Evaluation of Haemostatic Changes Among Non Complicated pregnancy
in Shendi Locality - Nile River State - Sudan

A thesis Submitted in Fulfillment For the Requirement the M.Sc. Degree in
(Hematology)

Submitted By:
Mohammad Abdallah El-Hussein Mohammad
B.Sc. in Hematology and Chemical Pathology-Shendi University -2011

Supervisor :
Dr. Om Kalthoum Osman Hamad
PhD in hematology
قال تعالى:

اقرأ باسم ربك الذي خلق (1) خلق الإنسان من علق (2) أفرا وربك الأكرم (3) الذي علم بالغلم (4)

سورة العلق: الآيات 1-4
Dedication

To my wonderful parents who strongly supported me all throughout.

To my beloved brothers.

To all those whom I always love, care and respect.
Acknowledgments:
First of all I would like thank Allah, for giving me health strength and patience to complete this work. I would like to formally thank:
My supervisor Dr. Umm Kulthum, hematology Department, Medical Laboratory Science, University of Shendi, for her invaluable advice, constructive criticism, continuous guidance, encouragement and patience throughout this study.
Deep thanks to colleagues for their unlimited support and strong advice throughout this study.
Also deep thanks to lab staff of Al Mek Nemir hospital and Shendi Teaching Hospital for their support.
Special thanks to those helped me in practical part of this study A / Hamza, Ibrahim Issa, Khaled Saeed, Mahmoud Kabbashi, Badr al-Din Abdel-Mak, Zeinab Abdul Rahim, Salma Abdullah.
My grateful thanks are extended to my best friend Nizar Al-Sasser.
Last, but not least I would like to thank all my friends.
Abstract:

Background: Normal pregnancy is associated with haemostatic changes which have been linked to a complex physiological adaptation but these changes return to that of non-pregnant state at about 4 weeks of post-delivery. The study aimed to assess the PT, PTT, Fibrinogen and D-Dimer level among pregnant women.

Methodology: This was a cross-sectional descriptive study, has been conducted at Mek Nemir hospital and Shendi Teaching Hospital from August 2015 to August 2017, Following informed consent 145 pregnant women in different trimesters and different ages were enrolled in this study, their aged ranged from (17-40) years with mean average of SPSS version --- was used to calculate the mean, STD, frequency and independent t test, the p values were considered to be significant < (0.05)

Results: The mean age of pregnant women was (24.4) years. Pregnant women with Haemostasis change in different trimesters 60% were in third trimester. In the study population the values of *PT* (14.3) second during pregnancy and control (12.5) second showed significant differences (P>0.00) but within normal range, values of *APPT* (34.1) second during pregnancy and control (32.4) second showed no significant differences (P=0.30), fibrinogen levels during pregnancy (548.1)mg/dl and control (269.6) mg/dl showed significant differences (P>0.00), and D-Dimer levels during pregnancy (609.7)ng/ml and control (285.5) ng/ml showed significant differences (P>0.00) without normal range.

Conclusion: The study concluded that changed values of PT, APTT, fibrinogen levels and D-Dimer levels during pregnancy, It is recommended that fibrinogen level and D-Dimer level be monitored during pregnancy to minimize thrombotic effect.
الخلاص:
خلفية: يرتبط الحمل الطبيعي مع التغييرات في الأرقاء الدموي والتي ترتبط بتكاليف الفسيولوجية المعلقة ولكن هذه التغييرات تعود للطبيعي بعد أربعة أسابيع بعد الولادة. وقد أجريت هذه الدراسة في مختبر اختبارات التخثر أثناء الحمل في مدينة شتادي.
الطريقة: تم تدشين 145 امرأة حامل، تتراوح أعمارهم بين (17-40) سنة وتختلف شهر الحمل لارتفاع الدموي بين أغسطس 2015 و أُغسطس 2017 في مستشفى الملك نمر ومستشفى شتادي التعليمي. تم تحليل البيانات عن طريق برنامج SPSS، للحصول على النتائج وتحليل عينات الدم التي تم جمعها باستخدام تقنيات المختبر القياسية.
النتائج: كان متوسط عمر النساء الحوامل (24.4 ± 6.1) سنة. وكانت نسبة الأكبر في تغيرات الأرقاء الدموي في أجزاء الحمل الثلاث للجزء الثالث بنسبة 60%. أظهرت نتائج الدراسة وجود فروقات معنوية بين النساء الحوامل والغير حامل في وقت البروترومبين (P<0.00) وكانت داخل المعدل الطبيعي. وفي قيمة القيم وقت البروترومبلاستين الجزيئي لا توجد فروق ذات دلالة إحصائية (P=0.30). أما مستويات الفيبرينوجين ومستويات دي-ديمر أظهرت فروق معنوية (P≥0.00) دون المعدل الطبيعي.
الاستنتاج: خلصت هذه الدراسة أن هناك زيادة في وقت البروترومبين وقت البروترومبلاستين الجزيئي ومستويات الفيبرينوجين ومستويات دي-ديمر أثناء فترة الحمل الطبيعي ووجد أيضا من المستحسن رصد تغيرات مستويات الفيبرينوجين و دي-ديمر أثناء فترة الحمل للحد من احتمال الخلطات.
Table of contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>i</td>
</tr>
<tr>
<td>Dedication</td>
<td>ii</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>iii</td>
</tr>
<tr>
<td>Abstract(English)</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract(Arabic)</td>
<td>v</td>
</tr>
<tr>
<td>List of contents</td>
<td>x</td>
</tr>
<tr>
<td>List of tables</td>
<td>xi</td>
</tr>
<tr>
<td>List of figures</td>
<td>xii</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>xiii</td>
</tr>
</tbody>
</table>

CHAPTER I

1.1 Introduction 1
1.2 Rationale 2
1.3 Objectives 3

CHAPTER II Literature Review

2.1 pregnancy 4
2.1.1. Hematology of pregnancy 6
2.1.2. Coagulation changes in pregnancy 13
2.2. Haemostasis 14
2.2.1. Coagulation 15
2.2.1.1. Intrinsic pathway 16
2.2.1.2. Extrinsic pathway 16
2.2.1.3. Final common pathway 17
2.2.1.4. Coagulation factors 19
2.2.2. Coagulation disorders .. 20
2.2.2.1. Inherited disorders .. 20
2.2.2.2. Acquired disorders

2.2.2.2.1. Impaired synthesis

2.2.2.2.2. Circulating inhibitors

2.2.2.2.3. Reduced survival of coagulation factor

2.2.3. Coagulation tests

2.2.3.1.1. prothrombin time (PT)

2.2.3.1.2. International Normalized Ratio (INR)

2.2.3.2. Activated partial thromboplastin time (APTT)

2.3. The Fibrinolytic systems

2.3.1. Fibrinogen

2.3.2. Fibrinogen and haemostasis

2.3.3. Acute blood loss and massive transfusion coagulopathy

2.3.4. Fibrinogen deficiency

2.3.4.1. Afibrinogenemia (absence of fibrinogen)

2.3.4.2. Hypofibrinogenemia: (lower than normal level)

2.3.4.3. Dysfibrinogenemia: (malfunctioning)

2.4. D-Dimer

2.5. contraceptive hormones

2.6. Previous studies

CHAPTER III Methodology & Materials

3.1. Study design

3.2. Study area

3.3. Study duration

3.4. Study population

3.4.1. Inclusion criteria

3.4.2 Exclusion criteria

3.5. Sample size
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6. Scientific and ethical Considerations</td>
<td>35</td>
</tr>
<tr>
<td>3.7. Data collection</td>
<td>35</td>
</tr>
<tr>
<td>3.8. Materials</td>
<td>36</td>
</tr>
<tr>
<td>3.9. Specimen collection</td>
<td>37</td>
</tr>
<tr>
<td>3.10.0. Principle for PT Test</td>
<td>37</td>
</tr>
<tr>
<td>3.10.1. Procedure for PT Test</td>
<td>37</td>
</tr>
<tr>
<td>3.10.2. Calculation</td>
<td>38</td>
</tr>
<tr>
<td>3.11.0. Principle for APTT Test</td>
<td>39</td>
</tr>
<tr>
<td>3.11.1. Method for APTT Test</td>
<td>39</td>
</tr>
<tr>
<td>3.11.2. Calculation</td>
<td>39</td>
</tr>
<tr>
<td>3.12.0. Principle for Fibrinogen Levels Test</td>
<td>40</td>
</tr>
<tr>
<td>3.12.1. Method for Fibrinogen Levels Test</td>
<td>40</td>
</tr>
<tr>
<td>3.13.0. Principle for D-Dimer Levels Test</td>
<td>40</td>
</tr>
<tr>
<td>3.13.1. Method for D-Dimer Levels Test</td>
<td>41</td>
</tr>
</tbody>
</table>

CHAPTER IV

4.0 Results 42

CHAPTER V

5.1 Discussion 46

5.2 Conclusion 48

5.3 Recommendation 49

CHAPTER VI

6.1 References 50

6.2 Appendices 53

Appendix 1: Questionnaire 53

Appendix 2: the clot shape 55

Appendix 3: 56
LIST OF TABLES:

<table>
<thead>
<tr>
<th>Table</th>
<th>Main changes in haemostasis factors during pregnancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table</td>
<td>The coagulation factors</td>
</tr>
<tr>
<td>(2 - 1)</td>
<td></td>
</tr>
<tr>
<td>(2 - 2)</td>
<td></td>
</tr>
<tr>
<td>(4 -1)</td>
<td>Distribution of the population according to group</td>
</tr>
<tr>
<td>(4 – 2)</td>
<td>Distribution of the pregnant women according to age</td>
</tr>
<tr>
<td>(4 – 3)</td>
<td>Distribution of the pregnant women according to trimester</td>
</tr>
<tr>
<td>(4 – 4)</td>
<td>The mean of PT in pregnant women and control women</td>
</tr>
<tr>
<td>(4 – 5)</td>
<td>The mean of compare PT in first, second and third trimester</td>
</tr>
<tr>
<td>(4 – 6)</td>
<td>The mean of $APTT$ in pregnant sample and control sample</td>
</tr>
<tr>
<td>(4 –7)</td>
<td>The mean of compare $APTT$ in first, second and third trimester</td>
</tr>
<tr>
<td>(4 –8)</td>
<td>The mean of fibrinogen in pregnant sample and control sample</td>
</tr>
<tr>
<td>(4 –9)</td>
<td>The mean of compare fibrinogen in first, second and third trimester</td>
</tr>
<tr>
<td>(4 - 10)</td>
<td>Dimer in pregnant sample and control sample</td>
</tr>
<tr>
<td>(4 –11)</td>
<td>Dimer in first, second and third trimester</td>
</tr>
</tbody>
</table>
LIST OF FIGURES:

<table>
<thead>
<tr>
<th>Fig (2 - 1)</th>
<th>The classical blood coagulation pathway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig (2 – 2)</td>
<td>The Coagulation Cascade</td>
</tr>
<tr>
<td>Fig (2 - 3)</td>
<td>fibrinolysis (simplified). Blue arrows denote stimulation, and red arrows inhibition.</td>
</tr>
</tbody>
</table>
Abbreviations:

<table>
<thead>
<tr>
<th>Term</th>
<th>Full term</th>
</tr>
</thead>
<tbody>
<tr>
<td>APS</td>
<td>Antiphospholipid syndrome</td>
</tr>
<tr>
<td>APTT</td>
<td>Activated partial thromboplastin time.</td>
</tr>
<tr>
<td>AT</td>
<td>anti-thrombin</td>
</tr>
<tr>
<td>CSF</td>
<td>Cerebrospinal fluid.</td>
</tr>
<tr>
<td>DDAVP</td>
<td>Desmopressin</td>
</tr>
<tr>
<td>DIC</td>
<td>Disseminated intravascular coagulation.</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme-linked immunosorbent assay.</td>
</tr>
<tr>
<td>ELT</td>
<td>Euglobulin clot lysis time.</td>
</tr>
<tr>
<td>ET</td>
<td>Essential thrombocythemia</td>
</tr>
<tr>
<td>F1+2</td>
<td>Prothrombin fragment 1 + 2</td>
</tr>
<tr>
<td>FDPs</td>
<td>Fibrin degradation products.</td>
</tr>
<tr>
<td>FNP</td>
<td>fresh normal pooled plasma</td>
</tr>
<tr>
<td>HbH</td>
<td>Hemoglobin H disease</td>
</tr>
<tr>
<td>HELLP</td>
<td>hemolysis, elevated liver enzyme levels, and low platelet levels.</td>
</tr>
<tr>
<td>HUS</td>
<td>Hemolytic uremic syndrome</td>
</tr>
<tr>
<td>INR</td>
<td>International Normalized Ratio.</td>
</tr>
<tr>
<td>ISI</td>
<td>International Sensitivity Index</td>
</tr>
<tr>
<td>ITP</td>
<td>Immune thrombocytopenia purpur</td>
</tr>
<tr>
<td>LMP</td>
<td>last menstrual period</td>
</tr>
<tr>
<td>Term</td>
<td>Full term</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>LMoWH</td>
<td>low molecular weight heparin</td>
</tr>
<tr>
<td>MCV</td>
<td>mean red cell volume</td>
</tr>
<tr>
<td>MMA</td>
<td>methyimalonic acid</td>
</tr>
<tr>
<td>MNPT</td>
<td>Mean normal prothrombin time</td>
</tr>
<tr>
<td>MPD</td>
<td>Myeloproliferative disorders</td>
</tr>
<tr>
<td>PAI</td>
<td>plasminogen activator inhibitor</td>
</tr>
<tr>
<td>PPH</td>
<td>Postpartum bleeding or postpartum hemorrhage</td>
</tr>
<tr>
<td>PT</td>
<td>prothrombin time.</td>
</tr>
<tr>
<td>R</td>
<td>Ratio</td>
</tr>
<tr>
<td>RBCs</td>
<td>Red Blood Cells</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lup erythematosis</td>
</tr>
<tr>
<td>TAFI</td>
<td>Thrombin-activatable fibrinolysis inhibitor.</td>
</tr>
<tr>
<td>TAT</td>
<td>thrombin-antithrombin III complex</td>
</tr>
<tr>
<td>TDI</td>
<td>total dose infusion</td>
</tr>
<tr>
<td>TEG</td>
<td>Thromboelastography</td>
</tr>
<tr>
<td>t-PA</td>
<td>type plasminogen activator.</td>
</tr>
<tr>
<td>TTP</td>
<td>Thrombotic thrombocytopenic purpura</td>
</tr>
<tr>
<td>uPA</td>
<td>urokinase-type plasminogen activator.</td>
</tr>
<tr>
<td>VAD</td>
<td>vascular access device</td>
</tr>
<tr>
<td>VTE</td>
<td>venous thromboembolism</td>
</tr>
<tr>
<td>VWF</td>
<td>Von Willebrand factor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>XDP</td>
<td>fibrin derivatives in plasma containing D-Dimer.</td>
</tr>
</tbody>
</table>
Chapter one

