of Aut(𝐴) consisting 

of all automorphisms of 𝐴 of the form Ad(𝑢) for some 𝑢 ∈ 𝑈0(𝐴). 

Lemma(6.2.12)[288]:Let A be a separable unital 𝐶∗-algebra with real  rank  zero  such that  

Inn0(𝐴)is dense in Aut(𝐴). Then Aut(𝐴)has the Rosendal property. 

Proof: Let I be an infinite subset of ℕ. Set 

𝑆 = {𝜑 ∈ Aut(𝐴): there is 𝑛 ∈ 𝐼 such that𝜑𝑛 = 𝑖𝑑𝐴}. 

It suffices to prove that 𝑆 is dense. Let 𝛼 ∈ Aut(𝐴), let Ω ⊆ 𝐴be finite, and  let  𝜀 >  0. It 

suffices to show (following Notation (6.2.3)) that 𝑆 ∩ 𝑈𝛼,Ω,𝜀  ≠ ∅. Set 𝑀 = 1 + sup({‖𝑎‖ ∶

𝑎 ∈ Ω}). 

As real rank zero is equivalent to the density in 𝑈0(𝐴) of the unitaries in 𝑈0(𝐴) with finite 

spectrum [364], the density of Inn0(𝐴) in Aut(𝐴) implies the existence of a unitary 𝑢 with 

finite spectrum  such  that  ‖𝛼(𝑎) − 𝑢𝑎𝑢∗‖ <  𝜀/2  for  all  𝑎 ∈ Ω.  Since 𝑢 has finite 

spectrum, there are 𝑘 ∈ ℕ, projections 𝑝1, 𝑝2, . . . , 𝑝𝑘 ∈ 𝐴, and 𝜃1, 𝜃2, . . .  , 𝜃𝑘 ∈ [0,1) such 

that 𝑢 = ∑ 𝑒2𝜋𝑖𝜃𝑗 /𝑛𝑝𝑗
𝑘
𝑗=1 . 

    Choose 𝑛 ∈ 𝐼  such that 𝑛 > 8𝜋𝑀/𝜀 , and for 𝑗 = 1, 2, . . . , 𝑘choose 𝑚𝑗 ∈  {0, 1 . . . , 𝑛 −

1}  such that |𝜃𝑗 −𝑚𝑗/𝑛|  < 1/𝑛 .  Set 𝑣 = ∑ 𝑒2𝜋𝑖𝑚𝑗/𝑛𝑝𝑗
𝑘
𝑗=1 .  Then 𝑣𝑛 = 1  and so 

𝐴𝑑(𝑣)𝑛  =  𝑖𝑑 . Moreover, since       
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‖𝑢 − 𝑣‖ ≤ sup
1≤𝑗≤𝑘

2𝜋 |𝜃𝑗 −
𝑚𝑗
𝑛
| ≤

2𝜋

𝑛
<
𝜀

4
,  

We have, for every 𝛼 ∈ 𝛺 

 ‖𝛼(𝑎) −  𝑣𝑎𝑣∗‖  ≤  ‖𝛼(𝑎) − 𝑢𝑎𝑢∗‖ + ‖𝑢 –  𝑣‖ . ‖𝑎‖ . ‖𝑢∗‖ + ‖𝑣‖ . ‖𝑎‖ ·  ‖(𝑢 –  𝑣)∗‖ 

<
𝜀

3
+ (

𝜀

3𝑀
)𝑀 +𝑀(

𝜀

3𝑀
) = 𝜀. 

Thus 𝐴𝑑(𝑣)  ∈ 𝑈𝛼,Ω,𝜀, as required. 

Lemma(6.2.12) shows that Aut(𝐴) has the Rosendal property when 𝐴 is 𝒪2, 𝒪∞ , a UHF 

algebra, or the tensor product of a UHF algebra and 𝒪∞, but cannot be applied to 𝒵 since 𝒵 

does not have  real rank zero.  Indeed the only projections in 𝒵 are 0 and 1.  Nevertheless  

we  can  useanother argument based on the shift automorphism. 

Lemma(6.2.13)[288]: Aut(𝒵)has the Rosendal property. 

Proof:Let 𝐼 be an infinite subset of ℕ. As in the proof of Lemma(6.2.12), we actually show 

that automorphisms with orders in 𝐼 are dense. Thus set 

𝑆 = {𝜑 ∈ Aut(𝐴): there is 𝑛 ∈ 𝐼 such that 𝜑𝑛 = 𝑖𝑑𝐴} 

let 𝛼 ∈ Aut(𝐴), let Ω ⊆ 𝐴 be finite, and let 𝜀 > 0. We show that 𝑆 ∩ 𝑈𝛼,Ω,𝜀 ≠  ∅. 

Let 𝛽  be the tensor shift automorphism of 𝒵⊗ℤ . By Lemma(6.2.6) there is an 

isomorphism 𝛾: 𝒵⊗ℤ → 𝒵 such that ‖(𝛾 ∘  𝛽 ∘  𝛾−1)(𝑎) − 𝛼(𝑎)‖ < 𝜀/3 for all 𝑎 ∈ Ω. By 

the definition of the infinite tensor product, there are 𝑚 ∈ ℕ and a finite set 

𝛶 ⊆ 1⊗𝒵⊗[−m,m]⊗1 ⊆ 𝒵⊗ℤ 

such that for every 𝑎 ∈ Ω there is 𝑏 ∈ 𝛶 with ‖𝛾−1(𝑎) − 𝑏‖ < 𝜀/3. Choose 𝑛 ∈ 𝐼such that 

𝑛 ≥ 2𝑚 + 2 . Let 𝜅 ∈ Aut(𝒵⊗[−𝑚,𝑛−𝑚−1])  be the forwards cyclic tensor shift 

automorphism, which for 𝑥−𝑚 , 𝑥−𝑚+1, … , 𝑥𝑛−𝑚−1 ∈ 𝒵 satisfies 

𝜅(𝑥−𝑚⊗  𝑥−𝑚+1⊗ · · · ⊗ 𝑥𝑛−𝑚−2⊗𝑥𝑛−𝑚−1)

=  𝑥𝑛−𝑚−1⊗𝑥−𝑚⊗  𝑥−𝑚+1⊗ · · · ⊗ 𝑥𝑛−𝑚−2 

Then 𝜅𝑛 = 𝑖𝑑. 