Introduction

Rationale

Objectives
1.1. Introduction:

The coagulation involves a series of enzymatic reactions leading to the conversion of soluble plasma fibrinogen to fibrin clot. Roman numeral are used for most of the factor, but I and II are referred to as fibrinogen and prothrombin respectively; III, IV and VI are redundant. The active forms are denoted by (a). (1) The generation of thrombin is depended on three enzyme complexes, each consisting of protease, cofactor, phospholipids and calcium. They are extrinsic Xase (VIIa, TF, PL, Ca^{2+}) and intrinsic Xase (IXa, VIIIa, PL, Ca^{2+}) generation FXa, prothrombinase complex (Xa, Va, PL, Ca^{2+}) generation thrombin. (2) The coagulation disorder is deficiencies of each of the coagulation factor. May be hereditary or acquired. The hereditary include hemophilia A that is most common of the hereditary clotting factor deficiencies. The inheritance is sex-linked, factor IX deficiency (hemophilia B, Christmas disease) the inheritance is X chromosome, von Willebrand disease is reduced level or abnormal function of VWF. (2) Coagulation acquired include vitamin K deficiency is obtained green vegetables and bacteria synthesis in the gut, liver disease, hemorrhagic disease of the newborn and disseminated intravascular coagulation. (2) The prothrombin time is functional determination of the extrinsic (tissue factor) pathway of coagulation and is extremely sensitive to the vitamin-K dependent clotting factors (factors II, VII, and X). Tissue factor (factor III) is a transmembrane protein that is widely expressed on cells of non-vascular origin, which activates factor VII during the initiation of the extrinsic coagulation pathway. A cascade mechanism results in fibrin production and clot formation. (3)
The partial thromboplastin time is originally performed to screen the function of coagulation system, mainly for the intrinsic pathway factors: factor XII, XI, IX and VIII. Various APTT reagents for different purposes are now available, including for screening of factor deficiencies and lupus anticoagulant.\(^{(4)}\)

Pregnancy changes the plasma levels of many clotting factors, such as fibrinogen, which can rise up to three times its normal value. Venous stasis may occur at the end of the first trimester, due to enhanced compliance of the vessel walls by a hormonal effect. Hypercoagulability states as an pre-existing condition in pregnancy include both acquired ones such as antiphospholipid antibodies, and congenital ones, including factor V Leiden, prothrombin mutation, protein C and S deficiencies, and antithrombin III deficiency.\(^{(5)}\)

During normal pregnancy, the concentration of many of the clotting factors rise, thereby increasing the potential to generate fibrin. There is also evidence of increased thrombin activity during normal pregnancy which sharply increased during placental separation. Antithrombin III, the main inhibitor of thrombin and activated factor X, shows no compensatory rise during pregnancy but increase during the puerperium.\(^{(6)}\)

1.2. Rationale:

Normal pregnancy is accompanied by changes in the coagulation and fibrinolytic systems. These include increases in a number of clotting factors and inhibition of fibrinolysis. These changes may be important for reducing intrapartum blood loss, but they determine an increased risk of thromboembolism during pregnancy, this study was conducted to determine the effect of pregnancy on PT, APTT, Fibrinogen level and D-Dimer among pregnant women in Shendi locality.
1.3. Objectives of the study:

1.3.1. General objectives:
To determine the effect of pregnancy on coagulation screening test, fibrinogen and D-Dimer.

1.3.2. Specific objectives:

1. To determine the effect of pregnancy on prothrombin time.
2. To determine the effect of pregnancy on partial thromboplastin time.
3. To determine the effect of pregnancy on fibrinogen level.
4. To determine the effect of pregnancy on D-Dimer.
5. To compare prothrombin time, partial thromboplastin time, fibrinogen and D-Dimer between different stage of pregnancy.
Chapter 2

Literature Review
2.1. pregnancy:

Pregnancy, also known as gravidity or gestation, is the time during which one or more offspring develops inside a woman. A multiple pregnancy involves more than one offspring, such as with twins. Pregnancy can occur by sexual intercourse or assisted reproductive technology. It usually lasts around 40 weeks from the last menstrual period (LMP) and ends in childbirth. This is just over nine lunar months, where each month is about (29½) days. When measured from conception it is about (38) weeks. An embryo is the developing offspring during the first eight weeks following conception, after which, the term fetus is used until birth. Symptom of early pregnancy may include a missed periods, tender breasts, nausea and vomiting, hunger, and frequent urination. Pregnancy may be confirmed with a pregnancy test.\(^7\)

Normal pregnancy is associated with major changes in many aspects of haemostasis all contributing to maintain placental function during pregnancy and to prevent excessive bleeding in delivery. Most changes in blood coagulation and fibrinolysis create a state of hypercoagulability. This phenomenon protects the woman from haemorrhage during delivery but predisposes her to thromboembolism both during pregnancy and in puerperium. The changes in the coagulation system in normal pregnancy are consistent with a continuing low-grade process of intravascular coagulation.\(^8\)

Coagulation system During pregnancy the concentrations of coagulation factors VII, VIII, IX, X, XII and von Willebrand factor rise significantly, accompanied by a relevant increase in the concentration of plasma fibrinogen. Plasma fibrinogen often increases to over (600) mg/dL in late pregnancy. Factor VII may increase as much as tenfold in pregnancy. The von Willebrand factor and factor VIII are elevated in late pregnancy, when coagulation activity is about twice that in the non-pregnant state.\(^1\) The increase in factor IX concentrations during pregnancy is reported by several authors to be small, as is the decrease in factor XI. After an initial increase, factor XIII falls gradually, reaching (50%) of the normal no
pregnant value at term. Factors II and V do not change significantly in pregnancy.

Table (2 - 1): Main changes in haemostasis factors during pregnancy.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platelet count</td>
<td>↓</td>
</tr>
<tr>
<td>II, V</td>
<td>=</td>
</tr>
<tr>
<td>Fibrinogen, VII, VIII, von Willebrand factor, IX, X, XII</td>
<td>↑</td>
</tr>
<tr>
<td>XI</td>
<td>=/↓</td>
</tr>
<tr>
<td>XIII</td>
<td>↑/↓</td>
</tr>
<tr>
<td>Antithrombin</td>
<td>=</td>
</tr>
<tr>
<td>Protein C</td>
<td>=/↑</td>
</tr>
<tr>
<td>Protein S</td>
<td>↓</td>
</tr>
<tr>
<td>Heparin cofactor II</td>
<td>↑</td>
</tr>
<tr>
<td>F1+2,TAT,d-dimer</td>
<td>↑</td>
</tr>
<tr>
<td>t-PA</td>
<td>↓</td>
</tr>
<tr>
<td>ELT, PAI, TAFI</td>
<td>↑</td>
</tr>
</tbody>
</table>

↑: increased
↓: decreased
=: not changes
2.1.1. Hematology of pregnancy:

Pregnancy places extreme stresses on the hematological system and an understanding of the physiological changes that result is obligatory in order to interpret any need for therapeutic intervention. (1)

Pregnancy leads to a hypercoaguable state with consequent increased risks of thromboembolism and DIC. These is an increased in plasma factors VII, VIII, X and fibrinogen and fibrinolysis is suppressed. These changes last for up to (2 months) into the puerperal period and the increased of thrombosis during this period is increased. There is an association between thrombophilic conditions in the mother and with recurrent fetal loss. This is presumed to result from placental thrombosis and infarction. (1)

Warfarin has no role in management. It crosses the placenta and in addition is associated with embryopathy, especially between (6 and 12) weeks' gestation. Heparin does not cross the placenta but a significant side-effect of prolonged use is maternal osteoporosis. Low molecular weight heparin is now the treatment of choice because it can be given once daily and is less likely to cause osteoporosis. (1)

Normal pregnancy involves many changes in maternal physiology including alterations in hematologic parameters. These changes include expansion in maternal blood and plasma volume. The increase in plasma volume is relatively larger than the increase in red cell mass resulting in a decrease in hemoglobin concentration. An increase in the levels of some plasma proteins alters the balance of coagulation and fibrinolysis. Worldwide, the predominant cause of anemia in pregnancy is iron deficiency. Fetal requirements for iron are met despite maternal deficiency, but maternal iron deficiency has a number of adverse consequences including an increased frequency of preterm delivery and low-birth-weight infants.

Bleeding disorders in pregnancy are a common reason for hematologic consultation and evoke concern for both the mother and child. Life-threatening bleeding caused by disseminated intravascular coagulation is seen with some complications unique to pregnancy, including placental abruption, retained dead
fetus, and amniotic fluid embolism. Von Willebrand disease is the commonest inherited bleeding disorder, but because of increases in factor VIII level and von Willebrand factor (VWF) during pregnancy, excessive bleeding at delivery is rarely a problem. Factor levels fall rapidly postpartum, and serious hemorrhage can occur during this period. Carriers of hemophilia A and B should be monitored during pregnancy to determine if factor levels will be adequate for delivery at term. Caution should be exercised at delivery and during the first few days of life with offspring of hemophilia carriers until hemophilia testing is completed and the infant’s status is known. Acquired hemophilia as a result of factor VIII autoantibodies is rare, but can occur during pregnancy or the puerperium. Thrombocytopenia is not uncommon in pregnancy, and its causes include several conditions that are unique to pregnancy, such as preeclampsia. Idiopathic thrombocytopenic purpura (ITP) is common, it is often exacerbated in pregnancy, and is managed conservatively if possible; close followup of newborns of mothers with ITP is essential. HELLP syndrome and TTP, HUS are also seen in pregnancy and the puerperium. HELLP syndrome is managed with delivery if possible, whereas TTP requires plasma exchange. Inherited and acquired prothrombotic conditions can be exacerbated by pregnancy and can result in adverse reproductive outcomes as well as venous thromboembolism. The strongest evidence for an association between a thrombophilia and recurrent fetal loss exists for antiphospholipid antibody syndrome; however, evidence is mounting for a connection between inherited thrombophilias and the severity of some complications of pregnancy. These thrombophilias increase the risk of venous thromboembolism in pregnancy and the puerperium. Treatment of hematologic malignancies in pregnancy can present a difficult dilemma both in terms of staging studies and management. In many cases of Hodgkin lymphoma, treatment can be delayed safely until after delivery. (9)
Blood volume changes in pregnancy both red cell mass and plasma volume increase during pregnancy. Since the increase in red cell mass is around (25%), well below the plasma volume increase of (40%) (up to (55%) in multiple pregnancies) the hemoglobin level falls, particularly between weeks (24 and 32) of pregnancy. This decrease in hemoglobin level occurs even when iron and folate stores are adequate, but is accentuated by deficiencies. The consequent decrease in blood viscosity facilitates placental perfusion. Women who do not exhibit a fall in haemoglobin during a pregnancy have a high incidence of complications such as preeclampsia and stillbirth, according to the Swedish Medical Birth Register 1. Although (110g/l) is commonly accepted as the lower limit of normal hemoglobin in pregnancy there are many patients in whom the hemoglobin falls as low as (95g/l) without any deleterious effects or evidence of iron or folate deficiency.\(^{(10)}\) Folate status at conception and in pregnancy it is now widely accepted that folate deficiency at conception is strongly correlated with neural tube defects. It is strongly recommended that all women take folate supplementation for (3 months) prior to conception and throughout pregnancy. Women with a family history of neural tube defect, with diabetes or on anti-epileptiform drugs constitute a high risk group and require a daily (5 mg) folate dose. For standard risk women the recommended folate supplement is (0.5mg) daily. It should be noted that the standard Fefol tablet only contains (0.3mg) of folate, well short of the recommended pre-conception intake. In addition, since intolerance to the iron in Fefol may hinder compliance, it makes sense to prescribe folate alone initially, switching to a combined iron/folate preparation only if the serum ferritin is reduced.\(^{(10)}\)
Folate and Vitamin B12 metabolism in pregnancy a slight increase in mean red cell volume (MCV) may occur in normal pregnancy. However, an increase in MCV to over (105fl) (given a normal range of 80-100fl) warrants assessment of red cell and serum folate and serum Vitamin B12 levels. Neutrophil hyper segmentation is not a reliable indicator of megaloblastic anemia in pregnancy due to the tendency for a left shift to occur. Decreased folate intake due to such causes as vomiting in pregnancy and malabsorption, combined with increased requirements at pregnancy, make folate deficiency a much more common cause of megaloblastic anemia than VitaminB12 deficiency. A fall in the inactive transcobalamin I during pregnancy results in a decrease in Vitamin B12 levels which does not accurately reflect either the active transcobalamin II or body stores, which on average last for (2 years). In fact the B12 levels may fall to (100pmol/l) or even below without any functional disturbance of B12 metabolism. When the patient has a macrocytic anaemia, a balanced diet, normal folate levels but reduced Vitamin B12, it is worth checking serum homocysteine and urine methyimalonic acid (MMA) levels and anti-parietal cell and anti-intrinsic factor antibodies before giving empiric parenteral Vitamin B12. If genuine Vitamin B12 deficiency is confirmed investigation can then be undertaken at leisure once breast feeding has been completed. (10)

Iron deficiency in pregnancy Iron deficiency accounts for (75%) of anaemias of pregnancy. The markedly raised red cell mass, together with the requirements of the placenta and foetus necessitate a considerable increase in recommended daily iron intake of around (30mg) daily, compared with (15mg) daily in the non pregnant state. A serum ferritin estimation at the initial antenatal visit will help to determine whether iron supplementation will be needed and whether this should be taken as Fefol or equivalent or whether iron containing multivitamin preparations will suffice. In the second half of pregnancy symptomatic iron deficiency, developing in the setting of intolerance to oral iron can be effectively treated with intravenous total dose infusion (TDI). These infusions are safe and effective but
need to be given by experienced staff adhering to a strict protocol. Additional important causes of a microcytic blood film (MCV < 80fl) are Thalassemias / haemoglobinopathies. As thalassemia trait may be masked by iron deficiency, it is important to check not only Hb electrophoresis and HbH bodies but also serum ferritin. This also avoids the unnecessary administration of iron supplementation to patients whose primary problem is not iron deficiency but thalassemia. Checking the partner is important once a diagnosis of thalassemia trait/haemoglobinopathy is confirmed so that genetic advice can be given promptly if appropriate.(10)

Platelets in pregnancy in up to (10\%) of pregnancies mild thrombocytopenia supervenes after week (20). The platelet count rarely fails below (75/nl) and pregnancy proceeds uneventfully. There is typically a history of similar mild thrombocytopenia with previous pregnancies but normal platelet count between pregnancies. For this reason the term gestational thrombocytopenia is usually applied. The baby’s platelet count at birth is normal. Platelet antibodies are rarely found, but it remains likely that the transient thrombocytopenia is of autoimmune aetiology. An autoimmune mechanism also accounts for most cases of severe isolated thrombocytopenia in pregnancy. ITP which accounts for (5-10\%) of thrombocytopenia in pregnancy is important as the severity of the thrombocytopenia often posing major problems for pregnancy, delivery and for the baby. Systemic lupus erythematos (SLE), the antiphospholipid syndrome (APS) and pre-eclampsia and its HELLP syndrome variant also need to be excluded. Platelet-specific antibodies are found in over (50\%) of patients with immune thrombocytopenia. However the presence or absence of antibodies does not correlate with severity. Bone marrow examination is usually noncontributory. Typically, the platelet count falls, sometimes profoundly, as pregnancy progresses. In severe acute ITP high dose corticosteroid therapy and intravenous immunoglobulin may be required. In the most extreme cases splenectomy may be unavoidable, but can only be performed with acceptable safety to mother and foetus during the second trimester. In the milder acute ITP and in chronic ITP it
may be possible to delay treatment until the last few weeks of pregnancy providing there is no active bleeding and the platelet count remains above (25/nl). In the last few weeks of pregnancy however, treatment aimed at increasing the platelet count to (75-100/nl) is needed since this enables delivery and epidural anesthesia to be performed safely. In maternal ITP, particularly in splenectomized patients there is a significant risk of severe neonatal thrombocytopenia. This holds true even when the maternal count is normal or near normal at the time of delivery. In ITP, the mode of delivery should be determined by obstetric indications. When the thrombocytopenia is associated with pregnancy-specific causes such as pre-eclampsia, HELLP syndrome and acute fatty liver it is important to perform a coagulation profile including D-dimers to exclude DIC. TTP and HUS is an important diagnosis since the disease complex is life threatening but responds rapidly to early intensive plasma exchange therapy. The red cell appearances on the peripheral blood film in TTP are often characteristic, with variable numbers of red cell fragments. MPD and other haematological malignancies occur occasionally in pregnancy. ET is the most common of these. Despite the potential hazards of thrombosis and haemorrhage it is usually possible to avoid exposure to myelosuppressive agents during pregnancy.\(^{(10)}\)

Thrombosis and homeostasis in pregnancy the incidence of VTE increases three-fold in late pregnancy and ten-fold in the immediate post partum period. This risk reflects a variety of pregnancy induced changes in the haemostatic mechanism including an increase in fibrinogen and Factor VIII, the development of acquired resistance to activated protein C, a reduction in the antithrombotic factor protein S, and reduced fibrinolytic activity. In pregnancy the ESR reflects the hyperfibrinogenaemia and loses its usefulness as a marker for systemic disease. Inherited thrombophilias, whether due to genetic mutations such as factor V Leiden and prothrombin, gene mutation or deficiencies of protein C, S and AT, increase the risk, not only of VTE in pregnancy and the post-partum period but also of recurrent fetal loss. However, the increase in risk is not considered sufficient to warrant
funding of thrombophilia screening for recurrent fetal loss under the Medical Benefits Schedule. Anti-cardiolipin antibodies and lupus anticoagulant, particularly when present at high titer, markedly increase the risk of fetal loss and maternal VTE, and may warrant the use of prophylactic LMWH during pregnancy and the puerperium. Patients with homozygous or multiple thrombophilic defects are also at greatly increased risk, and likewise merit LMWH prophylaxis. If therapeutic anticoagulation is required during pregnancy LMWH is the drug of choice for most conditions. In view of the risk of bleeding complicating epidural anesthesia it is mandatory to obtain expert advice concerning the timetabling of heparin dosage particularly LMWH. VWF disease is the most common inherited bleeding disorder, mild (type 1) disease accounting for (90%) of cases. In pregnancy, extending through to the immediate post partum period, there is usually a temporary normalization of the disease, measurable as a return of Factor VIII complex levels and platelet function studies to normal. A check early in the third trimester revealing that these parameters are all within the normal range clears the way for epidural anesthesia to be performed safely if required. However, a history of PPH in a previous pregnancy may override these considerations and mandate the prophylactic use of specific therapy such as DDAVP (Minirin) or Factor VIII concentrate, depending on the severity of the von Willbrand's disease.(10)
2.1.2. Coagulation changes in pregnancy:
Pregnancy is a state of hypercoagulation, which is likely an adaptive mechanism to reduce the risk of hemorrhage during and after the delivery process. Unfortunately as a result of the hypercoagulable state, thromboembolism is one of the leading causes of death associated with pregnancy, particularly in developed nations, with clinically significant venous thromboembolism occurring in 1 of every 1000 to 2000 pregnancies. The hypercoagulability of blood during pregnancy has been confirmed with Thromboelastography (TEG) and is thought mainly due to the increased production of factor VII and fibrinogen. Although many of the coagulation factors are increased during pregnancy, none are quite to the extent of factor VII and fibrinogen. The risk of developing a venous thromboembolism increases about 100-fold when a parturient is admitted to a hospital and also seems to be worse during the third trimester. This is thought to be due to changing hormonal levels, in particular increased estrogen as pregnancy progresses. It is important to note that the classic Virchow’s Triad favors thrombus formation in pregnancy with increased venous stasis, increased coagulability factors, and increased endothelial damage. Risk of venous thromboembolism in pregnancy increases with the following additional risk factors: obesity, smoking, multiple gestations, advanced maternal age, increased parity, cesarean section, as well as the presence of a concomitant thrombophilia. Unfractionated heparin and low molecular weight heparin are the modalities of choice for anticoagulation during pregnancy.\(^\text{[11]}\)

There is some evidence to suggest that the body creates a level of homeostasis by also increasing fibrinolysis to a certain extent. During pregnancy, we see increases in plasma activity of plasminogen alpha2-antiplasmin and elevated concentrations of D-dimer, which suggests increased fibrinolytic activity and the restriction of fibrin formation. This would explain that despite all the factors favoring a hypercoagulable state in pregnancy, venous thromboembolism remains a relatively rare event.\(^\text{[11]}\)
2.2. Haemostasis:

Haemostasis is a complex interaction between the vessel and components of blood, and has the function of preventing excessive blood loss after vascular damage while maintaining a viable circulation by preventing thromboembolic conditions.

A normal hemostatic mechanism is a very important aspect of human survival. Small, repeated traumas of everyday life continuously produce minor injuries to the vessels and, thus, the danger of spontaneous hemorrhage. "Extrinsic" trauma may, by severing vessels, cause bleeding which must be promptly controlled. Both functions require a perfect integration of a number of elementary mechanisms. The vascular wall must present normal resistance and contractility, the platelets and many factors which take part in the coagulation process must be normal in number or concentration, and in activity. Other mechanisms, such as fibrinolysis (which may play a role in limiting the undue extension of the fibrin clot within the vessel) and all the agents which bring about "organization" of the clot, recanalization of the vessel, etc. must also be normal. The very complexity of these mechanisms, then, creates many situations.

This short description of an hypothesis of the hemostatic process indicates the advisability of individual analysis of the various mechanisms:

(a) the vascular mechanism;
(b) the platelet factor;
(c) the blood coagulation mechanism;
(d) the autocatalytic mechanisms;
(e) the anticoagulant factors; finally
(f) the fibrinolytic mechanism. It should not be forgotten, however, that these various mechanisms are very closely integrated, as is clearly revealed by the study of the pathogenesis of bleeding in various types of hemorrhagic tendency. The single abnormality of one of the hemostatic mechanisms is not necessarily followed by bleeding, if all others are normal. Thus bleeding is moderate and may
occur only following serious trauma or operative procedures in pseudohemophilia, congenital deficiency of prothrombin, labile factor, stable factor and fibrinogen, severe as the defect of the hemostatic mechanism involved might be. In many, better defined hemorrhagic syndromes, there is multiple involvement of hemostatic mechanisms. Thus, in some cases of Werlhof's disease, particularly of the acute variety, thrombocytopenia is accompanied by pronounced involvement of the vascular wall (polyarteritis). (12)

2.2.1. Coagulation:

The involves a series of enzymatic reaction leading to the conversion of soluble plasma fibrinogen fibrin clot. The coagulation factors (factor I, II, V, VII, IX, X, XI, XII and XIII) are primarily synthesized in the liver and the synthesis of four of these (factor II, VII, IX and X) is vitamin K dependent. The site of synthesis of factor VIII is uncertain. (13)

Coagulation proceeds through a series of sequential enzymatic reactions which can be initiated by a variety of stimuli and terminate with the conversion of soluble fibrinogen into insoluble fibrin. Most coagulation factors occur in trace concentration (1/10,000 the concentration of albumin), yet, for coagulation to occur, each must interact with its specific substrate. These interaction also require a specific tertiary alignment of the coagulation proteins. The coagulation process could not occur if the protein-protein interaction occurred at random unless they were present in much higher concentration. (1)

Blood coagulation may be produced by either activation of the intrinsic pathway which is relatively slow, or by activation of extrinsic pathway which is a faster process. While these two pathways are inter-related in vivo, it is convenient to consider them separately. (13)
2.2.1.1. Intrinsic pathway:
The intrinsic pathway is initiated by the activation of factor XII when this factor is exposed to a non-endothelial surface. It activates factor XI in the presence of high molecular weight kininogen. High molecular weight kininogen is not modified by this interaction, and it is likely that it facilitates the binding of factor XI to a surface. Conformationally changed factor XII, (XIIA) slowly activates prekallikrein to kallikrein (fletcher factor). Kallikrein participates in a number of processes including inflammation and kinin formation. Kallikrein cleaves factor XII enzymatically to produce factor XIIa that slowly activates factor XI. The physiological importance of factor XII, prekallikrein and high molecular weight kininogen is not clearly understood, since deficiencies of each are not associated with bleeding.\(^{(14)}\)

In the presence of calcium, factor XI activates factor IX. Factor IXa binds to a surface (platelet phospholipid) and activates factor X, a reaction requiring factor VIII. Factor Xa activates prothrombin and this activation occurs on a phospholipid surface and requires calcium and factor V.\(^{(14)}\)

2.2.1.2. Extrinsic pathway:
The main role of the tissue factor pathway (extrinsic pathway) is to generate a "thrombin burst", a process by which thrombin, the most important constituent of the coagulation cascade in terms of its feedback activation roles, is released very rapidly. FVIIa circulates in a higher amount than any other activated coagulation factor. The process includes the following steps:

- Following damage to the blood vessel, FVII leaves the circulation and comes into contact with tissue factor (TF) expressed on tissue-factor-bearing cells (stromal fibroblasts and leukocytes), forming an activated complex (TF-FVIIa).
- TF-FVIIa activates FIX and FX.
- FVII is itself activated by thrombin, FXIa, FXII and FXa.
- The activation of FX (to form FXa) by TF-FVIIa is almost immediately inhibited by tissue factor pathway inhibitor (TFPI).
- FXa and its co-factor FVa form the prothrombinase complex, which activates prothrombin to thrombin.
- Thrombin then activates other components of the coagulation cascade, including FV and FVIII (which activates FXI, which, in turn, activates FIX), and activates and releases FVIII from being bound to vWF.
- FVIIIa is the co-factor of FIXa, and together they form the "tenase" complex, which activates FX; and so the cycle continues. ("Tenase" is a contraction of "ten" and the suffix "-ase" used for enzymes.) (14)

2.2.1.3. Final common pathway:
The division of coagulation in two pathways is mainly artificial, it originates from laboratory tests in which clotting times were measured after the clotting was initiated by glass (intrinsic pathway) or by thromboplastin (a mix of tissue factor and phospholipids). In fact thrombin is present from the very beginning, already when platelets are making the plug. Thrombin has a large array of functions, not only the conversion of fibrinogen to fibrin, the building block of a hemostatic plug. In addition, it is the most important platelet activator and on top of that it activates Factors VIII and V and their inhibitor protein C (in the presence of thrombomodulin), and it activates Factor XIII, which forms covalent bonds that crosslink the fibrin polymers that form from activated monomers. (14)

Following activation by the contact factor or tissue factor pathways, the coagulation cascade is maintained in a prothrombotic state by the continued activation of FVIII and FIX to form the tenase complex, until it is down-regulated by the anticoagulant pathways. (14)
Fig (2 - 1): The classical blood coagulation pathway:
2.2.1.4. Coagulation factors:

The coagulation factor are either enzyme precursors or cofactors. All the enzyme, except factor VIII, are serine proteases. \(^{15}\)

Table (2 - 2): The coagulation factors.

<table>
<thead>
<tr>
<th>Factor number</th>
<th>Descriptive name</th>
<th>Active form</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Fibrinogen</td>
<td>Fibrin subunit</td>
</tr>
<tr>
<td>II</td>
<td>Prothrombin</td>
<td>Serine protease</td>
</tr>
<tr>
<td>III</td>
<td>Tissue factor</td>
<td>Receptor/cofactor*</td>
</tr>
<tr>
<td>V</td>
<td>Labile factor</td>
<td>Cofactor</td>
</tr>
<tr>
<td>VII</td>
<td>Proconvertin</td>
<td>Serine protease</td>
</tr>
<tr>
<td>VIII</td>
<td>Antihaemophilic factor</td>
<td>Cofactor</td>
</tr>
<tr>
<td>IX</td>
<td>Christmas factor</td>
<td>Serine protease</td>
</tr>
<tr>
<td>X</td>
<td>Stuart–Prower factor</td>
<td>Serine protease</td>
</tr>
<tr>
<td>XI</td>
<td>Plasma thromboplastin antecedent</td>
<td>Serine protease</td>
</tr>
<tr>
<td>XII</td>
<td>Hageman (contact) factor</td>
<td>Serine protease</td>
</tr>
<tr>
<td>XIII</td>
<td>HMWK, high molecular weight kininogen.</td>
<td>Fibrin-stabilizing factor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prekallikrein (Fletcher factor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HMWK (Fitzgerald factor)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transglutaminase Serine protease Cofactor*</td>
</tr>
</tbody>
</table>

* Active without proteolytic modification
2.2.2. Coagulation disorders:
The coagulation disorder is deficiencies of each of the coagulation factor. May be hereditary or acquired. (16)

2.2.2.1. Inherited disorders:
Inherited deficiencies of each of the coagulation factors have been described. These deficiencies can either be quantitative due to impaired synthesis of the coagulation factor, or qualitative due to the synthesis of a biologically inactive molecule. There is a rough correlation between the severity of bleeding in patients with an inherited coagulation abnormality and the biological amount of the deficient coagulation factor. (14)

2.2.2.2. Acquired disorders:
The acquired coagulation disorders are more frequently encountered in clinical practice than the inherited disorders and, unlike inherited disorders, are almost invariably associated with multiple coagulation factor deficiencies. Acquired coagulation disorders can be caused by impaired synthesis of coagulation factors, circulating inhibitors to coagulation factor (or reaction) or by increased consumption of coagulation factors. (14)