Let then 

𝑘𝑛 = 𝑖𝑑 ⊗ 𝜅 ⊗ 𝑖𝑑 ∈ 𝐴𝑢𝑡(𝒵⊗(−∞,−𝑚−1]⊗𝒵⊗[−𝑚,𝑛−𝑚−1]⊗𝒵⊗[𝑛−𝑚,∞))

=  𝐴𝑢𝑡(𝒵⊗ℤ). 

Then 𝜓𝑛  =  𝑖𝑑  (so that 𝛾 ∘  𝜓 ∘  𝛾−1 ∈  𝑆 ) and 𝜓(𝑏) = 𝛽(𝑏)  for all 𝑏 ∈ 1⊗

𝒵⊗[−m,m]⊗1 ⊆ 𝒵⊗ℤ. 

Now let 𝑎 ∈ Ω. Choose 𝑏 ∈ 𝛶 such that ǁ𝛾−1(𝑎) − 𝑏ǁ <  𝜀/3. Using 𝜓(𝑏) =  𝛽(𝑏), we 

get 

‖(𝛾 ∘  𝜓 ∘  𝛾−1)(𝑎) − 𝛼(𝑎)‖ 

≤ ‖(γ ∘  ψ)(γ−1(a) − b)‖ + ‖(γ ∘  β)(b − γ−1 (a))‖ + ‖(γ ∘ β ∘  γ−1) (a) − α(a)‖ 

<
ε

3
+
ε

3
+
ε

3
= ε 

Thus γ ∘  ψ ∘  γ−1 ∈  Uα,Ω,ε, which establishes the desired density.  

    From Lemmas(6.2.11),(6.2.12) and(6.2.13) we obtain: 
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Lemma(6.2.14)[288]:Let A be 𝒵, 𝒪2,  𝒪∞, a UHF algebra, or the tensor product of a UHF 

algebra and 𝒪∞. Then every conjugacy class in Aut(𝐴) is meager. 

Lemmas (6.2.4) and(6.2.8) together yield the following. 

Theorem(6.2.15)[288]:Let  A be 𝒵,𝒪2, 𝒪∞, a  UHF algebra  of infinite type,  or  the tensor  

product  of a UHF algebra of infinite type and 𝒪∞. Then the conjugation action Aut(𝐴) ↷

 Aut(𝐴)is generically turbulent. 

Consider a standard atomless probability space (𝑋, μ) and the Polish group Aut(𝑋, μ) of 

measure-preserving transformations of 𝑋 under the weak topology. In [358] Foreman and 

Weiss showed that restriction of the  conjugation  action  Aut(𝑋, μ) ↷  Aut(𝑋, μ) to  the  𝐺𝛿  

subset of essentially free ergodic automorphisms is turbulent and not merely generically 

turbulent. The essentially free automorphisms are precisely those which satisfy the Rokhlin 

lemma. The analogue of freeness for automorphisms of 𝒵 is the property that every nonzero 

power of the automorphism is strongly outer, which is equivalent to the weak Rokhlin 

property [227]. The set 𝑊𝑅𝑜𝑘(𝐴) of automorphisms of Aut(𝒵) with the weak Rokhlin 

property is easily seen to be a 𝐺𝛿 set, and it is dense by Lemma(6.2.6) as the tensor product 

shift automorphism of 𝒵 is strongly outer. In analogy with the Foreman-Weiss result we ask 

the following. 

Problem(6.2.16)[288]:Is the conjugation action Aut(𝒵) ↷  𝑊𝑅𝑜𝑘 (𝒵) turbulent? 

Using the stability of automorphisms of 𝒵 with the weak Rokhlin property [227], it 

can be shown as in the proof of Lemma(6.2.6) that any automorphism of 𝒵 with the weak 

Rokhlin property has dense conjugacy class in 𝐴𝑢𝑡(𝒵). So the question of turbulence for 

the action 𝐴𝑢𝑡(𝒵) ↷  𝑊𝑅𝑜𝑘𝒵  amounts to the problem of whether every orbit in 

𝑊𝑅𝑜𝑘 (𝒵)is turbulent. 

   We can also ask the same question for the conjugation action  𝐴𝑢𝑡(𝐴) ↷  𝑊𝑅𝑜𝑘(𝐴) on 

the set of automorphisms satisfying the Rokhlin property when 𝐴 is any one of the other 𝐶∗-

algebras in Theorem(6.2.15). 

We prove Theorem(6.2.21):for a separable 𝒵 -stable 𝐶∗ -algebra 𝐴 , the orbit 

equivalence relation of the conjugation action Aut(𝐴) ↷  Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅  is not classifiable by 

countable structures. 