2.2.2.2.1. Impaired synthesis:
Defective or decreased synthesis of coagulation factors occurs in vitamin K deficiency and in liver disease. Vitamin K deficiency can occur in states of impaired fat absorption and in patients with a poor diet. The physiological function of vitamin K is to catalyze the carboxylation of the coagulation factor protein after its synthesis. (14)

The haemostatic defect in liver disease is multifactorial, and can include decreased synthesis of clotting factor, decreased production of the natural inhibitors, decreased clearance of activated coagulation factors and excessive fibrinolysis. (14)
2.2.2.2.2. Circulating inhibitors:
A number of inhibitors interfere with coagulation. Heparin catalyses the antithrombin III-dependent inactivation of thrombin and factor Xa, IXa, XIIa and Xia. Heparin is used therapeutically in the treatment of venous thrombosis. Non-specific inhibitors interfere with a general coagulation sequence rather than a specific factor. The fibrin split products that are produced by plasmin digestion of fibrin and fibrinogen inhibit the conversion of fibrinogen to fibrin, by interfering with the normal polymerization of fibrin and competing with systemic lupus erythematosus is termed the lupus inhibitor. (14)

2.2.2.2.3. Reduced survival of coagulation factor:
The consumption of many coagulation factor occurs in a syndrome termed disseminated intravascular coagulation (DIC). DIC can be considered to result from coagulation activation which overwhelms the normal control mechanisms. (14)
2.2.3. Coagulation tests:

Fig (2-2): The Coagulation Cascade:

![Coagulation Cascade Diagram](image-url)
2.2.3.1.1. Prothrombin time (PT) :

The *PT* test measures coagulation factors of the extrinsic pathway. It is carried out by adding thromboplastin (containing tissue factor), phospholipid and an excess of calcium to anticoagulated plasma and measuring the clotting time. *PT* is the most commonly used coagulation test in routine laboratories. The *PT* test is used for assessment in pre-operative detection of bleeding tendencies in risk groups, the monitoring of anticoagulation therapy; used for prevention and treatment of venous thromboembolism.\(^{(15)}\)

The *PT* is performed on platelet poor plasma prepared from blood collected into citrate anticoagulant. In the *PT* an aliquot of plasma is incubated at \(37^\circ C\) with a reagent containing a phospholipid-protein extract of tissue (thromboplastin).\(^{(15)}\)

Many physiologic factors can influence the *PT* as well. The *PT* is prolonged in cord blood and newborns due to relatively low levels of vitamin K-dependent clotting factors, which may not increase to the normal adult range until several weeks after birth. Lipemia, hyperbilirubinemia, and hemolysis interfere with the detection of clot formation by photo-optical methods and cause falsely elevated values. Heparin at therapeutic doses usually does not interfere with the *PT*, but *PT* prolongation can result in patients receiving higher doses of Heparin.\(^{(16)}\)

2.2.3.1.2. International Normalized Ratio (INR) :

The *INR* was introduced by the World Health Organization (WHO) in the early (1980)’s as a means of standardizing *PT* results. Since there is a linear relationship between the logarithms of the *PT* ratios obtained with different extracts of human and rabbit brain, a calibration system was developed to relate any *PT* ratio to a *WHO* standard.

INR units were originally not recommended for screening and follow-up of patients with liver diseases. However, kovacs and associates(1994) have since demonstrated that *INR* can also be used to monitor patients with severe form of a liver disease.\(^{(16)}\)
2.2.3.2. Activated partial thromboplastin time (APTT):

The \textit{APTT} is functional determination of the intrinsic pathway of coagulation (factors XII, XI, IX, VIII, V, II, I, prekallikrein, high molecular weight kininogen). This pathway is initiated by the interaction of Factor XII with a negatively charged surface. A cascade mechanism results in fibrin production and clot formation. The \textit{APTT} is utilized to detect congenital and acquired abnormalities of the intrinsic coagulation pathway and to monitor patients receiving heparin.(17)

No specific patient preparation is required. However, since lipemia may interfere with photo-electric measurements of clot formation, specimens should not be obtained after a meal. In patients receiving intermittent heparin injections, peripheral blood for \textit{APTT} analysis should be obtained one hour before the next dose of heparin is scheduled. The specimen should not be drawn from an arm with a heparinized catheter or heparin lock. (17)

The \textit{APTT} is increased above the upper limit of normal with hereditary or acquired intrinsic factor deficiencies < (40\%) (factor VIII:C, Factor IX, Factor XI, Factor XII, vWF), lupus anticoagulants, or specific inhibitors of the intrinsic coagulation factors. Other causes of an elevated \textit{APTT} include liver disease, \textit{DIC}, heparin or anticoagulant therapy, or improper specimen collection (i.e., traumatic phlebotomy or hemolyzed specimen). Normal Values and Critical Limits (24 – 37) seconds.(17)
2.3. The Fibrinolytic systems:
The responsible for the degradation and removal of fibrin clots, thereby restoring eventually obstructed circulation. This system is also involved in tissue repair, macrophage function, ovulation and malignant transformation. Plasminogen plays a central role in fibrinolysis. It is an inactive proenzyme, which upon activation to plasmin may degrade fibrin. Activation of plasminogen is catalysed by tissue plasminogen activator (tPA) or urokinase-type plasminogen activator (uPA). Plasmin bound to the fibrin surface is relatively protected from inactivation by antiplasmin. Both tPA and uPA are serine proteases, which exist as single-chain or two-chain molecules.\(^{18}\)

Fig (2 - 3): fibrinolysis (simplified). Blue arrows denote stimulation, and red arrows inhibition.
2.3.1. Fibrinogen:

is a plasma protein critical to hemostasis and clot formation. The blood plasma concentration of fibrinogen ranges between (1.5 and 4.0 g/L) but it can be higher, particularly in certain conditions such as pregnancy. Structurally, human fibrinogen comprises outer D domains, which are both linked by a central E domain. Each D domain is made up of (3) polypeptide chains (α, β, γ), which together form a coiled-coil configuration. These domains are linked at the N-terminus to the central E domain via a series of disulfide bonds. Thrombin cleavage occurs at specific amino-acid sequences present on the α and β polypeptide chains, removing the N-terminal peptides (fibrinopeptides) and exposing the polymerization sites. Fibrin polymerization then occurs via noncovalent interaction of the exposed polypeptide chain with complementary binding sites present on the D domain of a neighboring molecule. Furthermore, recent preliminary data have suggested that fibrinogen may be heme associated and could play a role in carbon monoxide sensing. Studies from our laboratory and others have demonstrated the importance of thrombin generation and hemostatic activation for clot formation.(6–11) Functionally, fibrinogen molecules act during both cellular and fluid phases of coagulation. In the cellular phase, it facilitates the aggregation of platelets via binding of glycoprotein IIb/IIIa receptors on platelet surfaces. In the fluid phase, it is cleaved by thrombin to produce fibrin monomers, which polymerize to form the basis of the clot. Fibrinogen also plays other important roles, functioning in vivo as an acute phase reactant, helping modulate inflammatory cellular reactions and also increasing in plasma concentration after injury. When acute hemorrhage occurs, the resulting blood loss and consumption of procoagulants combine to reduce the circulating concentration of multiple clotting factors. Derangement in common measures of coagulation (prothrombin time and activated partial thromboplastin time) can develop in cases of acute trauma, before administration of fluid therapy. (18)
2.3.2. Fibrinogen and hemostasis:
Fibrinogen plays several key roles in the maintenance of hemostasis. Its cleavage by thrombin and subsequent polymerization to form fibrin strands provides the structural network required for effective clot formation. During cases of acute blood loss, attempts to maintain circulating volume and tissue perfusion often involve the infusion of crystalloids, colloids, and red blood cells. Intravascular volume resuscitation, although vital, frequently results in dilution of the remaining clotting factors and onset of dilutional coagulopathy. In such cases, fibrinogen is the first coagulation factor to decrease to critically low levels. There currently is a lack of awareness among physicians regarding the significance of fibrinogen during acute bleeding and, at many centers, fibrinogen is not monitored routinely during treatment. We reviewed current studies that demonstrate the importance of considering fibrinogen replacement during the treatment of acquired bleeding across clinical settings. If depleted, the supplementation of fibrinogen is key for the rescue and maintenance of haemostatic function; however, the threshold at which such intervention should be triggered is currently poorly defined. Although traditionally performed via administration of fresh frozen plasma or cryoprecipitate, the use of lyophilized fibrinogen (concentrate) is becoming more prevalent in some countries. Recent reports relating to the efficacy of fibrinogen concentrate suggest that it is a viable alternative to traditional haemostatic approaches, which should be considered. The prospective study of fibrinogen supplementation in acquired bleeding is needed to accurately assess the range of clinical settings in which this management strategy is appropriate, the most effective method of supplementation and a comprehensive safety profile of fibrinogen concentrate used for such an approach. (18)
2.3.3. Acute blood loss and massive transfusion coagulopathy:

In cases of acute blood loss, restoring circulatory volume is a primary objective often addressed with volume expanders such as crystalloids, colloids, or a combination of both. The ideal volume expander has been the subject of significant debate; however, the administration of any volume expander will result in the reduction of platelets and plasma clotting factor concentrations. In such cases, the commonly observed change is dilutional thrombocytopenia, but continuing blood loss can lead to a more complex coagulopathy. Neither concentrates of RBCs or platelets contain enough plasma to supplement the depleted factors sufficiently to maintain haemostatic balance, continued consumption of clotting factors coupled with their dilution with volume expanders can lead to the development of dilutional coagulopathy. The critical role of fibrinogen deficiency and fibrinolysis in cases of major bleeding is increasingly described. The preoperative measurement of plasma fibrinogen concentration was found to be predictive of postoperative bleeding volume and transfusion requirements in a prospective observation of coronary bypass grafting surgical patients (n = 170). In another example, a multivariate analysis of postpartum hemorrhage (n = 128) reported that fibrinogen concentration was the only haemostatic marker consistently associated with the occurrence of severe postpartum hemorrhage. It was concluded that the early measurement of fibrinogen was able to detect reductions in plasma fibrinogen concentration, allowing the risk of severe bleeding to be predicted. As such, monitoring of this kind is recommended during the management of obstetric-related bleeding events. A greater understanding of the predictive value of plasma fibrinogen concentrations has led to the potential for laboratory-guided, prophylactic supplementation of coagulation factors in cases of elective procedures. Thus, in events when hemorrhage is likely, the onset of coagulopathy can be delayed and the extent of bleeding reduced. A recent prospective randomized controlled pilot study (n = 20) investigating prophylactic fibrinogen supplementation before coronary artery bypass grafting showed that postoperative
bleeding was reduced by (32%) in patients receiving (2 g) fibrinogen concentrate preoperatively in comparison with the control group (565 150 vs 830 268 mL; P 0.010), without any evidence of hypercoagulability. Recognizing the emerging evidence, which highlights the importance of maintaining adequate plasma fibrinogen concentrations, European guidelines now include the administration of fibrinogen concentrate among their recommendations for the treatment of trauma-related, life threatening hemorrhage; however, it should be noted that this recommendation is based upon the lowest level of evidence available to the guideline authors. (19)

2.3.4. Fibrinogen deficiency:

Factor I (or fibrinogen) deficiency is a very rare inherited disorder with complications that vary with the severity of the disorder. It is not well known, even among health professionals. People affected by this disorder and those close to them have very little written information about it. This booklet therefore seeks to provide information for people trying to cope with this health problem. It explains the causes of the disorder and currently available treatments. There are three types of deficiency: (19)

2.3.4.1. Afibrinogenemia (absence of fibrinogen):

In this type of factor I deficiency, there is a complete absence of fibrinogen. The fibrinogen level is < (0.2 g/l) of plasma. About (5) people out of (10) million are affected by it. of the three types, this one causes the most serious bleeding. (19)

2.3.4.2. Hypofibrogenemia:(lower than normal level):

In this anomaly, fibrinogen is present, but at a lower level than normal, between (0.2 g/l and 0.8 g/l). This anomaly is less frequent than Afibrinogenemia. Bleeding problems may be mild, moderate or severe. (19)
2.3.4.3. Dysfibrinogenemia: (malfuctioning) :
In dysfibrinogenemia, the fibrinogen level is normal, which means between (2 and 4 g/l), but the fibrinogen does not function properly. About (1) person in (1) million is affected by this condition. More than (100) different types of dysfibrinogenemia have been reported. Those affected rarely suffer from hemorrhaging problems. They may even present the opposite condition: thrombosis (blood coagulates in the blood stream). (19)

2.4. D-Dimer:
The D-dimer assay is specific for fibrin derivatives. In this assay, the presence of cross-linked D-dimer domain is diagnostic for lysis of a fibrin clot, and confirm that thrombin was formed and Factor XIII was activated with reactive fibrinolysis. Since fibrinogen derivatives do not contain the cross-linked D-dimer domain, they are not recognized by the D-dimer assay, even when present in high concentration. In other words, fibrin derivatives in plasma containing D-Dimer XDP are specific markers for fibrinolysis, as opposed to fibrinogenolysis. D-Dimers are detected by immunoassays using monoclonal antibodies specific for the cross-linked D-dimer domain in fibrinogen. Commercially available assays include latex agglutination, immunoturbidimetry, and ELISA. No specific patient preparation is required for the measurement of D-Dimers. (20)

XDPs are cross-linked fibrin degradation products which arise directly from fibrin. Thus, the measurement of XDPs, unlike total FDPs, is a specific measure of fibrinolysis. Elevated D-dimers are seen in DIC, pulmonary embolism, arterial and venous thrombosis, septicemia, cirrhosis, carcinoma, sickle cell crisis, and following operative procedures. Both FDPs and XDPs are present during late pregnancy and for approximately (48) hours post-surgery.
During fibrinolytic therapy the *FDP* test is positive, while the D-dimer test is negative in the absence of thrombolysis. Disseminated intravascular coagulation (*DIC*, consumption coagulopathy) is one of the most common and clinically important acquired disorders of hemostasis. In *DIC*, intravascular activation of the coagulation system results in the widespread deposition of fibrin microthrombi in the microcirculation, the consumption of platelets and clotting factors, and activation of the fibrinolytic system. At the same time that thrombin converts fibrinogen to fibrin, it also activated Factor XIII to form a plasma transglutaminase, Factor XIIIa, which stabilizes fibrin by cross-linking the gamma chains of fibrinogen in the region of the D-domain. Plasmin digests fibrin and fibrinogen to produce fibrin(ogen) degradation (*FDP*) (or split, *FSP*) products (X,Y,D, and E), which are removed from the circulation by the reticuloendothelial system. \(^{(20)}\)

DIC is not a specific disease, but a sequelae of many pathologic conditions, including acute intravascular hemolysis, hemolytic transfusion reactions, shock, hyperthermia, extensive tissue damage, malignancies, obstetric complications, hyperthermia, snake bites, etc. Prompt diagnosis and therapy of *DIC* is essential, since the associated hemorrhage, small vessel thrombosis, and occasional large vessel thrombosis can lead to the impairment of blood flow, ischemia, end-organ damage, and death. The clinical signs and symptoms in *DIC* are variable and non-specific, and include fever, hypotension, acidosis, proteinuria, hypoxia, petechiae and purpura, subcutaneous hematomas, bleeding (surgical wound, traumatic wound, venipuncture), and arterial line oozing. \(^{(20)}\)

The analysis of plasma D-dimers has been reported to be of diagnostic value in patients with suspected complications of pregnancy such as pre-eclampsia and the *HELLP* syndrome, to monitor anticoagulant and thrombolytic therapy, and to correlate with disease severity in rheumatoid arthritis. CSF D-dimers have been reported positive in patients with subarachnoid hemorrhage, but not in normal patients or those with traumatic lumbar puncture. \(^{(20)}\)
2.5. **contraceptive hormones:**

Oral contraception with conventional estrogen / progestogen preparations produces raised levels of clotting factors and increased platelet aggregation. Although these changes do not involve as broad a spectrum of clotting factors as thrombosis and the third trimester of pregnancy, they do not appear a desirable side effect and may be responsible for the increased risk of thrombosis. Oral contraception with progestogen alone does not appear to cause similar clotting and platelet changes. (21)

2.6. **Previous studies**:
An increase in the concentration of plasma fibrinogen and factors VII, VIII, and X in association with pregnancy has been reported (Pechet and Alexander, 1961; Kasper et al. 1964; Talbert and Langdell, 1964), and the findings in this study have shown that a considerable deviation from the normal occurs in the components of the fibrinolytic enzyme system. The results reported here of clearly increased levels of plasminogen during pregnancy are in agreement with the findings of Mitchell and Cope (1965) and Nilsson and Kullander (1967). (22)

Pregnancy was associated with some physiological , biochemical and anatomical changes , This study was carried out to determine plasma fibrinogen level in pregnant women . samples were collected from women in their first ,second ,third trimester as well as from non pregnant women as control group totaling sixty samples all range between (15-45) years. All were collected from Giad hospital during period (January to – March 2010). fifteen plasma sample were collected from pregnant women in the first trimester .fifteen plasma sample were collected from pregnant women in second trimester . Fifteen plasma sample were collected from pregnant women in third trimester This result showed that there was a significant increase in the levels of plasma fibrinogen in pregnant women when compared with non pregnant women (first trimester mean=3.1600g/l, second trimester) mean = (4.2000 g/l) (, third trimester mean =5.4867 g/l) comer with that
of control (mean value = 2.493 g/l) there was correlation between number of pregnancies before and the level of fibrinogen.\(^{(23)}\)

Pregnancy-induced hypercoagulability is probably a physiologically adaptive mechanism to prevent post partum hemorrhage. Pregnancy changes the plasma levels of many clotting factors, such as fibrinogen, which can rise up to three times its normal value. Thrombin levels increase. Protein S, an anticoagulant, decreases. However, the other major anticoagulants, protein C and antithrombin III, remain constant. Fibrinolysis is impaired by an increase in plasminogen activator inhibitor-1 (PAI-1 or PAI) and plasminogen activator inhibitor-2 (PAI-2), the latter synthesized from the placenta. Venous stasis may occur at the end of the first trimester, due to enhanced compliance of the vessel walls by a hormonal effect.\(^{(24)}\)

Also, pregnancy can cause hypercoagulability by other factors, e.g. the prolonged bed rest that often occurs post partum that occurs in case of delivery by forceps, vacuum extractor or Caesarean section. A study of more than (200,000) women came to the result that admission to inpatient care during pregnancy was associated with an 18-fold increase in the risk of venous thromboembolism (VTE) during the stay, and a (6) -fold increase in risk in the four weeks after discharge, compared with pregnant women who did not require hospitalization. The study included women admitted to hospital for one or more days for reasons other than delivery or VTE.\(^{(24)}\)

Pregnancy after the age of (35) augments the risk of VTE, as does multigravidaity of more than four pregnancies. And in itself causes approximately a five-fold increased risk of deep venous thrombosis. Several pregnancy complications, such as pre-eclampsia, cause substantial hypercoagulability.\(^{(24)}\)

Hypercoagulability states as a pre-existing condition in pregnancy include both acquired ones, such as antiphospholipid antibodies, and congenital ones, including factor V Leiden, prothrombin mutation, proteins C and S deficiencies, and antithrombin III deficiency.\(^{(24)}\)
Before delivery the fibrinogen concentration is about (50%) above the non-pregnant value. Bearing in mind the increase in circulating blood volume, there is about double the amount of fibrinogen available to the pregnant woman at delivery compared to the non-pregnant state. After delivery there is a secondary rise in fibrinogen followed by a return to normal. (25)
Chapter 3

Materials & Methodology
Material and Methodology

3.1. Study design:
This is a case central, Hospital based study, conducted in Shendi town, and aimed to evaluate the effect of pregnancy coagulation test.

3.2. Study area:
Shendi locality, River Nile State, Sudan. Shendi is a town in northern of Sudan on the east bank of the River Nile (150) km northeast of Khartoum (16°41'N 33°25'E). The area is inhabited by the Ga’aleen Tribe.

3.3. Study duration:
The study conducted in the period from August 2015 to August 2017.

3.4. Study population:
Pregnant women a total (145) as case study and non pregnant women a total (50) as control group.

3.4.1. Inclusion criteria:
Pregnant females in different ages and trimesters.

3.4.2. Exclusion criteria:
Any Pregnant females suffering from haematological diseases, liver diseases and under treatment were excluded.

3.5. Sample size:
Sample was calculated from free online web site http://www.calculator.net by using confidence level 95% and confidence interval 8%, One hundred ninety one.
Sample size = \(Z^2 \times (p) \times (p-1) / C^2 \)
\(Z = Z \) value – confidence level 95% (1.96),
\(C = \) Confidence interval (.08 = ± 8).
\(P = \) standard division (0.5).
The calculated sample size based on this formula was (145).

3.6. Scientific & Ethical considerations:
The study proposal was reviewed and ethically approved by the scientific and the pregnant women agree to participate in this study.

51
3.7. Statistical analysis:

3.8. Data collection:
Data was collected by using questionnaire.

3.9. Materials:
- Ichroma™ D-Dimer: Reader is a fluorescence immunoassay that quantifies the total D-Dimer concentration in plasma. The test is used as an aid in the post therapeutic evaluation of thromboembolic disease patients.
- Disposable Syringe: Disposable syringe EL-WALIEF, 3mL 22Gx1/4.
- Vacuum Citrate Tube: The tube is (Glass, 3.2 % Sodium Citrate additive, 13x75mm, 1.8ml/2.7ml) Contains trisodium citrate 3.2% 0.9mL anticoagulant Add to 1.8mL for freshly blood.
- Tourniquet
- Water Bath
- centrifuge
- Stop Watch
- Immunoassay-Analysis-System i-CHROMA™,
Methods:

3.9 Specimen collection:
Two and half ml of whole blood with (1:9) ratio of tri sodium citrate were collected from all participants, then centrifuged to take plasma to perform PT, APTT, fibrinogen and D-Dimer using manual method, automated coagulometer and Immunoassay-Analysis-System i-CHROMA™

3.10.0 Principle for PT Test:
Tissue Thromboplastin in the presence of calcium activates the extrinsic pathway of human blood coagulation mechanism. reagent is added to normal citrated plasma, the clotting mechanism is initiated, forming a solid gel clot within a specified period of time. The time required for clot formation would be prolonged if there is acquired or congenital deficiency of factors/factor activity in the extrinsic pathway of the coagulation mechanism or reduction in the activity of Vitamin K dependent clotting factors during oral anticoagulant therapy.

3.10.1 Procedure for PT Test
Patients samples were tested in parallel fresh plasma and suitable controls and centrifuged immediately for (15 minutes) at RCF (1500-2000 g) and the plasma was separated into a clean test tube, the reagent vial was token to room temperature (20 – 37°C) then the contents was mixed, enough reagent was aspirated for immediate testing requirements in a thoroughly clean and dry test glass tube, then the reagent was re warmed to (37°C). In (12 x 75 mm) tube, (0.1ml) of plasma was added and placed in a water bath for (3–5) minutes at (37°C), then (0.2 ml) of reagent was added (prewarmed at 37°C for at least 10 minutes) and simultaneously start stop watch, the tube was shake gently to mix contents. Gently we tilted the tube back and forth and stop the stopwatch as soon as the first fibrin strand is visible and the gel / clot formation begins record the time in seconds. The same steps were repeated for four time on the same sample. The find the average of the duplicate test values. This is the Prothrombin time.
3.10.2 Calculation:

The results reported directly in terms of the mean of the double determination of PT of the test plasma in seconds.

\[
\text{Mean of the patient plasma PT in seconds} \\
\text{Or as a ratio 'R': } R = \frac{\text{MNPT for the reagent}}{\text{MNPT for the reagent}} \\
\text{Or as International Normalized Ratio, } INR = (R)ISI, \text{ where } ISI = \text{International Sensitivity Index of the reagent.}
\]

It is recommended by the WHO that MNPT should be established for each lot of PT reagents by each laboratory, since PT result are dependent on the combination of reagent lot, instrument and technique followed at each laboratory. Usually plasma from at least \((20)\) normal healthy individuals should be used to establish the MNPT. The average of such PT results in seconds = MNPT. Normal values using are between \((10-15)\) seconds. For photo optical instruments, it is

\[
INR \text{ between } (2.0 - 3.5).
\]
3.11.0. Principle for APTT Test:
Cephaloplastin activates the coagulation factors of the intrinsic pathway of the coagulation mechanism in the presence of calcium ions.
APTT is prolonged by a deficiency of one or more of these clotting factors of the intrinsic pathway and in the presence of coagulation inhibitors like heparin.

3.11.1. Method for APTT Test:
Patients samples were tested in parallel fresh plasma and suitable controls and centrifuged immediately for (5 minutes) at RCF (1500-2000 g) and the plasma was separated into a clean test tube. the Calcium Chloride Reagent vial was taken to room temperature (20 – 37°C) for at least (10 minutes), added (100μl) of test or control plasma into a test cuvette. The plasma was Incubated at (37°C) for (1 to 2 minutes), taken (100μl) of the APTT reagent, mixed with the plasma with Maintain the suspension of the APTT reagent by magnetic stirring or mixing by inversion immediately prior to use and Incubated at (37°C) for (3 minutes), then (100μl) of preincubated Calcium Chloride solution Added and simultaneously start the timer and then record the clotting time in seconds.

3.11.2. Calculation:
(a) The results may be reported directly in terms of the mean of the double determination of APTT of the test plasma.

\[
\text{APTT of patient plasma (in seconds)}
\]

(b) Or as a ratio 'R':

\[
R = \frac{\text{APTT of patient plasma (in seconds)}}{\text{APTT of FNP (in seconds)}}
\]
Normal values using reagent are between (28–40) seconds at (3 minutes) activation time.

3.12.0. Principle for Fibrinogen Levels Test:
The addition of thrombin coagulates fresh citrated plasma. The coagulation time is proportional to the fibrinogen concentration. This allows the estimation of plasma fibrinogen by functional clotting assay.

3.12.1. Method for Fibrinogen Levels Test:
Patients samples were tested in parallel fresh plasma and suitable controls and centrifuged immediately for (5 minutes) at RCF (1500-2000 g) and the plasma was separated into a clean test tube. The was Prepared (1:10) dilution of plasma specimen with Owren’s buffer solution, in (10 x 75 mm) test tube was added (0.2 ml) of (1:10) dilution of plasma sample to be tested and Incubated at (37°C) for one minute. To the test tube was added (0.1 ml) of fibrinogen thrombin reagent (prewarmed at 37°C for one minutes) and start the stopwatch simultaneously, then Stoped the stopwatch at the first appearance of the fibrin web, as the gel clot began to form and then record the clotting time in seconds. The steps (1-5) was repeated for a duplicate test. The normal expected value: (150 – 400 mg/dl)

3.13.0. Principle for D-Dimer Levels Test:
The test uses the sandwich immunodetection method, such that the detection antibody in buffer binds to D-Dimer in the plasma sample and antigen-antibody complexes are captured by antibodies that have been immobilized on the test strip as sample mixture migrates through nitrocelluose matrix. The more D-Dimer antigen in the plasma, the more antigen-antibody complexes are accumulated on test strip. Signal intensity of fluorescence on detection antibody reflects amount of antigen captured and is processed by ichroma™ Reader to show D-Dimer concentration in sample
3.13.1. Method for D-Dimer Levels Test:
Patients samples were tested in parallel fresh plasma and suitable controls and centrifuged immediately for (5 minutes) at RCF (1500-2000 g) and the plasma was separated into a clean test tube and was added (10 μL) of plasma sample by a transfer pipette to a tube containing the detection buffer. After closed the lid of the detection buffer tube, was mixed the sample thoroughly by shaking it about (10) times The sample mixture must be used immediately, was added (10 μL) of sample mixture and added in the test cartridge and leave the test cartridge at room temperature for (12 minutes). For scanning, was insert it into the test cartridge holder of the ichroma™ Reader. And ensured proper orientation of the test cartridge before pushing it all the way inside the test cartridge holder. An arrow has been marked on the test cartridge especially for this purpose, then was Pressed ‘Select’ button on the ichroma™ Reader to start the scanning process. Was started scanning the sample-loaded test cartridge immediately. The test result was read on the display screen of the ichroma™ Reader.
Reference value of D-Dimer is up to (500 ng/ml).
4.0. Results:

Mean of PT among pregnant women was (14.3) sec and the mean of control group was (12.9) sec. The P. value was (0.000) significant. The mean of PT in pregnant women in first trimester was (12.5) sec, second trimester (13.8) sec and third trimester (13.6) sec, with was statistically significant difference as the P. value was (0.001).

Mean of $APTT$ among pregnant women was (34.1) sec and the mean of control group was (32.4) sec. The P. value was equal (0.03) significant. More than 50% were in their 2d trimester. The mean of pregnant women in first trimester was (32.4) sec, second trimester (34.1) sec and third trimester (33.4) sec, with was statistically significant difference as the P. value was (0.000).

Mean of fibrinogen among pregnant women was (548.1) mg/dl and the mean of control group was (296.6) mg/dl. The P. value was (0.000) significant. More than 50% were in their 3d trimester. The mean of pregnant women in first trimester was (257.3) mg/dl, second trimester (478.0) mg/dl and third trimester (788.0) mg/dl, with was statistically significant difference as the P. value was (0.000).