Lemma(6.2.17)[288]: Let 𝐺 and 𝐻 be Polish groups such that 𝐺 has the Rosendal property 

Definition (6.2.10). Let 𝜑 ∶ 𝐺 → 𝐻  be a continuous homomorphism such that 𝜑(𝐺) ≠

{1𝐻}. Let 𝐸 be an equivalence relation on 𝐺 such that for every infinite set 𝐼 ⊆ ℕ the set 

𝑄1 = {
𝑔 ∈ 𝐺: there is 𝑎 strictly increasing sequence(𝑘n)𝑛=1

∞ in 𝐼 such tha𝑡

 𝜑(𝑔)k𝑛 → 1
} 

is 𝐸-invariant. Then every equivalence class of 𝐸 that is dense in 𝐺 is meager. In particular 

𝐸 does not have a comeager class. 

Proof: Let 𝐼 ⊆ ℕ be infinite. We claim that 𝑄1is comeager. To prove the claim, choose 

acountable base (𝑉n)𝑛=1
∞ of open neighbourhoods of 1𝐻  in 𝐻  such that 𝑉1 ⊇ 𝑉2 ⊇ · · ·

 . For 𝑛 ∈ ℕ define 
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𝑄1,𝑛 = {𝑔 ∈ 𝐺: there is 𝑘 ∈ 1 such tha 𝑘 ≥ 𝑛 and   𝜑(𝑔)
k ∈ 𝑉𝑛} 

Then 𝑄1,𝑛 is open and contains the set 

{𝑔 ∈ 𝐺: there is 𝑘 ∈ 1 {1,2,3,… , 𝑛 − 1} such that   𝜑(𝑔)k ∈ 𝑉𝑛} 

which is dense in 𝐺by the Rosendal property. Since 𝑄1 = ⋂ 𝑄1,𝑛
∞
𝑛=1 , the claim follows. 

   Now let 𝐶  be an equivalence class of 𝐸  that is dense in 𝐺 , and suppose that 𝐶  is not 

meager.Let 𝑔 ∈ 𝐶 . Then for every infinite 𝐼 ⊆ 𝑁  the set 𝑄1 , being comeager and 𝐸 -

invariant, contains 𝐶. Therefore every subsequence (𝜑(𝑔)l𝑛)
𝑛=1

∞
of  (𝜑(𝑔)n)𝑛=1

∞  in turn has 

a subsequence  whichconverges to 1𝐻 . It follows that 𝜑(𝑔)n → 1𝐻. Since also 𝜑(𝑔)n+1 →

1𝐻  , we conclude that 𝜑(g) = 1𝐻  . Thus 𝜑−1({1𝐻}) contains 𝐶  and hence is dense in 𝐺 

Since 𝜑 is continuous, we conclude that 𝜑−1({1𝐻}) = 𝐺.  This contradicts our hypothesis 

that 𝜑(G) ≠ {1𝐻}.  

    We let 𝑆∞ denote the set of all permutations of ℕ (equivalently, of any countable set), 

which is a Polish group in a standard way. Also, for an action 𝐺 ↷ 𝑋of a group 𝐺 on a set 

𝑋,we write 𝐸𝐺
𝑋 for the orbit equivalence relation on 𝑋. 

Definition(6.2.18)[288]: (Definition 3.6 of [260]). Let 𝐸 be an equivalence relation on a 

Polish Space 𝑋 , and let 𝐹  be an equivalence relation on a Polish Space 𝑌 . A Baire 

homomorphism from 𝐸 to 𝐹 is a Baire measurable function 𝜑 ∶ 𝑋 → 𝑌such that whenever 

𝑥1, 𝑥2 ∈ 𝑋satisfy 𝑥1𝐸 𝑥2, then 𝜑(𝑥1)𝐹𝜑(𝑥2).  We  say  that 𝐸  is generically 𝐹-ergodic  if 

for any Baire homomorphism 𝜑:𝑋 → 𝑌there is a comeager set 𝐶 ⊆ 𝑋such that the image of 

𝐶 under 𝜑is contained in a single 𝐹 -equivalence class. 

    From the point of view of applications, the following lemma is the main result in [260], 

although it is not explicitly stated there. 

Lemma(6.2.19)[288]:Let𝐺 ↷  𝑋 be a continuous action of a Polish group 𝐺 on a Polish 

space  𝑋, and  let 𝐸 the corresponding orbit equivalence relation. If the action is generically 

turbulent, thenis generically𝐸𝑆∞
𝑌 -ergodic for every Polish 𝑆∞-space 𝑌 . 

Proof: By condition (VII) in Theorem 3.21 of [260], there is a 𝐺 − invariant dense𝐺𝛿 −

set in 𝑋such that the restriction of the action to this set is turbulent. It is clearly enough to 

show generic𝐸𝑆∞
𝑌 -ergodicity for this subset. Apply Theorem 3.18 of [260]. 

Lemma(6.2.20)[288]:Let 𝐺  be a Polish group with the Rosendal property such that the 

relation ofconjugacy in 𝐺 is generically 𝐸𝑆∞
𝑌 -ergodicfor every Polish 𝑆∞-space 𝑌. Let 𝐻 be 

a Polishgroup and let 𝜑:𝐺 → 𝐻 a continuous homomorphism such that 𝜑(G) ≠ {1𝐻}. Let F 

be the equivalence relation on 𝜑(G)given by 𝑥𝐹𝑦 if there  is ℎ ∈ 𝐻for which  𝑦 = ℎ𝑥ℎ−1. 

Then 𝐹 is not classifiable by countable structures. 