Mean of D-Dimer among pregnant women was (609.7) ng/ml and the mean of control group was (285.5) ng/ml. The P. value was (0.000) significant. More than 50% were in their 3d trimester. The mean of D-Dimer level pregnant women in first trimester was (208.3) ng/ml, second trimester (472.7) ng/ml and third trimester (928.6) ng/ml, with was statistically significant difference as the P. value was (0.000).
Table (4 – 1) : Distribution of the pregnant women according to age.

<table>
<thead>
<tr>
<th>Age group</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 24</td>
<td>30</td>
<td>20.7%</td>
</tr>
<tr>
<td>25 – 34</td>
<td>110</td>
<td>75.9%</td>
</tr>
<tr>
<td>35 – 44</td>
<td>4</td>
<td>2.8%</td>
</tr>
<tr>
<td>More than 44</td>
<td>1</td>
<td>0.6%</td>
</tr>
<tr>
<td>Total</td>
<td>145</td>
<td>100%</td>
</tr>
</tbody>
</table>

Age (mean ± SD) = (24.4 ± 6.1)

Table (4 – 2): Distribution of the pregnant women according to trimester.

<table>
<thead>
<tr>
<th>Trimester</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>20</td>
<td>13.8%</td>
</tr>
<tr>
<td>Second</td>
<td>90</td>
<td>62.1%</td>
</tr>
<tr>
<td>Third</td>
<td>35</td>
<td>24.1%</td>
</tr>
<tr>
<td>Total</td>
<td>145</td>
<td>100%</td>
</tr>
</tbody>
</table>
Table (4 – 3): The mean of PT in pregnant women and control women:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pregnant women</td>
<td>14.3 sec</td>
<td>1.9</td>
<td>.000</td>
</tr>
<tr>
<td>control women</td>
<td>12.9 sec</td>
<td>0.9</td>
<td></td>
</tr>
</tbody>
</table>

Table (4 – 5): The mean of compare PT in first, second and third trimester :

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>first trimester</td>
<td>12.5 sec</td>
<td>1.4</td>
<td>.001</td>
</tr>
<tr>
<td>second trimester</td>
<td>13.8 sec</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>third trimester</td>
<td>13.6 sec</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Table (4 – 6) : The mean of APTT in pregnant sample and control sample:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pregnant sample</td>
<td>34.1 sec</td>
<td>4.8998</td>
<td>.030</td>
</tr>
<tr>
<td>control sample</td>
<td>32.4 sec</td>
<td>2.9347</td>
<td></td>
</tr>
</tbody>
</table>

Table (4 –7): The mean of compare APTT in first, second and third trimester :

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>first trimester</td>
<td>32.4 sec</td>
<td>3.5</td>
<td>.000</td>
</tr>
<tr>
<td>second trimester</td>
<td>34.1 sec</td>
<td>2.9</td>
<td></td>
</tr>
<tr>
<td>third trimester</td>
<td>33.4 sec</td>
<td>2.9</td>
<td></td>
</tr>
</tbody>
</table>

Table (4 – 8): The mean of fibrinogen level in pregnant women sample and control sample:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pregnant sample</td>
<td>548.1 mg/dl</td>
<td>219.0</td>
<td>.000</td>
</tr>
<tr>
<td>control sample</td>
<td>296.6 mg/dl</td>
<td>59.6</td>
<td></td>
</tr>
</tbody>
</table>
Table (4–9): The mean of compare fibrinogen level in first, second and third trimester:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>first trimester</td>
<td>257.3 mg/dl</td>
<td>90.0</td>
<td>.000</td>
</tr>
<tr>
<td>second trimester</td>
<td>478.0 mg/dl</td>
<td>108.9</td>
<td></td>
</tr>
<tr>
<td>third trimester</td>
<td>788.0 mg/dl</td>
<td>155.6</td>
<td></td>
</tr>
</tbody>
</table>

Table (4 – 10): The mean of D-Dimer level in pregnant women sample and control sample:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>pregnant sample</td>
<td>609.7 ng/ml</td>
<td>554.7</td>
<td>.000</td>
</tr>
<tr>
<td>control sample</td>
<td>285.5 ng/ml</td>
<td>129.7</td>
<td></td>
</tr>
</tbody>
</table>

Table (4 – 11): The mean of compare D-Dimer level in first, second and third trimester:

<table>
<thead>
<tr>
<th>Group</th>
<th>Mean</th>
<th>std. Deviation</th>
<th>P. value</th>
</tr>
</thead>
<tbody>
<tr>
<td>first trimester</td>
<td>208.3 ng/ml</td>
<td>116.0</td>
<td>.000</td>
</tr>
<tr>
<td>second trimester</td>
<td>472.7 ng/ml</td>
<td>144.9</td>
<td></td>
</tr>
<tr>
<td>third trimester</td>
<td>928.6 ng/ml</td>
<td>945.3</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 5

Discussion

Conclusion

Recommendations
5.1. Discussion:

Normal pregnancy is associated with major changes in many aspects of haemostasis all contributing to maintain placental function during pregnancy and to prevent excessive bleeding in delivery. Most changes in blood coagulation and fibrinolysis create a state of hypercoagulability. (24)

The current study reveal that the mean of PT during pregnancy was \(14.3 \pm 1.9\) sec compared to the non pregnant women \(12.9 \pm 0.9\) sec. The result showed slightly increase of PT in the study group as the p. value was \(0.000\), but still within the normal range (10 -15) seconds. PT values fluctuated during the periods of pregnancy as slight increase during the first and the second trimester but decreased in the last trimester, these observations are in line with (Momodu and Ajay)\(^{(27)}\), also our findings are supported by (Hellgren M)\(^{(28)}\) who proposed that during pregnancy there were increase in endogenous thrombin generation. However, variability in PT results from different researchers have been traced to the differing sensitivities of the thromboplastin reagents used, concentration of citrate anticoagulant, Study population and method of analysis. \(^{(27)}\)

Regarding APTT, the result was\(34.1 \pm 4.9\) sec in pregnant women compared to the control women \(32.4 \pm 2.9\) sec. there was statistically significant difference as the p. value was \(0.03\), but the result still within the normal range (28 -40) seconds, the same result have been expressed by various authors (Momodu and Ajay)\(^{(27)}\). Also most authors reveal the same meaning of slightly increase in APTT in pregnancy, but there were different reading within this scope of finding by the researchers, this may be due to different sensitivities of APTT reagents, poor endpoint detection by analyst and poor storage of plasma or delay in running the samples as the heat-labile factors may be affected. However, different APTT results have been associated with sensitivities of APTT reagents used, study population and methods of analysis. \(^{(27)}\)
the present study illustrated that there was a positive correlation between the PT and APTT in trimester, as PT and PTT were slightly increase in the second and third trimester compared to the first trimester, these findings were consistent with some published work (28–29).

The fibrinogen levels were evaluated in pregnant women (548.1 ± 219.0) mg/dl compared to non pregnant women (296.6±59.6) mg/dl. p. value was (0.000), our result were supported by (Journal of Dental and Medical Sciences) who concluded (even in normal pregnancies, there is an elevated level of fibrinogen concentration but in severe preeclamptic women showed interestingly more elevation in their levels. (33), also the same observational was reported by (Ibrahim, Leila Abdallah Ibrahim) as they concluded that (there was a significant increase in the levels of plasma fibrinogen in pregnant women when compared with non pregnant women. This highly elevated fibrinogen concentration was markedly seen in the third trimester. (23)

In this study, pregnant women have higher D-dimer concentrations (609.0 ± 554.7) ng/ml than age matched non pregnant women (285.5 ± 129.7) ng/ml, this result was in agreement with (Kline JA1, Williams GW, Hernandez-Nino J) they found that pregnancy increased the D-dimer concentration in a stepwise fashion from preconception to the third trimester. (32)
5.2. Conclusion:

- PT was slightly increased in pregnant women compare to non women but still within normal range.
- APPT was slightly increased in pregnant women compare to non women but still within normal range.
- D-Dimer and fibrinogen levels were significantly increased in pregnant women compare to non pregnant women, with highly significant increased level in the third trimester.
5.3. Recommendations

On the base of the obtained result we recommended that:

- Conducting further studies regarding the effect of pregnancy on coagulation factors and Fibrinolytic systems
- Regular follow up of pregnant women for coagulation factors and Fibrinolytic systems
- Community awareness of the importance of the study.
Chapter 6

References

Appendices
6.1. References:

10. Dr Andrew Barr, Maternal hemoglobin concentration during pregnancy and risk of stillbirth. JAMA, 2000 Nov 22-29;284(20):2611-7

16. Prothrombin time From Wikipedia, the free encyclopedia This page was last edited on 27 July 2017, at 04:51.

17. Roger S. Riley, Activated Partial Thromboplastin Time, Journal of Clinical and Laboratory Medicine April, 2005

24. Hyper coagulability in pregnancy this page was last edited on 6 May 2017, at 12:57

27. Momodu and Ajayi., J. Hematology Thromboembolic Diseases Haemostatic Changes during Pregnancy and Puerperium in Kano, North-Western Nigeria 2015, 3:5

33. IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861. Volume 8, Issue 5 (Jul.- Aug. 2013), PP 55-59
Appendices:
Appendix 1: Questionnaire

Republic of Sudan
Ministry of Higher Education and Scientific Research
Shendi University
Faculty of Graduate Studies and Scientific Research

In Vitro Screening prothrombin time, partial thromboplastin time, Fibrinogen level and D-Dimer level among Pregnant Woman.

Name:..
City:..
Village:..

Sample number: __

- **Age:**
 a- <15 – 24 (……) c- 25 – 34 (……). d- 35 – 44 (………). e- 45 and more (……).

- **Occupations:**
 a- House wife (……) b- Other (……)

- **Pregnancy trimester:**
 First trimester (……) Second trimester (……) Third trimester (……).

- **did you use contraceptives ?**
 a- Yes (……) b- No (……)

- **History of haemostatic change in previous pregnancy:**
 a- Yes (……) b- No (……)
- Other disease:
 a - Diabetes (…….)
 b - Hypertension (…….)
 c - Other (…….)
 d - No (…….)
Appendix 2:
The clot form:
Mindray C2000-1 coagulation analyzer
Water bath
Appendix 3:

BioMed-Liquiplastin for P.T. determination

Prothrombin Time (ISI - 1.5 / 1.05)

REF:
- PT20140 (6-8 ml) (ISI - 1.5)
- PT200150 (6-5 ml) (ISI - 1.05)

INTENDED FOR USE:
For quantitative determination of Thromboplastin activity in plasma

PRINCIPLE:
Thromboplastin is in the presence of calcium activates the extrinsic pathway of human blood coagulation mechanism. When BioMed-Liquiplastin reagent is added to normal citrated plasma, the clotting mechanism is initiated, forming a solid gel clot within a specified period of time. The time required for clot formation would be prolonged if there is acquired or congenital deficiency of factors factor activity in the extrinsic pathway of coagulation mechanism or reduction in the activity of Vitamin K dependent clotting factors during and anticoagulant therapy

SPECIMEN COLLECTION:
The amount of bleeding depends upon primary plasmatic plug formed along with the formation of stable fibrin clot.
Formation of this clot involves the sequential activation of series of plasma proteins in a highly ordered and complex manner and also the interaction of these complexes with blood platelets and materials released from the tissue.

Thromboplastin, in the presence of calcium, is an activator, which initiates the extrinsic pathway of coagulation factors X, V, VIII and Factor XIII.

During and anticoagulant therapy most of the Vitamin K dependent factors such as II, VII, IX, X, Protein S, are depleted, as also during the deficiency of clotting factor activity which may be hereditary or acquired.

Prothrombin Time determination is the preferred method for population screening, as a four function test determination of congenital deficiency of factors II, VII, IX and X and for monitoring of patients on anticoagulant therapy

REAGENT COMPOSITIONS:
Liquiplastin is a novel, highly sensitive, low capacity, ready to use liquid Colloidal Lysolipids as a Reagent, which is stable at room temperature.

Each batch of reagent undergoes rigorous quality control at various stages of manufacture for its sensitivity and performance.

PACKAGE: Collection and storage
- Store the reagent at 2-8°C. DO NOT FREEZE
- The shelf life of the reagent is 12 months. The bottle can be opened based on the reagent used. The unopened container is stable at 5°C up to the expiration date.

PRECAUTIONS & WARNING:
Avoid pipetting with mouth.

The preparation, according to current regulation, is classified as not dangerous.
The total concentration of non active components (preservatives, detergents, stabilizers) is below the maximum required for injection.

Always handle with care, avoid ingestion, avoid contact with eyes, skin and mucous membranes. The samples must be handled as potentially infected from HIV or Hepatitis.

REAGENT PREPARATION & STABILITY:
- Use freshly collected blood taken into 0.11 mol/L sodium citrate in the ratio 9 parts blood to 1 part anticoagulant.
- Centrifuge immediately for 5 minutes at 1500-3000 g and separate plasma into a clean test tube.
- Plasma should be stored within 2 hours (keep refrigerated)

REQUIRED MATERIALS NOT PROVIDED:
General Laboratory Equipment and instrumentation

PROCEDURE:

Manual method

Patient samples should be tested in parallel with pooled fresh normal plasma (PFP) and suitable controls.

1. Bring the reagent to room temperature (20-30°C). Mix the contents of the vial to homogenize the reagent completely.

2. Aliquot 0.2 ml of the reagent into test tubes for immediate testing requirement in a thoroughly clean and dry test tube. (Plastic test tubes are preferred).

3. Insert the reagent and bring to 37°C before use in the procedure (3-40 minutes may be required depending on the reagent volume to obtain 37°C before testing).

4. Expose the reagent and replace immediately to 37°C.

5. To a 1.75 mm tube add 0.1 ml of plasma (PPP) and place the tube in a waterbath for 3 to 5 minutes at 37°C.

6. To the tube finally add 0.2 ml of BioMed-Liquiplastin reagent (prewarmed at 37°C for at least 10 minutes) and simultaneously start the stopwatch. Shake the tube gently to mix contents.

7. Gently tap the tube back and forth and stop the stopwatch as soon as the first clear visible liquid is visible and the gel clot formation begins record the time in seconds.

8. Repeat steps 4 to 6 for a duplicate test on the same sample.

9. Find the average of the duplicate two values. This is the Prothrombin time (PT).

CALCULATION:

Manual Method

The result may be reported directly in terms of the mean of the double determination of PT of the two plasma in seconds.