Proof: Suppose to the contrary that 𝐹 is classifiable by countable structures. Then there is 

a space 𝒵of countable structures for a countable language and a Borel map 𝜓 ∶ 𝐺 → 𝒵such 

that,  with  ≅ denoting the orbit equivalence  relation  of  the canonical  action 𝑆∞ ↷ 𝒵 ,  we 

have 𝑥𝐹𝑦 if  and  only  if  𝜓(𝑥) ≅  𝜓(𝑦).   (See Definition 2.37 and Definition 2.37 of 

[260].)  Let 𝐸  be the equivalence relation on 𝐺such that 𝑠𝐸𝑡if there is ℎ ∈ 𝐻for which 
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𝜑(𝑡) = ℎ𝜑(𝑠)ℎ−1 . By hypothesis the relation of conjugacyin : 𝐺  is generically𝐸𝑆∞
𝑌 -

ergodicand so there is a comeagersubset 𝐶  of 𝐺  such that for all 𝑠, 𝑡 ∈ 𝐶 we have 

(𝜓 ∘ 𝜑)(𝑠) ≅ (𝜓 ∘ 𝜑)(𝑡) and hence 𝑠𝐸𝑡. 

   Now let 𝑠, 𝑡 ∈ 𝐺satisfy 𝑠𝐸𝑡and let(𝑘𝑛)𝑛=1
∞ be a strictly increasing sequence in 𝑁  such 

that𝜑(𝑠)𝑘𝑛 → 1. By the definition of 𝐸, there is ℎ ∈ 𝐻 such that 𝜑(𝑡) = ℎ𝜑(𝑠)ℎ−1. Then 

𝜑(𝑡)𝑘𝑛 = ℎ𝜑(𝑠)ℎ−1 → 1. 

This shows that for every infinite 𝐼 ⊆ 𝑁 the set 𝑄1in Lemma(6.2.17) is 𝐸-invariant. We 

apply that lemma to deduce that 𝐸  does not have a comeager class, contradicting the 

comeagerness of 𝐶. We thus conclude that 𝐹 is not classifiable by countable structures. 

Clearly in the statement of Lemma(6.2.20) one can replace 𝜑(𝐺)  with 𝜑(𝑋)  for any 

comeager Borel subset 𝑋 of 𝐺 that is invariant under conjugation. 

For a 𝐶∗-algebra A we write Inn(𝐴) for the set of inner automorphisms of 𝐴, and note that 

the closure  Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is a normal subgroup of Aut(𝐴). 

Theorem(6.2.21)[288]: Let A be a separable 𝒵 -stable 𝐶∗ -algebra. Then the orbit 

equivalence relation of the conjugation action Aut(𝐴) ↷  Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is not classifiable by 

countable structures. 

Proof: Identify 𝐴 with 𝒵 ⊗𝐴. The map 𝛼 ↦ 𝛼⊗ id𝐴 is a continuous homomorphism from 

Aut(𝒵)  onto a closed subgroup of 𝐴𝑢𝑡(𝒵 ⊗ 𝐴) . Since all automorphisms of 𝒵  are 

approximatelyinner (Theorem 7.6 of [177]), its image is contained in  Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By 

Lemma(6.2.13) the group Aut(𝒵) has the Rosendal property, and by Lemma(6.2.9) and 

Lemma (6.2.19) the orbit equivalence relation ofthe conjugation action Aut(𝒵) ↷  Inn(𝒵)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

is generically 𝐸𝑆∞
𝑌  -ergodicfor every Polish 𝑆∞ -space 𝑌 .  We thus obtain the conclusion by 

applying Lemma (6.2.20). 

Using Theorem 4.17 of [365] and the fact that the automorphism constructed in the proof of 

Lemma(6.2.9) has the tracial Rokhlin property [365], we can furthermore deduce from the 

proof of Theorem(6.2.21) that if 𝐴 is a simple separable unital infinite-dimensional 𝐶∗- 

algebra with tracial rank zero, then the approximately inner automorphisms of 𝐴 with the 

tracial Rokhlin property are not classifiable by countable structures up to conjugacy. 

Similarly, using Theorem 5.13 of [365] we can conclude that if 𝐴 is a separable unital  𝒪2 -

stable 𝐶∗  -algebra, then the approximately inner automorphisms of 𝐴  with the Rokhlin 

property are not classifiable by countable structures up to conjugacy. 

In the particular case when 𝐴  is the Cuntz algebra of 𝒪2 , [285] provides further 

information about the complexity of the orbit equivalence relation of the conjugation action 

𝐴𝑢𝑡(𝒪2)  ↷  𝐴𝑢𝑡(𝒪2): Such equivalence relation is not Borel as a subset of 𝐴𝑢𝑡(𝒪2) ×

𝐴𝑢𝑡(𝒪2). Moreover if 𝒞 is any class of countable structure such that the relation ≅𝑒of 

isomorphism  ofelements of 𝒞  is Borel, then ≅𝑒  is Borel reducible to the relation of 

conjugacy of automorphismsof 𝒪2. The same conclusions hold if one considers the relation 

of cocycle conjugacy of auto- morphisms of 𝒪2. (Recall that two automorphisms 𝛼, 𝛽 of a 
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unital 𝐶∗-algebra A are cocycle conjugate if there is a unitary element 𝑢 of 𝐴 such that 

Ad(𝑢) ∘  𝛼 and 𝛽 are conjugate.) 

Fix a separable infinite dimensional Hilbert ℋ , and let 𝒦 be the 𝐶∗ -algebra of 

compact operators on ℋ. Recall that a 𝐶∗-algebra A is said to be stable if 𝒦⊗  𝐴 ≅  𝐴.  