Mean of the patient plasma PT in seconds

\[\text{Or as a ratio } R = \frac{\text{Mean PT of the reagent}}{\text{Mean PT of the patient plasma}} \]

\[\text{Note: PT of reagent} = 3.0 \text{seconds} \]

Or as a Normalized Ratio (NTR), NTR = (NRM - baseline ISI)/Normalized Sensitivity Index of the reagent

It is recommended by the WHO that NTR should be avoided for each batch of PT reagents by each laboratory, since PT result are dependant on the combination of reagent lot, instrument and technique used in each laboratory.
LIMITATIONS:

1. In vitro diagnostic reagent for laboratory and professional use only. Not for medicinal use.
2. Bloodlet-LIQUPLASTIN® reagent is not from human source hence contamination due to BSE/bVD and HIV is practically excluded.
3. It is very important that contaminationclean and dry micropipette tips be used to agitate / disperse the reagent.
4. Avoid exposure of the Bloodlet-LIQUPLASTIN® reagent to altered temperatures, contamination and undue stress due to high and low temperature exposure cycles. Immediately replace reagent after use and store at recommended temperatures only.
5. On prolonged storage at 3-5°C the Bloodlet-LIQUPLASTIN® suspension has a tendency to settle down. Homogenize the reagent by inverting before use.

REFERENCES:

PERFORMANCE:

1. It is recommended that controls (PLASMATROL FAST) with known factor activity should be run simultaneously with each test series to validate test run.
2. Incorrect mixture of blood and the sodium citrate, insufficient processing of plasma and reagent, contaminated reagents, glaucus etc. are potential source of errors.
3. Combined plasma may induce prolonged clotting times.
4. Since the PT test fractions correctly only at 37-38°C, temperatures of all equipment must be calibrated daily.
5. Clotting time of patient on anticoagulant and side to side time lag between the specimen collected and the last dose.
6. Tubid, frothy, lipemic, or grossly haemolysed samples may generate erroneous PT results.
7. Glassware and accessories used in the test must be scrupulously clean and free from even traces of acids, alkalines or detergents.
8. Plasma samples held at 4-6°C may undergo "cold activation" leading to marked shortening of the PT.
9. The PT may be shortened during acute inflammatory conditions, which are accompanied by increase in fibrinogen levels and also by agents such as warfarin, heparin, Phenindione, coumarin and anticoagulants with vitamin K. The PT may be prolonged by corticosteroids, EDTA, aspirin, aminosalicylic acid, anticonvulsants, heparin and anticoagulants such as Aspirin and Warfarin.
10. It is important that each laboratory prepares the result in terms of INR for patients on oral anticoagulant therapy for the clinician to adjust the dosage based on INR.
11. Since the test is specific for plasma, each laboratory must calibrate the necessary factor and time required during standardization to yield the PPP. Coagulation of plasma with excessive platelets would falsely altered levels of some of the factors.
12. Homogenization of LIQUPLASTIN® reagent suspension before use is important to achieve accurate and consistent results.
BioMed Liqulicell-E for APTT determination

Activated Partial Thromboplastin Time

PREFERRED USE:
For quantitative determination of Partial the Liqulicell-E activity in plasma

PRINCIPLE:
Cephaloplin activates the coagulation factors of the intrinsic pathway of the coagulation mechanism in the presence of calcium ion.

APTT is prolonged by a deficiency of one or more of these clotting factors of the intrinsic pathway and in the presence of coagulation inhibitors like heparin.

SPECIMEN COLLECTION:
The amount of bleeding depends upon primary parallel plug formed along with the formation of stable fibrin clot. Formation of this clot involves the sequential interaction of several proteins in a highly released and complex manner and also the interaction of these complexes with blood platelets and materials released from the tissues.

Activated Partial Thromboplastin Time (APTT) is prolonged by a deficiency of coagulation factors of this intrinsic pathway of the human coagulation mechanism such as Factor XII, XIIa, XI, X, V, VIII and Fibrogen. Determination of APTT helps in estimating abnormalities in most of the clotting factors of the intrinsic pathway including quantitated deficiency of factor XIIa, XI, X, VIII and VII and is also a sensitive procedure for monitoring heparin response curves for monitoring heparin therapy.

REAGENT COMPOSITIONS:
BioMed Liqulicell-E is liquid ready to use activated cephaloplin request for the determination of Activated Partial Thromboplastin Time. It is a phospholipid preparation derived from rabbit brain with an allergic acid to an anionic surfactant. Each bottle of request undergoes rigorous quality control at various stages of manufacture for its sensitivity and performance.

PACKAGE: Collection and storage.
- Store the reagent at 2-8°C. DO NOT FREEZE.
- The shelf life of the reagent is up to 8 years. The request is stable at 2-8°C up to the expiration date.

PRECAUTIONS & WARNING:
Avoid spilling or mixing.
The preparation, according to current regulations, is classified as not dangerous.
The total concentration of iron active compound (preservative, magnesium, phosphate) is below the minimum required for coagulation.
Avoid contact with eyes, avoid ingestion, avoid contact with eyes, skin and mucous membranes. The sample must not be handled to prevent infection from HIV or Hepatitis.

REAGENT PREPARATION & STABILITY:
- Use freshly collected blood taken into 0.13 mol Na citrate tubes in the ratio 9 parts blood to 1 part anticoagulant.
- Centrifuge immediately for 1 minute at 4°C 1500-2000 g and aspirate plasma into a clean test tube.
- Plasma should be used within 3 hours (keep refrigerated).

REQUIRED MATERIALS NOT PROVIDED:
(a) 12 x 75 mm glass test tubes.
(b) 0.1 ml.
(c) Stop watch.
(d) Water bath or heating block at 37°C.
(e) Fresh Normal Plasma.
(f) CaCl2 (0.02 mol/l).

PROCEDURE:

1. Precipitate the Calcium Chloride Reagent at 37°C for at least 10 minutes. Pipette 100 µl of test or control plasma into a test tube.
2. Incubate the plasma at 37°C for 1 to 2 minutes.
3. Pipette 100 µl of the APTT reagent into test tubes containing the plasma. Maintain the suspension of the APTT reagent by magnetic stirring or mixing by inversion immediately prior to use.
4. Incubate at 37°C for 3 minutes.
5. Add 100 µl of neutralized Calcium Chloride solution simultaneously start the timer.
6. Record the clotting time in seconds.

Calibration Curve Method (For determination of heparin concentration):
1. Dilute heparin (as used for routine) with physiological saline to a concentration of 10 U/ml.
2. Mix 0.2 ml of 10 U/ml diluted heparin with 1.8 ml of FNC to give a heparin standard of 10 U/ml concentration.
3. Dilute the heparin standard to prepared series (1 U/ml) with FNC as follows:

<table>
<thead>
<tr>
<th>Test tube no.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heparin standard (1U/ml) in ml</td>
<td>0.5</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>—</td>
</tr>
<tr>
<td>FNC in ml</td>
<td>—</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.8</td>
<td>0.5</td>
</tr>
<tr>
<td>Heparin concentration (U/ml)</td>
<td>1.0</td>
<td>0.8</td>
<td>0.6</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

4. Pipette 0.1 ml each of the seven heparin dilutions into clean test tubes.
5. Add 0.1 ml Liqulicell-E reagent to each test tube.
6. Mix well and incubate each test tube at 37°C for exactly 3 minutes before testing.
7. Further add 0.1 ml calcium chloride (dissolved at 37°C) to each test tube, one by one and simultaneously start the stopclock.
8. Gently tilt the tube back and forth and stop the stopclock at the first fibrin strand is visible.
9. Record the time in seconds.
10. Plot the means of the double determination in seconds against each heparin concentration using BioMed Liqulicell-E graph paper.
11. Clotting times (APTT) of test specimen can be interpolated against the heparin concentration to determine the heparin concentration of the sample in U/ml.
CALCULATION:

Manual Method

1. The results may be reported directly in terms of the mean of the double determination of APTT of the test plasma.

\[
\text{APTT of test plasma (in seconds)} = \frac{\text{APTT of patient plasma (in seconds)}}{R_x}
\]

Calibration Curve Method

Reagent concentration in the test sample can be directly obtained from the Nominal LIQUICELINE calibration curve by interpolating the two plasma clotting times against the reagent concentration in ml.

EXPECTED VALUE:

Normal values using LIQUICELINE reagent are between 28-40 seconds at 3 minutes activation time. Between males and females, there is no significant difference in the test result. For plasma samples, it is recommended that each laboratory must establish its own normal range.

WASTE DISPOSAL:

The disposal of the product must be in accordance with local regulations concerning waste disposal.

REFERENCES:

PERFORMANCE:

1. Patients must move their own laboratory reagents to their own normal plasma in standard
2. It is recommended that venous blood for factor activity should be drawn in the same vein as the test sample
3. Inadequate mixture of blood and thrombin, change in the activated time of plasma and reagent concentration, haemolysis, etc. are important factors in errors
4. Increased duration of reagent activity is a potential source of error
5. Controls should be run with each batch of plasma
6. Clotting site of patients on anticoagulant therapy depends upon the time lag between the specimens collected and the last dose
7. Abnormalities of coagulation factors VII, Factor IX and platelets are not detected by this test
8. For automated equipment it is strongly recommended that the manufacturer's method should be strictly adhered to
9. In haemoglobin measurement of clots in blood samples is important that the in vitro labile factor of haemoglobin is not significantly lost. When it is allowed to remain, it has an invariable and consistent effect on the efficiency of the clotting time
10. Regular factor VII, a haemostatic-backing factor can be released due to platelet aggregation or damage. In order to prevent this phenomenon in vivo the plasma should be collected with maximum of plasma
11. Decrease in APTT time is observed in males under anticoagulant therapy and oral contraceptive administration in females

LIMITATIONS:

1. In vitro diagnostic reagent for laboratory and professional use only. Not for medical use.
2. LIQUICELINE reagent is not from human source hence contamination due to HbsAg and HCV is possibly excluded
3. Reagent contains 0.01% Thimerosal as preservative
4. It is very important that clean and dry micropipette tips be used to dispense the reagent
5. Avoid exposure of the reagent to direct natural temperatures, contamination. Immediately replace any opened and store at recommended temperatures only

Consult Instructions for Use

Caution, Consult accompanying Documents

In Vitro Diagnostic Medical Device

Temperature Limitation

Manufacturer

Authorized Representative in the European Community

Catalogue Number

Batch Code

Use by

EGY CHEM

for lab technology

Bldg Gty., Industrial Area Piece 170
259/28th March of 6th of October, EGYPT
Office Tel: +202 2822977 / +202 2822859
Factory Tel: +202 22118170 / +202 22118171
Fax: +202 2822977

www.egy-chem.com
INTENDED FOR USE:
For quantitative determination of Fibrinogen in plasma.

PRINCIPLE:
The addition of thrombin causes fibrin to form from plasma. The completion time is proportional to the fibrinogen concentration. This allows the estimation of plasma fibrinogen by functional clearing assay.

SPECIMEN COLLECTION:
At present there are known to be at least seven factors in circulating blood are required for normal haemostasis. Deficiencies in any of these (Factors V, VIII, IX, XI, XII and XIII) result respectively in a relative haemostatic deficit, and the severity of the bleeding is proportional to the degree of deficiency. In order to meet the haemostatic condition, it is important to identify and quantify the deficient factor.

Fibrinogen (Fibrin) is a high molecular weight glycoprotein synthesized in the liver, which plays an important role in haemostasis. For normal haemostasis to occur, it is necessary to have a sufficient level of fibrinogen. A sufficient concentration of fibrinogen must be present in plasma. Fibrinogen is converted into fibrin by the action of thrombin and is a key component of clot formation.

FIBRINOGEN kit contains thrombin and fibrinogen calibrator to determine the quantitative activity of Fibrinogen calibrator to determine the quantitative activity of Fibrinogen. Since the reagent system contains thrombin activating substances, the test level varies, but does not interfere with the test. When used in a single test, with the FIBRINOGEN primary and secondary standards, fibrinogen activity helps in maintaining national haemostasis factors.

REAGENT COMPOSITION:
1. Thrombin reagent, which is a purified preparation from bovine source ~50 NIH units per ml.
2. Fibrinogen calibration, which is a purified preparation of human plasma equivalent to stated amount of Fibrinogen in each tube (male FIBRINOGEN graph paper supplied with each lot for the value of each level).
3. Owner’s buffer, ready to use (pH 7.45).

PACKAGE: Collection and storage:
1. Store the reconstituted reagent vials at 1-8°C. DO NOT FREEZE.
2. The shelf life of this reagent is 6 months as mentioned on the reagent vial label.
3. Once reconstituted the FIBRINOGEN thrombin reagent is stable for 6 days when stored at 1-8°C and for 4 hours at room temperature (20-25°C), provided it is not contaminated. Extreme care has to be taken to maintain aseptic precautions while reconstituting, mixing and handling reagents to prevent contamination. The reagent vial must be replaced to 1-8°C immediately upon returning the reagent for the day’s work.
4. The reconstituted FIBRINOGEN calibrator is stable for 6 hours at 1-8°C and for 3 hours at room temperature (20-25°C).

PRECAUTIONS & WARNING:
Avoid pipetting with mouth.
The preparation, according to current regulations, is classified as not hazardous.

REAGENT PREPARATION & STABILITY:
No special preparation of the patient is required prior to sample collection by approved techniques. Withdraw blood without using vacuum tubes and without flicking into a plastic syringe lined with a short needle of 18 to 19 SWG. The vasoconstrictor must be a "clean" one and if there is any difficulty, take a new vaso and needle and my another vein. Then for the blood into tubes, after drawing the needle from the syringe.

Mass take point of freshly collected blood with one part of sodium citrate (0.109mMol, 3.2%) Centrifuge immediately for fifteen minutes at 3000rpm (approximately 900 g) and transfer the plasma into a clean tube. Plasma must be stored within 6 hours of collection.

REQUIRED MATERIALS NOT PROVIDED:
GEL-LABORATORY equipment and instrumentation.

PROCEDURE:
Bring all the reagents and sample to room temperature before testing.

A) Procedure for Fibrinogen Calibration Curve Preparation

1. Dilute fibrinogen calibration stock solution with owner’s buffer as follows:

<table>
<thead>
<tr>
<th>Test tube no</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner’s buffer</td>
<td>0.2 ml</td>
<td>0.2 ml</td>
<td>0.2 ml</td>
</tr>
<tr>
<td>Fibrinogen calibrator</td>
<td>0.1 ml</td>
<td>0.1 ml</td>
<td>0.1 ml</td>
</tr>
<tr>
<td>Dilution (Calibrator)</td>
<td>1 : 5</td>
<td>1 : 10</td>
<td></td>
</tr>
</tbody>
</table>

1. Pipette 0.1 ml each Fibrinogen calibration into clean test tube and prepare for 8 minutes at 37°C.
2. Add 0.1 ml of reconstituted thrombin reagent (prewarm at 37°C for one minute) and simultaneously start the stopwatch.
3. Stop the stopwatch at the first appearance of the fibrin web, as the gel clot begins to form and record the time in seconds.
4. Repeat steps 1-3 for a duplicate test on each calibrator dilution.
5. Plot average of the duplicate test values on FIBRINOGEN graph paper.
6. Connect the points, which should produce a straight line.
7. The calibration curve may be extended beyond the lowest and highest point.
8. The calibration curve is valid only for the same lot of FIBRINOGEN thrombin reagent.

B) Test Procedure for sample
1. Prepare 1:10 dilution of plasma specimen with Coovia’s buffer solution.
2. To a 50 to 75 mm test tube add 39°C and 0.01 ml of 1:10 dilution of plasma sample to be tested.
3. Incubate at 39°C for one minute.
4. To the test tube add 0.1 ml of FIBRINOGEN thrombin reagent (prewarmed at 39°C for one minute) and start the stopwatch simultaneously.
5. Stop the stopwatch at the first appearance of the clots, i.e., the gel clot begins to form and record the time in seconds.
6. Repeat steps 3-5 for a duplicate test.
7. If the sample dilution of 1:10 the observed clotting time is usually between 4-25 seconds, the Fibrinogen content is normal (Fibrinogen content between 150 and 400 mg/dL). Assay results can be read off directly from the graph paper provided with the FIBRINOGEN kit for the fibrinogen concentration.
8. If the fibrinogen content is high the clotting time will be less than 8 seconds. In such cases repeat the test at 1:20 dilution of the sample or 1:30 dilution of the sample. The results read off the graph will be multiplied by a factor 2 or 3 for the respective dilution.
9. Conversely, if fibrinogen content is low the clotting time will be over 25 seconds. Repeat the assay at 1:5 dilution, or if necessary at 1:2 dilution. In this case the results read off the graph will be divided by a factor of 2 or 5 for the respective dilution.

EXPECTED VALUE:

190 mg/dL - 400 mg/dL

WASTE DISPOSAL:
The disposal of the product must be in accordance with local regulations concerning waste disposal.

QUALITY CONTROL:
A frozen normal control should be run in parallel with each batch of tests. This control may be plasma containing normal (FIBRINOGEN) to be frozen thawed normal plasma.

REFERENCES:
1. Significant levels of lupus and elevated levels of fibrinogen degradation products (FDP) in the patient plasma can cause falsely low fibrinogen results.
2. Insufficient provemming of plasma and reagent or contaminate glassware may cause erroneous results.
3. EDTA should not be used as anticoagulant.
4. Use reagents of the same lot for performing the test.
5. Do not interchange reagents from different lots.

PERFORMANCE:

LIMITATIONS:
1. In vitro diagnostic reagent for laboratory and professional use only. Not for medical use.
2. The individual reagent contains 0.1% sodine sodium azide preservative.
ichroma™ D-Dimer

INTENDED USE
ichroma™ D-Dimer along with the ichroma™ Reader is a fluorescence immunoassay that quantifies the total D-Dimer concentration in plasma. The test is used as an aid in the post-therapeutic evaluation of thromboembolic disease patients.

INTRODUCTION
D-Dimer, a degradation product of cross-linked fibrin formed during activation of the coagulation system, is commonly used to exclude thromboembolic disease in outpatients suspected of having deep venous thrombosis (DVT) and pulmonary embolism (PE). DVT and PE is relatively common and can cause sudden, fatal embolic events in the pulmonary arteries and other regions. (2-3)

Measurement of the D-Dimer level in plasma has been used as a screening strategy for subclinical DVT. A systematic review reported that a normal range of a highly sensitive D-Dimer level accurately ruled out DVT in patients classified as having a low or moderate clinical probability of DVT. The DVT is a high-risk factor for the stroke because of advanced age, hypertension, and coagulation disorders, and DVT can cause paradoxical embolic stroke via a right-to-left shunt. Thus, it is important to monitor the level of D-Dimer in the incidence of complications of DVT in acute stroke patients. (4-7) The Plasma D-Dimer level has proven to be useful for DVT screening in chronic stroke patients undergoing rehabilitation. (8-10) National and international scientific organizations have suggested the use of these markers when implementing new diagnostic strategies in patients with coronary syndrome. Since D-Dimer is well known to be an important prognostic indicator of heart disease, its most definitive role is in monitoring post-treatment clinical status and the post-therapeutic evaluation of patients.

ichroma™ D-Dimer Test measures quantitative D-Dimer concentration in human plasma.

PRINCIPLE
The test uses the immunotachyphloechromatic method such that the detection antibody in buffer binds to D-Dimer in the plasma sample and antigen-antibody complexes are captured by antibodies that have been immobilized on the test strip as sample mixture migrates through the capillary matrix. The more D-Dimer antigen in the plasma, the more antigen-antibody complexes are accumulated on the test strip. Signal intensity of fluorescence on detection antibody reflects amount of antigen captured and is processed by ichroma™ Reader to show D-Dimer concentration in the specimen. The working range of ichroma™ D-Dimer test is 50 - 10,000 ng/mL.

Reference Value: 500 ng/mL, (Fibrinogen equivalent units)

COMPONENTS AND REAGENTS
ichroma™ D-Dimer consists of Cartridge, an ID Chip, and Detection Buffer.
- The test cartridge contains a test strip on the membrane of which, antibodies against D-Dimer and streptavidin have been immobilized at the test line and the control line respectively.
- Each test cartridge is individually sealed in an aluminum foil pouch containing a desiccant. 25 sealed test cartridges are packed in a box which also contains an ID chip.
- The detection buffer pre-dispersed in a tube contains fluorescein-labeled anti-D-Dimer antibodies, fluorescent-labeled goat anti-rabbit IgG, bovine serum albumin (BSA), as a stabilizer and sodium azide in phosphate buffered saline (PBS) as a preservative.
- The detection buffer is dispensed in each detection buffer tube. 25 detection buffer tubes are packed in a separate pouch which is further packed in a Transport box provided with ice packs for the purpose of shipment.

WARNINGS AND PRECAUTIONS
- For in vitro diagnostic use only.
- Carefully follow the instructions and procedures described in this insert.
- Lot numbers of all the test components (test cartridge, ID chip and detection buffer) must match with each other.
- Do not interchange the test components from different lots or use the test components beyond the expiration date.
- Test performed by using any test component with mismatched lot number or that beyond the expiration date may yield misleading test results.
- The test cartridge should remain sealed in its original pouch until use. Do not use the test cartridge that is damaged or already opened.
- Allow a minimum of 20 minutes for the test cartridge to attain room temperature, which has been stored in a refrigerator.
- The detection buffer should attain room temperature prior to performing the test.
- ichroma™ D-Dimer as well as the ichroma™ Reader should be used away from vibration and for magnetic field. During normal usage, Ichroma™ Reader may produce minor vibration which should be regarded as normal.
- A detection buffer tube should be used for processing one sample only. Similarly a test cartridge should be used for testing one processed sample only. Both the detection buffer
tube as well as the test cartridge should be discarded after single use.

- Used detection buffer tubes, pipette tips, and test cartridges should be handled carefully and disposed of by an appropriate method in accordance with relevant local regulations.
- As exposure to larger quantities of sodium citrate may cause certain health issues like confusion, low blood pressure and heart rate, loss of consciousness, lung injury and respiratory failure.

STORAGE AND STABILITY

- The test cartridge is stable for 20 months (while sealed in an aluminum foil pouch) if stored at 4 - 30°C.
- The detection buffer dispensed in a tube is stable for 20 months if stored at 2 - 8°C.
- After the test cartridge pouch is opened, the test should be performed immediately.

LIMITATIONS OF THE TEST SYSTEM

ichrom™ D-Dimer provides accurate and reliable results subject to the following constraints:

- Use ichrom™ D-Dimer should be used only in conjunction with ichrom™ Reader.
- The test should always be performed on freshly collected sample(s).
- The test sample must be at room temperature prior to testing.
- If the test samples are to be shipped for the purpose of this test, appropriate precautions must be exercised.
- Effectiveness of the test is highly dependent on storage of test components and test samples at prescribed optimal conditions.
- The test may yield false positive result(s) due to cross-reactions of some components of serum with the capture/detector antibodies and/or non-specific adhesion of certain components having similar epitopes to bind with these antibodies.
- The test may also yield false negative results, the most common factor being non-responsiveness of the antigen to the antibodies due to its epitopes being masked by some unknown components such that the antigen cannot be detected or captured by the antibodies. False negative results may also be obtained due to instability or degradation of the D-Dimer antigen with time and/or temperature making it unrecognizable by the antibodies.
- Other factors interfering with the test and causing erroneous results include technical/procedural errors, degradation of the test components/weather as well as presence of interfering substances in the test samples.
- Any clinical diagnosis based on the test result must be supported by a comprehensive judgment of the concerned physician including clinical symptoms and other relevant test results.

SAMPLE COLLECTION AND PREPARATION

The test can be performed with plasma.

- It is recommended to test the sample within 24 hours after collection.
- The serum and plasma should be prepared by centrifugation within 3 hours after the collection of whole blood.
- Take precautions on the handling and storage of sample blood because it's analyzed the concentration of D-Dimer is sensitive to anticoagulant and storage conditions.
- Preparing the Plasma specimens: Collect the blood into a tube treated with sodium citrate.
- Be careful not to have blood sample hemolyzed in the course of handling and centrifugal process.
- Do not keep the sample in a freezer, which could affect the test value of D-Dimer.
- It is recommended to avoid using severely hemolyzed and hyperbilirubinemia specimens whenever possible. If the specimen appears to be severely hemolyzed, another specimen should be obtained and tested.

MATERIALS PROVIDED

- ichrom™ D-Dimer
- Test Cartridge Box
- Sealed Test Cartridges
- ID Chip
- Test Card Reader

MATERIALS REQUIRED BUT NOT PROVIDED

Following items can be purchased separately from ichrom™ D-Dimer. Please contact our sales division for more information:

- Test Card Reader
- Thermal Printer

TEST SETUP

1. Check the contents of ichrom™ D-Dimer: Sealed Test Cartridge, ID Chip, and Detection Buffer Tube.
2. Ensure that the lot number of the test cartridge matches with that of the ID chip as well as the detection buffer tube.
3. Keep the sealed test cartridge if stored in refrigerated, and the detection buffer tube at room temperature for at least 30
minutes just prior to the test. Place the test cartridge on a clean, dust-free and flat surface.
4. Turn on the power supply of the ichroma® Reader.
5. Insert the ID Chip into the ID chip port of the ichroma® Reader.
6. Press the "Select" button on the ichroma® Reader.
(Refer to the "ichroma® Reader Operation Manual" for complete information and operating instructions.)

TEST PROCEDURE
1. Transfer 10 μl of serum/plasma/control sample using a transfer pipette to a tube containing the wash buffer.
2. Close the lid of the wash buffer tube and mix the sample thoroughly by shaking it about 10 times. (The sample mixture must be used immediately.)
3. Pipette out 15 μl of a sample mixture and disperse it into the sample well on the test cartridge.
4. Leave the sample-loaded test cartridge at room temperature for 10 minutes.
5. For scanning, insert it into the test cartridge holder of the ichroma® Reader. Ensure proper orientation of the test cartridge before pushing it all the way inside the test cartridge holder. An arrow has been marked on the test cartridge especially for this purpose.
6. Press "Select" button on the ichroma® reader to start the scanning process.
7. Ichrma® Reader will start scanning the sample-loaded test cartridge immediately.
8. Read the test result on the display screen of the ichroma® Reader.

INTERPRETATION OF TEST RESULT
- Ichrma™ Reader calculates the test result automatically and displays D-Dimer concentration of the test sample as ng/ml.
- Working range of Ichrma™ D-Dimer is 50-10,000 ng/ml.
- Reference value of Ichrma™ D-Dimer is 500 ng/ml.
(Fibrin Fibrinogen equivalent units)

Quality Control
- Quality control tests are a part of the good testing practice to confirm the expected results and validity of the assay and should be performed at regular intervals.
- Before testing a clinical sample using a new test lot, control reagents should be tested to confirm the test procedure, and to verify whether the test produces the expected results.
- Quality control tests should also be performed whenever there is any question concerning the validity of the test results.
- Control reagents are not provided with ichroma™ D-Dimer.

For more information regarding obtaining the control reagents, contact BioRad Inc.'s Technical Services for assistance.
- ichroma™ D-Dimer test has a built-in internal control that satisfies the current quality control requirements. This internal control test is performed automatically each time a clinical sample is tested. An invalid result from the internal control leads to display an error message on the ichroma® Reader indicating that the test should be repeated.

PERFORMANCE CHARACTERISTIC
1. Specificity
Other bio-molecules such as Hb, CEA, AFP, ALB, CRP, Tropinin I, CK-MB, Myoglobin, Albumin and specially hyperfibrinogen were added to test specimen with much higher level than their physiological level in normal blood. There was no significant interference with the D-Dimer measurement; nor was there any significant cross-reactivity with these bio-molecules tested.

2. Precision:
For studying intra-assay precision, 10 replicates of each of the eight concentrations of spiked plasma samples with BioRad D-Dimer control were tested.
For studying inter-assay precision, 10 replicates of each of the eight concentrations of spiked plasma samples with BioRad D-Dimer control were tested by four different persons.

<table>
<thead>
<tr>
<th>Conc. [ng/ml]</th>
<th>Intra Assay</th>
<th>Inter Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>100</td>
<td>110.82</td>
<td>6.36</td>
</tr>
<tr>
<td>1000</td>
<td>1021.41</td>
<td>53.03</td>
</tr>
<tr>
<td>5000</td>
<td>5060.42</td>
<td>269.29</td>
</tr>
<tr>
<td>10000</td>
<td>9553.36</td>
<td>402.76</td>
</tr>
</tbody>
</table>

3. Comparability
Total D-Dimer concentrations of 100 plasma samples were quantified independently with ichroma™ D-Dimer device and bioMerieux VITLAS automatic analyser according to established standard test procedure. Test result was compared and their comparability was investigated with linear regression and correlation of coefficient (R). Linear regression and correlation of coefficient were Y = 0.95X + 47.13 and R = 0.965, respectively.

85
REFERENCES

4. Comparison of an immune-turbidimetric method (Satake D-Dimer) with an established enzyme-linked fluorescent assay (VIDAS D-Dimer) for the exclusion of venous thromboembolism: Journal compilation 2007 Blackwell Publishing Ltd Int. Lab. Horiz. 2008; 200-204

For Technical Assistance call
Boditech Med Inc. Technical Services at
Tel: +82 (32) 243-1400
E-mail: support@boditech.com

Boditech Med Incorporated
43, Gomdusan 1-gil, Dangmyeon, Chungcheong-n, 300-483
Republic of Korea
Tel: +82 -32-243-1400
Fax: +82 -32-243-8730
www.boditech.com

Boditech Med Europe
25a Hampstead Hill Gardens
London NW3 2JL, United Kingdom
Tel: +44-207-947-3400
Fax: +44-207-447-5401
E-mail: support@boditech.com

Revision No: 04
Date of last revision: April 03, 2014