Here we show using Lemma(6.2.22) that if 𝐴  is a stable 𝐶∗ -algebra then the orbit 

equivalence relation of theconjugation action Aut(𝐴) ↷  Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is not classifiable by 

countable structures. 

Lemma(6.2.22)[288]: The unitary group 𝑈 (ℋ) has the Rosendal property.  

Proof: The proof is like part of the proof of Lemma(6.2.12). Set 

𝑆 = {𝑢 ∈  𝑈 (ℋ): there is 𝑛 ∈  𝐼 such that 𝑢𝑛  =  1}.  

It suffices to prove that S is dense. Let 𝑣 ∈  𝑈 (ℋ) and let 𝜀 >  0. Choose 𝑛 ∈  𝐼 such that 

2𝜋/𝑛 < 𝜀.  Let 𝑆1denote the unit circle in ℂ. Let 𝑓 ∶ 𝑆1 → 𝑆1  be  the  Borel  function  

which,for 𝑘 = 0, 1, . . . , 𝑛 − 1 , takes the value exp(2𝜋𝑖𝑘/𝑛)  on the arc 

{𝑒𝑥𝑝(2𝜋𝑖𝜃):  𝑘 𝑛⁄  ≤  𝜃 <  𝑘 + 1 𝑛⁄ }.  Then𝑢 = 𝑓(𝑣) ∈ 𝑈 (ℋ) satisfies 𝑢𝑛 = 1, so that 

𝑢 ∈ 𝑆 and ‖𝑢 − 𝑣‖ ≤ 2𝜋 𝑛⁄ < 𝜀.  

Theorem(6.2.23)[288]: Let A be a separable stable 𝐶∗-algebra.  Then the orbit equivalence 

relation of the conjugation action Aut(𝐴) ↷  Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is not classifiable by countable 

structures. 

Proof: Identify 𝐴 with 𝒦⊗𝐴. The map 𝛼 ↦ 𝛼 ⊗ 𝑖𝑑𝐴  is a continuous homomorphism 

from 𝐴𝑢𝑡(𝒦) onto a closed subgroup of Aut(𝒦 ⊗ 𝐴). Since every automorphism of 𝒦 is 

inner, this subgroup is contained in  Inn(𝐴)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By Theorem 6.1 of [263] the conjugation action 

𝑈 (ℋ) ↷  𝑈 (ℋ) is generically turbulent and hence the corresponding orbit equivalence 

relation is generically𝐸𝑆∞
𝑌 − ergodic for every Polish 𝑆∞ − space 𝑌by Lemma(6.2.19). As 

𝐴𝑢𝑡(𝒦) has the Rosendal propertyby Lemma (6.2.22), we can therefore apply Lemma( 

6.2.20) to obtain the result. 

Let 𝑀 be a 𝐼𝐼1 factor with separable predual. Write ǁ ·  ǁ2 for the 2-norm associated 

to its unique normal tracial state. We equip the automorphism group 𝐴𝑢𝑡(𝑀) of 𝑀  with the 

point‑   ǁ ·  ǁ2 topology. For 𝛼 ∈ 𝐴𝑢𝑡(𝑀), a finite subset Ω ⊆  𝑀 , and 𝜀 >  0, define (by 

analogy with Notation(6.2.3) 

𝑉𝛼,Ω,𝜀 = {𝛽 ∈  Aut(𝐴): ‖𝛽(𝑎) − 𝛼(𝑎)‖2 < 𝜀 for all 𝑎 ∈ Ω}. 

These sets form a base for the point‑  ǁ ·  ǁ2  topology. In this way Aut(𝑀) becomes a Polish 

group, and the action Aut(𝑀)  ↷  Aut(𝑀)  by  conjugation  is continuous.  By Theorem 

5.14 of [267] this action is generically turbulent when 𝑀 is the hyperfinite 𝐼𝐼1  factor 𝑅. 

Using thisfact and Lemma(6.2.11) we will show in Theorem(6.2.25) that Aut(𝑀) is not 

classifiable by countable structures for a large class of 𝐼𝐼1 factors 𝑀 . 

    We first record the following fact. 

Lemma(6.2.24)[288]:The group Aut(𝑅) has the Rosendal property. 

Proof: Since every automorphism of the hyperfinite 𝐼𝐼1  factor 𝑅 is approximately inner 

[156] and every unitary in a von Neumann algebra is a norm limit of unitaries with finite 
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spectrum by the bounded Borel functional calculus, we can argue as in the proof of 

Lemma(6.2.12) to obtain the result.  

     For a 𝐼𝐼1factor 𝑀 we write Inn(𝑀) for the set of inner automorphisms of 𝑀,  and note 

that the closure  Inn(𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ .  is a normal subgroup of Aut(𝑀). (This notation conflicts with 

that usedabove when 𝑀  is a 𝐶∗ -algebra, since we are taking the closure in a weaker 

topology.) We say that 𝑀is 𝑀𝑐𝐷𝑢𝑓𝑓  if 𝑀 ⊗̅̅̅ 𝑅 ≅ 𝑀.  

Theorem(6.2.25)[288]: Let 𝑀 be a separable 𝐼𝐼1 factor which is either 𝑀𝑐𝐷𝑢𝑓𝑓 or a free 

product  of 𝐼𝐼1   factors. Then the orbit equivalence relation of the conjugation action 

Aut(𝑀) ↷ Inn(𝑀) is not classifiable by countable structures. 

Proof: Suppose first that  𝑀 is  𝑀𝑐𝐷𝑢𝑓𝑓.  Write it  as  𝑀 ⊗̅̅̅ 𝑅.   Then the map 𝛼 ↦ 𝑖𝑑𝐴⊗

𝛼 is  a continuous homomorphism from 𝐴𝑢𝑡(𝑅) onto a closed subgroup of  Inn(𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . By 

Theorem5.14 of [267] the conjugation action 𝐴𝑢𝑡(𝑅) ↷ Aut(𝑅)  is generically  turbulent, 

so that the corresponding orbit equivalence relation is generically 𝐸𝑆∞
𝑌 − ergodicfor every 

Polish 𝑆∞ − space 𝑌 by Lemma (6.2.12). As Aut(𝑅)  has the Rosendal property by 

Lemma(6.2.24), we obtain the desired conclusion using Lemma(6.2.20). 

    Now suppose that 𝑀 = 𝐴 ∗ 𝐵 for some 𝐼𝐼1  factors 𝐴 and 𝐵. For any 𝐼𝐼1  factor 𝑁,   let 

𝑁1/2  denote  the  cut-down  of  𝑁  by  a  projection  of  trace  1/2.   For  an  integer  𝑟 ≥ 2,  

let  𝐿(𝐹𝑟) denote the corresponding free group factor. Using Theorem 3.5(iii) of [357] at the 

second step and Theorem 4.1 of [356] at the third step, we then have 

𝐴 ∗  𝐵 ≅  (𝐴1/2⊗  𝑀2)  ∗  (𝐵1/2⊗  𝑀2) ≅  (𝐴1/2 ∗ 𝐵1/2 ∗  𝐿(𝐹3))⊗𝑀2

≅ (𝐴1/2 ∗ 𝐵1/2 ∗  𝐿(𝐹2) ∗  𝑅)  ⊗  𝑀2. 

Then the map 𝛼 ↦ (𝑖𝑑𝐴1/2 ∗ 𝑖𝑑𝐵1/2 ∗ 𝑖𝑑𝐿(𝐹2) ∗ 𝛼)⊗ 𝑖𝑑 𝑀2  is a continuous homomorphism 

from Aut(𝑅) onto a closed subgroup of  Inn(𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . We can now continue to argue as in the 

first paragraph to reach the desired conclusion. 

The above theorem applies in particular to the free group factor 𝐿(𝐹𝑟) for every integer 𝑟 ≥

 2, as we have 𝐿(𝐹𝑟) ≅ 𝐿(𝐹𝑟−1) ∗ 𝑅 by Theorem 4.1 of [356]. 

We furthermore notice that the statement of Theorem (6.2.25) is still valid if we 

replace  Inn(𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ with the smaller set consisting of those automorphisms in  Inn(𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ which 

are free in the sense that all nonzero powers are properly outer (an automorphism 𝜃 of a von 

Neumann algebra 𝑀  is properly outer if for every nonzero 𝜃-invariant projection p the 

restriction of 𝜃 to 𝑝𝑀𝑝 is not inner [368]). To see this, it suffices to note that the set of free 

automorphisms in Aut(𝑅) is a dense 𝐺𝛿-set by [267] and that freeness is preserved under 

the maps between automorphism groups in the proof of Theorem(6.2.25). 

Corollary(6.2.26)[370]:Let 𝐴𝑚  be a strongly self-absorbing 𝐶∗ -algebra.  Let 𝛾𝑚  be an 

automorphism of 𝐴𝑚
⊗ℤ

, let Ω be a finite subset of 𝐴𝑚
⊗ℕ

, and let 𝛿 > 0.  Then  there  are  𝑞𝑚 ∈

ℕ  and  𝛾̃𝑚 ∈ Aut (𝐴𝑚
⊗[1,𝑞𝑚])  such that, with id being the identity  automorphism of 

𝐴𝑚
⊗[𝑞𝑚+1,∞[, we have ‖(𝛾̃𝑚⊗  𝑖𝑑)(𝑎2) − 𝛾𝑚(𝑎

2)‖ < 𝛿 for all 𝑎2 ∈ Ω. 
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Proof: Take  𝑞𝑚 ∈ ℕ large  enough  that, with  1 being  the identity  of 𝐴𝑚
⊗[𝑞𝑚+1,∞[,  for 

every  𝑎2 ∈ Ω ∪ 𝛾𝑚(Ω) there is 𝑎2𝑏 ∈ 𝐴𝑚
⊗[1,𝑞𝑚]  such that ‖𝑎2 − 𝑎2𝑏⊗1‖𝑘 < 𝛿/6. 

  Since 𝐴𝑚 is strongly self-absorbing,  there is an isomorphism  𝜃 ∶ 𝐴𝑚
⊗[1,𝑞𝑚]  →  𝐴𝑚

⊗ℕ
 which 

is approximately  unitarily  equivalent  to the embedding 𝐴𝑚
⊗[1,𝑞𝑚] ↪ 𝐴𝑚

⊗[1,𝑞𝑚]⊗

 𝐴𝑚
⊗[𝑞𝑚+1,∞[ = 𝐴𝑚

⊗ℕ
 given by 𝑎2 ↦ 𝑎2⊗1. Thus  by composing 𝜃 with a suitable inner 

automorphism of 𝐴𝑚
⊗ℕ

 we can construct an isomorphism  𝜔: 𝐴𝑚
⊗[1,𝑞𝑚] → 𝐴𝑚

⊗ℕ
 such that 

‖𝜔(𝑎2𝑏) − 𝑎2𝑏⊗1‖ < 𝛿/6  for all 𝑎2 ∈ Ω ∪ 𝛾𝑚(Ω) .  Set γ = ω−1 ∘  γ ∘ ω ∈

Aut (𝐴𝑚
⊗[1,𝑞𝑚]).  Then  for every 𝑎2 ∈ Ω we have 

‖𝛾̃𝑚(𝑎
2𝑏) − 𝛾𝑚(𝑎

2)𝑏‖

≤ ‖(𝜔−1𝜊 𝛾𝑚)(𝜔(𝑎
2𝑏) − 𝑎2𝑏⊗1)‖ + ‖(𝜔−1𝜊 𝛾𝑚)(𝑎

2𝑏⊗1− 𝑎2)‖ 

+‖𝜔−1(𝛾𝑚(𝑎
2) − 𝛾𝑚(𝑎

2)𝑏⊗1)‖ + ‖𝜔−1 (𝛾𝑚(𝑎
2)𝑏⊗  1) − 𝛾𝑚(𝑎

2)𝑏‖ 

<
𝛿

6
+
𝛿

6
+
𝛿

6
+
𝛿

6
=
2𝛿

3
 

and so  

‖ (𝛾̃𝑚⊗ 𝑖𝑑)(𝑎2) − 𝛾𝑚(𝑎
2)‖

≤ ‖(𝛾̃𝑚⊗ 𝑖𝑑)(𝑎2 − 𝑎2𝑏⊗1)‖ + ‖𝛾̃𝑚(𝑎
2𝑏) − 𝛾𝑚(𝑎

2)𝑏⊗1‖

+ ‖𝛾𝑚(𝑎
2)𝑏⊗1− 𝛾𝑚(𝑎

2)‖ <
𝛿

6
+
2𝛿

3
+
𝛿

6
= 𝛿, 

as desired. 

Corollary(6.2.27)[370]:Let 𝐴𝑚 be a strongly   self-absorbing   𝐶∗-algebra   and   let   𝛼𝑚 

the   tensor   product   shift automorphism of 𝐴𝑚⊗𝑍.   Then 𝛼𝑚 is malleable.  

Proof:Let 𝜑 be the tensor product flip automorphism of 𝐴𝑚⊗𝐴𝑚. Since Ais strongly self-

absorbing we have 𝐴𝑚⊗ 𝐴𝑚  ≅ 𝐴𝑚, and so by Theorem 2.2 of [214] we can find a norm-

continuous path (𝑢𝑡
𝑚)𝑡∈[0,1]  of  unitaries in 𝐴𝑚⊗𝐴𝑚  such  that  𝑢0

𝑚 = 1𝐴𝑚⊗𝐴𝑚  and  

lim
𝑡→1−

‖𝑢𝑡
𝑚 𝑎𝑢𝑡

∗𝑚 − 𝜑(𝑎)‖ = 0 for  all  𝑎 ∈ 𝐴𝑚⊗ 𝐴𝑚.  

Define a path (𝜌𝑡)𝑡∈[0,1] in Aut(𝐴𝑚⊗ 𝐴𝑚)⊗ℤ  by setting  𝑝𝑡 = 𝐴
𝑚𝑑(𝑢𝑡

𝑚)⊗ℤ for  every  

𝑡 ∈ [0, 1)  and 𝜌𝑡 =   𝜑 
⊗ℤ .  Then 𝜌0 is  the identity. 𝐴𝑚 simple approximation   argument 

showsthat this path is point-norm continuous. Moreover, by viewing ((𝐴𝑚⊗ 𝐴𝑚)⊗ℤ) as 

((𝐴𝑚)⊗ℤ)⊗ ((𝐴𝑚)⊗ℤ) via the identificationthat pairs like indices, we see that 𝜌1is the flip 

automorphism and 𝜌𝑡 ∘ (𝛼𝑚⊗𝛼𝑚) =  (𝛼𝑚⊗𝛼𝑚) ∘ 𝜌𝑡 for all  𝑡 ∈ [0, 1].    Thus 𝛼𝑚  is 

malleable.  

Corollary(6.2.28)[370]:Let 𝐴𝑚 be a separable unital 𝐶∗-algebra with real  rank  zero  such 

that  Inn0(𝐴
𝑚)is dense in Aut(𝐴𝑚). Then Aut(𝐴𝑚)has the Rosendal property. 

Proof: Let I be an infinite subset of ℕ. Set 

𝑆 = {𝜑𝑚 ∈ Aut(𝐴𝑚): there is 𝑛 ∈ 𝐼 such that 𝜑𝑛𝑚 = 𝑖𝑑𝐴𝑚}. 
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It suffices to prove that 𝑆 is dense. Let 𝛼𝑚 ∈ Aut(𝐴𝑚), let Ω ⊆ 𝐴𝑚 be finite, and  let  𝜀 >

 0. It suffices to show (following Notation (6.2.3)) that 𝑆 ∩ 𝑈𝛼𝑚,Ω,𝜀  ≠ ∅. Set 𝑀 = 1 +

sup({‖𝑎‖ ∶ 𝑎 ∈ Ω}). 

As real rank zero is equivalent to the density in 𝑈0(𝐴
𝑚) of the unitaries in 𝑈0(𝐴

𝑚) 

with finite spectrum [364], the density of Inn0(𝐴
𝑚) in Aut(𝐴𝑚) implies the existence of a 

unitary 𝑢𝑚 with finitespectrum  such  that  ‖𝛼𝑚(𝑎) − 𝑢𝑚𝑎𝑢∗𝑚‖ <  𝜀/2  for  all  𝑎 ∈ Ω.  

Since 𝑢𝑚  has finite spectrum, there are 𝑘 ∈ ℕ , projections 𝑝1
𝑚 , 𝑝2

𝑚 , . . . , 𝑝𝑘
𝑚 ∈ 𝐴𝑚 , and 

𝜃1, 𝜃2, . . .  , 𝜃𝑘 ∈ [0,1) such that 𝑢𝑚 = ∑ 𝑒2𝜋𝑖𝜃𝑗 /𝑛𝑝𝑗
𝑚𝑘

𝑗=1 . 

    Choose 𝑛 ∈ 𝐼  such that 𝑛 > 8𝜋𝑀/𝜀 , and for 𝑗 = 1, 2, . . . , 𝑘choose 𝑚𝑗 ∈  {0, 1 . . . , 𝑛 −

1}  suchthat |𝜃𝑗 −𝑚𝑗/𝑛|  < 1/𝑛 .  Set 𝑣𝑚 = ∑ 𝑒2𝜋𝑖𝑚𝑗/𝑛𝑝𝑗
𝑚𝑘

𝑗=1 .  Then 𝑣𝑚𝑛 = 1  and so 

𝐴𝑚𝑑(𝑣𝑚)𝑛  =  𝑖𝑑 . Moreover, since       

‖𝑢𝑚 − 𝑣𝑚‖ ≤ sup
1≤𝑗≤𝑘

2𝜋 |𝜃𝑗 −
𝑚𝑗
𝑛
| ≤

2𝜋

𝑛
<
𝜀

4
,  

We have, for every 𝛼𝑚 ∈ 𝛺 

 ‖𝛼𝑚(𝑎) − 𝑣𝑚𝑎𝑣∗𝑚‖  

≤  ‖𝛼𝑚(𝑎) − 𝑢𝑚𝑎𝑢∗𝑚‖ + ‖𝑢𝑚 – 𝑣𝑚‖ . ‖𝑎‖ . ‖𝑢∗𝑚‖ + ‖𝑣𝑚‖ . ‖𝑎‖ 

·  ‖(𝑢𝑚 – 𝑣𝑚)∗‖ 

<
𝜀

3
+ (

𝜀

3𝑀
)𝑀 +𝑀(

𝜀

3𝑀
) = 𝜀. 

Thus 𝐴𝑚𝑑(𝑣𝑚)  ∈ 𝑈𝛼𝑚,Ω,𝜀, as required. 

Corollary (6.2.29)[370]: Let 𝐺  and 𝐻  be Polish groups such that 𝐺  has the Rosendal 

property Definition (6.2.10). Let 𝜑𝑟 ∶ 𝐺 → 𝐻  be a continuous homomorphism such that 

𝜑𝑟(𝐺) ≠ {1𝐻}. Let 𝐸 be an equivalence relation on 𝐺 such that for every infinite set 𝐼 ⊆ ℕ 

the set 

𝑄1 = {

𝑔𝑟 ∈ 𝐺: there is 𝑎 strictly increasing sequence(𝑘n)𝑛=1
∞ in 𝐼 such tha𝑡

 ∑𝜑𝑟
𝑟

(𝑔𝑟)k𝑛 → 1 } 

is 𝐸-invariant. Then every equivalence class of 𝐸 that is dense in 𝐺 is meager. In particular 

𝐸 does not have a comeager class. 

Proof: Let 𝐼 ⊆ ℕ be infinite. We claim that 𝑄1is comeager. To prove the claim, choose 

acountable base (𝑉n)𝑛=1
∞ of open neighbourhoods of 1𝐻 in 𝐻 such that 𝑉1 ⊇ 𝑉2 ⊇ · · ·. For 

𝑛 ∈ ℕ define 

𝑄1,𝑛 = {𝑔
𝑟 ∈ 𝐺: there is 𝑘 ∈ 1 such tha 𝑘 ≥ 𝑛 and   ∑𝜑𝑟

𝑟

(𝑔𝑟)k ∈ 𝑉𝑛} 

Then 𝑄1,𝑛 is open and contains the set 

{𝑔𝑟 ∈ 𝐺: there is 𝑘 ∈ 1 {1,2,3, … , 𝑛 − 1} such that   ∑𝜑𝑟
𝑟

(𝑔𝑟)k ∈ 𝑉𝑛} 

which is dense in 𝐺by the Rosendal property. Since 𝑄1 = ⋂ 𝑄1,𝑛
∞
𝑛=1 , the claim follows. 
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   Now let 𝐶  be an equivalence class of 𝐸  that is dense in 𝐺 , and suppose that 𝐶  is not 

meager.Let 𝑔𝑟 ∈ 𝐶 . Then for every infinite 𝐼 ⊆ 𝑁  the set 𝑄1 , being comeager and 𝐸 -

invariant, contains 𝐶. Therefore every subsequence (𝜑𝑟(𝑔
𝑟)l𝑛)

𝑛=1

∞
of  (𝜑𝑟(𝑔

𝑟)n)𝑛=1
∞  in turn 

has a subsequence  whichconverges to 1𝐻 . It follows that ∑ 𝜑𝑟𝑟 (𝑔𝑟)n → 1𝐻. Since also 

∑ 𝜑𝑟𝑟 (𝑔𝑟)n+1 → 1𝐻 , we conclude that ∑ 𝜑𝑟𝑟 (𝑔𝑟) = 1𝐻 . Thus 𝜑𝑟
−1({1𝐻}) contains 𝐶 and 

hence is dense in 𝐺  Since 𝜑𝑟  is continuous, we conclude that 𝜑𝑟
−1({1𝐻}) = 𝐺 .  This 

contradicts our hypothesis that ∑ 𝜑𝑟𝑟 (G) ≠ {1𝐻}.   
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